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Abstract 
The aim of this paper essentially lies in attributing a new meaning, coherent 
with phenomenological reality, to several phenomena usually classified as re-
lativistic, such as the alleged increase of the mean lifetime of muons and the 
gravitational redshift. According to the model herein proposed, all the relati-
vistic equations preserve their validity, albeit with a different connotation. We 
consider a Simple-Harmonically Oscillating Universe, characterized by a null 
curvature parameter, postulating the existence of a further spatial dimension, 
not directly perceivable. Time is considered as being absolute, although in-
struments and devices of whatever kind, commonly employed to measure it, 
may be significantly influenced by motion and gravity. The Planck Constant 
is regarded as a parameter, locally variable and subjected to a cyclic evolution. 
Time and space are treated as quantized physical quantities. 
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1. Introduction 

The paper consists, net of this short introduction, of 9 Sections or Paragraphs. 
In Paragraph 2, the well-known compatibility between General Relativity 

(from now onwards GR) and a Simple-Harmonically Oscillating Universe, flat 
and conventionally singular at 0t = , is accurately discussed: in detail, starting 
from the first Friedmann-Lemaître Equation, we carry out a step-by-step deriva-
tion of the simple equation that describes the cyclic variation (over time) of the 
Scale Parameter (the radius, in our case). 

In Paragraph 3, the existence of a further spatial dimension is postulated. The 
Universe is identified with a 4-Ball, the radius of which may evolve in accor-
dance with the relation derived in the previous paragraph, and the concept of 
material point is definitively replaced by the one of material segment. In the light 
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of these assumptions, we firstly carry out an alternative deduction of the so-called 
Mass-Energy Equivalence, albeit with a different meaning: subsequently, by in-
troducing a non-material term (which may be related to the so-called Quantum 
Potential), we obtain a rewriting of the Conservation of Energy. Finally, exploit-
ing an opportune space quantization, we achieve the expression for so-called 
Relativistic Energy, the connotation of which, coherently with the aim of this 
paper, turns out to be undoubtedly distant from the norm. 

In Paragraph 4, we address the Lorentz Transformations, backbone of Special 
Relativity (from now onwards SR). At this stage, we introduce more explicitly 
the absoluteness of time. In the light of this fundamental assumption, undenia-
bly tough, we carry out, by exploiting the outcomes attained in the previous pa-
ragraph, an unconventional derivation of the Lorentz Transformations, both in 
direct and inverse form. Obviously, the equations we obtain, although formally 
coinciding with the Lorentz Transformations, can no longer be considered as 
being relativistic (at least in the Einsteinian sense of the term) and acquire a 
meaning concretely different from the one usually ascribed to them.  

In Paragraph 5, in order to provide a better understanding of some notewor-
thy positions carried out in the second paragraph, we propose an alternative de-
duction of the Friedmann-Lemaître Equations. At the end of the section, how-
ever, the Metric Expansion/Contraction is manifestly and uncompromisingly 
considered as being an apparent phenomenon, related to the variability of the 
Planck Constant. In detail, by resorting to the Generalized Uncertainty Principle, 
we improve the quantization introduced in the second paragraph, so attaining 
the writing of the first Friedmann-Lemaître equation as a function of a time- 
dependent Planck “Constant”. 

In Paragraph 6, we start dealing with Gravitation. Firstly, taking into account 
the results obtained in the previous paragraph, we definitively postulate a static 
scenario. Secondly, in order to ideally create Gravitational Singularities, we build 
a simple model entirely based on the redistribution of mass, the total amount of 
which is considered as being constant. By means of the above-mentioned model, 
we determine how space fabric is deformed by mass. Finally, we check the com-
patibility between the hypothesized scenario and the quantization introduced in 
the second paragraph (and improved in the fifth). 

In Paragraph 7, the problem of Black Holes is addressed. According to our 
theory, in order to obtain something similar to a real (non-rotating and non- 
charged) Black Hole, all the available mass should be concentrated in a single 
point. By resorting to the model introduced in the previous paragraph, we define 
a Pseudo-Newtonian Gravitational Potential, and discuss the motion of a Free- 
Falling Particle. In this section, we start to abandon the idea of warped space, 
replacing it with the idea of variable space (and time) quanta: in other terms, 
we postulate a local variability of the Planck Constant. At the end of the para-
graph, we carry out a parameterization, which formally involves also the quan-
tization, by means of which we will be able to derive a Schwarzschild-Like Solu-
tion. 
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In Paragraph 8, we examine the well-known Schwarzschild Solution. Starting 
from a flat metric, obtained by exploiting the parameterization introduced in the 
previous paragraph, we initially carry out, by resorting to a preliminary Hil-
bert-Like Approach, a conventional derivation of a Schwarzschild-Like Metric. 
Next, starting from the same initial flat metric, but following a completely dif-
ferent line of reasoning, we deduce an infinite class of Schwarzschild-Like Solu-
tions (including the metrics derived by Droste and Brillouin). At the end of the 
section, we briefly address the Gravitational Redshift, regarded as exclusively re-
lated to the local variability of the Planck Constant. 

In Paragraph 9, in the light of the image of the alleged Black Hole, placed at 
the heart of M87, recently captured by the Event Horizon Telescope, we initially 
provide a short outline of an interesting theory, fully coherent with GR, accord-
ing to which the above-mentioned image may portray a so-called Eternally Col-
lapsing Object (and not a Black Hole). Next, by introducing the concept of ve-
locity as a complex vector, we propose a further explanation (non-relativistic, 
unlike the previous), compatible with the image in question, which may pe-
remptorily exclude the existence of Black Holes (and Event Horizons).  

2. The Oscillating Universe in General Relativity 

According to Harrison’s classification [1], there are four main groups of Uni-
form Cosmological Models compatible with GR: static, asymptotic, monotonic, 
and oscillatory.  

Each of the above mentioned groups, in turn, may be subdivided into 
sub-groups or classes. We herein exclusively address the upper-bounded oscilla-
tory class characterized by a flat (Euclidean) geometry: in particular, we will de-
rive a Simple-Harmonically Oscillating Model, conventionally singular at 0t = . 

2.1. Oscillatory Class with k = 0 

For a uniform Universe, with the usual hypotheses of homogeneity and isotropy, 
we can write the first Friedmann-Lemaître Equation [2] [3] as follows: 

( )
2

2 2 2d 1 8π .
d 3
R G c R kc
t

ρ  = + Λ − 
 

                (2.1) 

R represents the Scale Factor [3], G the Gravitational Constant, ρ the Density, 
Λ the so-called Cosmological Constant [3], k the Curvature Parameter [3], the 
value of which depends on the hypothesized geometry, and c the Speed of Light. 

As is well known, if we denote with E Energy, with T the Thermodynamic 
Temperature, with S the Entropy, with p the Pressure, and with V the Volume, 
we can write: 

d d d .E T S p V= −                         (2.2) 

If we identify the evolution of the Universe with an isentropic process, from 
the previous Equations we obtain: 

d d 0.E p V+ =                          (2.3) 
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According to Mass-Energy Equivalence [3] [4], we have: 
2 .E Mc=                          (2.4) 

Obviously, we can write: 

( )d d d d .
d d d d
M VV V
t t t t

ρρ ρ= = +                  (2.5) 

Taking into account Equations (2.4) and (2.5), from Equation (2.3) we obtain: 

2 2d d d 0,
d d d

V Vc V c p
t t t
ρ ρ+ + =                   (2.6) 

2

d d 0.
d d

p VV
t tc
ρ ρ + + = 

 
                    (2.7) 

Since we consider 3V R∝ , with 0R ≠ , we have: 

2 2

1 d 3 d .
d d
V p R p

V t R tc c
ρ ρ   + = +   

   
                (2.8) 

From the last two Equations, we immediately deduce the so-called Fluid Equ-
ation: 

2 2

d 3 d 3 .
d d

R p R p
t R t Rc c
ρρ ρ ρ   = = − + = − +   

   

�
�              (2.9) 

According to Zeldovich [5], the relation between pressure and density (the 
Equation of State) can be written as follows: 

( ) 21 .p cν ρ= −                           (2.10) 

Evidently, the Universe is identified with a barotropic fluid (pressure exclu-
sively depends on density). The value of ν, hypothesized as being constant, solely 
depends on the type of fluid we take into consideration (matter, radiation, rela-
tivistic gas, dark energy, etc.): the general accepted values lie in the range  
1 4 3ν≤ ≤  [5].  

From Equation (2.8), taking into account Equation (2.10), we obtain: 

d d3 .R
R

ρ ν
ρ

= −                          (2.11) 

As a consequence, if we denote with C the constant of integration, we can eas-
ily deduce the following: 

3 .R Cνρ =                           (2.12) 

Equation (2.1) can be evidently rewritten as follows: 
2 3

2 3 2 2 2d 8π 1 .
d 3 3
R G R R c R kc
t

ν
νρ −  = + Λ − 

 
             (2.13) 

By virtue of Equation (2.12), the underlying new constant can be now defined: 
38π 8π .

3 3
G R GCC

ν

ν
ρ

= =                    (2.14) 

By substituting the previous identity into Equation (2.13), we obtain: 
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2 2 3 2 2 21 .
3

R C R c R kcν
ν

−= + Λ −�                  (2.15) 

Denoting with ω  the Pulsation of the Oscillating Universe we want to de-
scribe, we can carry out the following position involving the cosmological con-
stant: 

2

3 .
c
ω Λ = −  
 

                         (2.16) 

If we set 0k = , by substituting Equation (2.16) in Equation (2.15), we finally 
obtain: 

2 2 3 2 2 .R C R Rν
ν ω−= −�                      (2.17) 

From the previous equation, we can deduce as follows: 

23
3 21
2d 1 ,

d
R RC R
t C

ν
ν

ν
ν

ω−
 
 = −  
 
 

                  (2.18) 

3 21 32
2

1 d d ,

1

R t
C R R

C

ν
ν

ν

ν

ω
−

=
 
 −  
 
 

                  (2.19) 

3
2

23
2

d
3 d .
2

1

R
C

t

R
C

ν

ν

ν

ν

ω

νω

ω

 
 
 
 
  =
 
 −  
 
 

                    (2.20) 

If we impose that the radius of curvature assumes a null value when 0t = , 
from the prior equation we can deduce: 

3
2 3arcsin ,

2
R t
C

ν

ν

ω νω
 
  = 
 
 

                     (2.21) 

( )3 2
2 2

3sin 1 cos 3 ,
2 2

C C
R t tν ν ννω νω

ω ω
 = = −     

             (2.22) 

( )
1

13
3

2 1 cos 3 .
2
C

R t
νν ννω

ω
 = −     

                (2.23) 

According to Equation (2.23), we have formally achieved a model of Universe 
belonging to the oscillatory class (“O Type” in Harrison’s Classification) [1]. 

From Equations (2.14) and (2.22), we immediately obtain: 

( )
2

3

3 3 1 .
8π 4π 1 cos 3

C
G G tR

ν
ν

ωρ
νω

= =
−

              (2.24) 
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Finally, by taking into account Equation (2.16), we can write the foregoing as 
follows: 

( )
2 1 .

4π 1 cos 3
c
G t

ρ
νω

Λ
= −

−
                   (2.25) 

2.2. A Simple-Harmonically Oscillating Universe  

If we set 1 3ν = , from Equation (2.23) we obtain: 

( )1 3
2 1 cos .

2
C

R tω
ω

= −                      (2.26) 

In other terms, we have found a simple-harmonically oscillating universe 
characterized by a variable density whose value, taking into account Equation 
(2.25), is provided by the following relation: 

( )
2 1 .

4π 1 cos
c
G t

ρ
ω

Λ
= −

−
                   (2.27) 

Denoting with A the Amplitude of the motion, taking into account Equation 
(2.26), we can immediately write: 

1 3
2 .

2
C

A
ω

=                         (2.28) 

If we set π 2tω = , denoting with mR  the mean radius, from Equations 
(2.26) and (2.28) we have: 

π .
2 mR A R  = = 

 
                     (2.29) 

By virtue of the previous, from Equation (2.27) we have:  

( )
2

.
4πm m

cR
G

ρ ρ Λ
= = −                   (2.30) 

Evidently, taking into account Equations (2.28) and (2.29), Equation (2.26) 
acquires the following banal form: 

( )1 cos .mR R tω= −                      (2.31) 

Now, from Equation (2.12), since we have set 1 3ν = , we can write: 

.m mR Rρ ρ=                        (2.32) 

From Equations (2.14), (2.28) and (2.32) we have: 

1 32 4π4π ,
2 3 3

m

m m

C GG R
R R

ρ
ω ρ= = =              (2.33) 

( )
3

2

22 π
3 .

m m

m
m

R G
R

R

ρ
ω

 
 
 =                 (2.34) 

2.3. Particular Case: Further Positions 

We can now carry out the following positions [5]: 
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32 π ,
3m m mM R ρ=                        (2.35) 

.mR cω =                          (2.36) 

The position in Equation (2.35), at a first glance undoubtedly puzzling, will be 
at a later time easily understood when dealing with the concept of “Global Cen-
tral Symmetry”. 

From Equation (2.34), taking into account Equations (2.35) and (2.36), de-
noting with sR  the so-called Schwarzschild Radius [3] [7], we can write:  

( )2

2
.m

m s m
M G

R R M
c

= =                    (2.37) 

In the light of the outcomes so far achieved, we can evidently write the fol-
lowing: 

,
m

ctt
R

ω α= =                         (2.38) 

( )1 cos ,mR R α= −                       (2.39) 

cos 1 ,
m

R
R

α = −                         (2.40) 

d sin ,
d
RR c
t

α= =�                        (2.41) 

2d cos 1 .
d m m

R c RR c
t R R

ω α
 

= = = − 
 

�
��                (2.42) 

The beginning of a new cycle ( 0t = ) occurs when the radius of curvature as-
sumes a null value. The problem related to the singularity [1] [8], herein not 
concretely addressed, may be solved by resorting to a quantization (see para-
graph): in other terms, we should imagine a “Quantum Leap” (actually, anything 
but a novelty) [9] [10] so as to prevent the radius from concretely assuming a 
null value.  

The evolution of the hypothesized Universe is evidently characterized by four 
consecutive phases: an accelerated expansion, a decelerated expansion, a decele-
rated contraction, an accelerated contraction. All the above-mentioned phases 
have the same duration.  

By taking into account Equations (2.38), (2.39) and (2.41), we can immediate-
ly write the Hubble Parameter [11], commonly denoted by H, as follows: 

2

2sin cos
12 2 .

2sin tan2 2
m m

m

R c cH
R R R ct

R

α α

α

   
   
   = = =

   
      

�
          (2.43) 

3. Introducing the 4th Spatial Dimension  
3.1. Mass-Energy “Equivalence”: Alternative Derivation  

Let us consider a Material Point whose motion is defined by Equation (2.39) 

https://doi.org/10.4236/jhepgc.2019.53041


C. Cataldo 
 

 

DOI: 10.4236/jhepgc.2019.53041 797 Journal of High Energy Physics, Gravitation and Cosmology 
 

(in other terms, a simple harmonic oscillator consisting of a mass and an ideal 
spring).  

Denoting with m the mass of the above-mentioned point, taking into ac-
count Equation (2.36), the Elastic Constant, denoted by ek , can be written as 
follows: 

2
2 .e

m

ck m m
R

ω
 

= =  
 

                     (3.1) 

Consequently, the Total (Mechanical) Energy, with obvious meaning of the 
notation, acquires the following form: 

2 2
-point

1 1 .
2 2mR e mE k R mc= =                    (3.2) 

Now, by solely modifying the amplitude of the motion, denoted by mR′ , 
keeping the values of mass and pulsation constant, we can generalize Equa-
tion (2.39) as follows: 

( ) ( ) ] ], 1 cos , 0, .m m m mR R R R R Rα α′ ′ ′ ′ ′= = − ∈             (3.3) 

From Equations (2.39) and (3.3) we have: 

.
m

mR R
R R
′ ′
=                           (3.4) 

At any given time, the value of R is obviously univocally determined by 
means of Equation (2.39), being mR  constant. On the contrary, the value of 
R′ , provided by Equation (3.3), clearly depends on the amplitude of the mo-
tion ( mR′ ). 

Taking into account Equations (3.1) and (3.4), the total energy of a materi-
al point, the motion of which is described by Equation (3.3), acquires the fol-
lowing form: 

2 2
2 2 2

-point
1 1 1 .
2 2 2mR e

m
m

m

R RE k R mc mc
R R′

′  ′ ′= = =   
  

           (3.5) 

The material point can now be replaced by a Material Homogeneous Segment 
(in other terms, it is as if we consider a spring, no longer ideal, with a length at 
rest equal to mR ). The length of the segment (R) evolves in accordance to Equa-
tion (2.39). 

If we denote now with M the Mass of the Segment (the Linear Mass), the 
Linear Density can be banally defined as follows: 

.MM
R

=                            (3.6) 

Consequently, denoting with M ′  the Mass of a Portion of Segment cha-
racterized, at any given time, by a length equal to R′ , we can write the fol-
lowing: 

,RM MR M
R
′

′ ′= =                        (3.7) 
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.M MM
R R

′
= =

′
                          (3.8) 

Equation (3.8) clearly shows how the linear density does not vary along the 
segment. As a consequence, taking into account Equations (3.5) and (3.7), the 
Energy related to an Infinitesimal Material Segment can be written as follows: 

2 2 2
2 2 2

3

1 1d d d d .
2 2 2R

R R McE c M c M R R R
R R R′

′ ′   ′ ′ ′ ′= = =   
   

         (3.9) 

Taking now into account Equations (3.7) and (3.9), the final expression for 
the energy of a material segment, whose length, at any given time, is equal to 
R′ , acquires the underlying form: 

3 2
2 2

0

1 1d .
6 6

R
R

R RE E Mc M c
R R

′

′

′ ′   ′ ′= = =   
   ∫              (3.10) 

At this stage, it is necessary to introduce a Further Spatial Dimension [12].  
The Universe we hypothesize is identifiable with a 4-Ball: the Radius, de-

noted by R, evolves in accordance to Equation (2.39). The corresponding 
boundary, that may represent the space we are allowed to perceive (at rest) [6] 
[12], is a three-dimensional surface (a Hyper Sphere) described by the fol-
lowing identity: 

2 2 2 2 2
1 2 3 4 .x x x x R+ + + =                       (3.11) 

The 4-Ball is banally described by the following inequality: 
2 2 2 2 2
1 2 3 4 .x x x x R+ + + ≤                       (3.12) 

Let us consider the point P+  defined as follows: 

( )0,0,0, .P R+ =                          (3.13) 

Denoting with P−  the antipode of P+  (the point diametrically opposite), 
we have: 

( )0,0,0, .P R− = −                          (3.14) 

We must now consider the straight line segment bordered by the points 
P+  and P− .  

Figure 1 provides the representations of the above-mentioned segment, by 
looking into the scenarios that arise from Equation (3.12) if we set equal to 
zero, one at a time, all the four coordinates. 

If we set 4 0x = , we obtain nothing but a single point (as shown in Figure 
1). Therefore, we have to examine the three-dimensional scenarios that arise 
from the underlying identity: 

0, 1,2,3.ix i= =                           (3.15) 

For example, we can set 1 0x =  (obviously, the same line of reasoning can 
be followed by setting 2 0x =  and 3 0x = ). As a consequence, from Equa-
tions (3.12), (3.13) and (3.14) we immediately obtain: 

2 2 2 2
2 3 4 ,x x x R+ + ≤                          (3.16) 
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Figure 1. Representations of a material segment. 
 

( )1 0,0, ,P R+ =                       (3.17) 

( )1 0,0, .P R− = −                      (3.18) 

Let us now consider the straight line segment bordered by the centre of the 
ball and the point defined by Equation (3.17). If the segment in question, the 
length of which evolves in accordance with (2.39), is provided with a mass 
equal to M, its energy can be immediately deduced from Equation (3.10) by 
setting R R′ = . Consequently, underlining how the same procedure can be 
obviously adopted for the point defined by Equation (3.18), we can write, 
with obvious meaning of the notation, as follows: 

2
,1 ,1

1 ,
6R RE E Mc+ −= =                    (3.19) 

2
1 ,1 ,1 ,1

1 .
3R R RE E E E Mc+ −= = + =               (3.20) 

Generalizing, for the material segment, crossing the centre of the 4-Ball, 
characterized by a length equal to 2R and a mass equal to 2M, we have: 

2
, , ,

1 , 1, 2,3.
3i R i R i R iE E E E Mc i+ −= = + = =           (3.21) 

Finally, by superposition, we can easily write the total amount of energy 
related to the material segment bordered by the points defined by Equations 
(3.13) and (3.14): 

3
2

1
.i

i
E E Mc

=

= =∑                     (3.22) 

The points defined by Equations (3.13) and (3.14) are nothing but the in-
terceptions between the material segment, the energy is provided by Equation 
(3.21), and the hyper surface described by Equation (3.11), which represents 
the Universe we are allowed to perceive (when we are at rest, as we will see 
later) [6] [12] [13].  
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As far as our perception of reality is concerned, each point and its antipode 
are to be actually considered as being the same entity, since they both belong 
to the same straight line segment. In other terms, we can state that, according 
to our model, the Universe is characterized by a concrete Global Central 
Symmetry. [6] [12] [13] 

3.2. The Conservation of Energy  

Let us consider one amongst the scenarios defined by Equation (3.15). For ex-
ample, we can set, once again, 1 0x = . Initially, the homogenous material seg-
ment, bordered by the points P+  and P−  defined in Equations (3.17) and 
(3.18), is characterized by a length equal to 2R and a mass equal to 2M. Let us 
suppose that the segment starts rotating around the centre of the 3-Ball defined 
by Equation (3.16).  

If we impose the Conservation of Energy, the motion must necessarily en-
tail modifications involving length and/or mass of the segment: otherwise the 
Kinetic Energy would be simply added to the energy defined by Equation (3.21), 
and the Total Energy could no longer be regarded as being constant. Obviously, 
the length of the segment in motion cannot increase: otherwise, the inequality 
in Equation (3.16) would be clearly violated (in other terms, the points P+  

and P−  would end up with being paradoxically placed beyond the boundary).  
Now, in order to find an equation that may express the conservation of 

energy, we must impose some conditions. 
Firstly, we impose that the Tangential Speed of the endpoints (of the seg-

ment), from now onwards denoted by v, cannot exceed the speed of light. 
Secondly, we impose that the motion does not cause any linear density var-

iations (this specific condition will be later legitimized): therefore, the value 
of the linear mass must keep on abiding by the simple rule established in Eq-
uation (3.7). 

Ultimately, according to our model, the motion may produce, concurrently, 
a loss of linear mass and a (symmetric) reduction of the length of the seg-
ment. 

If 2R′  represents the total length of the segment, denoting with I the Mo-
ment of Inertia, we can write the Kinetic Energy as follows: 

2

,1
1 .
2k

vE I
R

 =  ′ 
                       (3.23) 

If 2M ′  represents the (reduced) mass of the segment (in motion), we have: 

( )( )2 21 22 2 .
12 3

I M R M R′ ′ ′ ′= =                  (3.24) 

From the two previous Equations we immediately obtain: 

2
,1

1 .
3kE M v′=                          (3.25) 

From Equation (3.10), taking into account the symmetry, we can state that 
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the segment, since it is involved in the cyclic evolution described by Equation 
(3.3), is also provided with the following energy:  

2
2

,1 ,1 ,1 ,1
1 .
3R R R p

RE E E M c E
R

+ −
′ ′ ′

′  ′= + = = 
 

             (3.26) 

From Equations (3.25) and (3.26), taking into account the condition expressed 
in Equation (3.7), we obtain: 

2 2
2 2 2 2

,1 ,1
1 1  .
3 3k p

R R RE E M v c M v c
R R R

   ′ ′ ′   ′+ = + = +      
         

    (3.27) 

It is easy to verify how, since v cannot exceed the speed of light, when R′  
approaches 0 (when the segment tends to completely lose its mass), ,1 ,1k pE E+  
tends to vanish. Therefore, in order to grant the conservation of energy, we need 
to introduce a further energetic term, denoted by ,1wE . Obviously, when  
R R′ =  (when M M′ = ), ,1wE  must vanish; on the contrary, when R′  ap-
proaches 0 (when the segment tends to completely lose its mass), ,1wE  must 
tend to the value in Equation (3.21). Moreover, since ,1 ,1k pE E+  linearly de-
pends on M ′ , we impose a linear dependence also between ,1wE  and M ′ . 
Consequently, we have: 

( ) 2
,1

1 .
3wE M M c′= −                    (3.28) 

Taking into account Equations (3.21), (3.25), (3.26) and (3.28), we can finally 
write the conservation of energy, for the considered scenario ( 1 0x = ), as follows: 

( )
2

2 2 2 2
1

1 1 1 1 .
3 3 3 3

RE Mc M v M c M M c
R
′ ′ ′ ′= = + + − 

 
      (3.29) 

By multiplying by three all the members of the foregoing, taking into account 
Equation (3.22), we finally obtain the underlying relation: 

( )
2

2 2 2 2 .k p w
RE Mc M v M c M M c E E E
R
′ ′ ′ ′= = + + − = + + 

 
   (3.30) 

kE  represents the (real) kinetic energy, pE  the Potential (Background) 
Energy (related to the cyclic evolution of the Universe), wE  (a “non-material” 
aliquot, which may be related to the so-called “Quantum Potential”) [14] [15], 
represents the energy needed to obtain the motion (to obtain the mass reduc-
tion).  

From Equation (3.30) we immediately deduce the underlying noteworthy 
identity: 

2
2 2 2 .RM c M v M c E

R
′ ′ ′ ′ ′= + = 

 
             (3.31) 

According to the definition of Lorentz Factor [16], we have: 

2

1 ,

1 v
c

γ =
 −  
 

                    (3.32) 
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2
2

2

11 .v
c

β
γ

  = = − 
 

                     (3.33) 

From Equation (3.31), exploiting Equations (3.32) and (3.33), we easily ob-
tain: 

2
21 1 .v RR R R

c
β

γ
 ′ = − = − = 
 

                (3.34) 

We have just found the relation between the tangential speed (of the end-
points) and the Radial Extension (taking into account the symmetry) of the 
segment in motion. 

From Equation (3.6), by virtue of the foregoing, we obtain: 

2
.

1

M R MM M
R R v

c

γ= = =
′ ′  −  

 

                 (3.35) 

Consequently, taking into account Equations (3.7), (3.8), (3.33), (3.34) and 
(3.35), the Specific Energies (the energies per unit of length) defined in Equation 
(3.30), can now be written, with obvious meaning of the notation, as follows:  

2 2
2

2
,

1

Mc McE Mc
R v

c

γ= = =
′  −  

 

                  (3.36) 

2
2 2 2

2

11 ,k
M vE M c Mc

R
β

γ
′  

= = = − ′  
              (3.37) 

2 2 2

2 ,p
R M c McE
R R γ
′ ′ = =  ′ 

                    (3.38) 

( )
2 2

21 1 1 .w
M M c R M cE Mc
M R R R

γ
′ ′   = − = − = −   ′ ′ ′ ′   

         (3.39) 

Therefore, by dividing both members of Equation (3.30) by R′ , we obtain: 

,k p wE E E E= + +                       (3.40) 

( )
2

2 2 2
2 2

11 1 .McMc Mc Mcγ γ
γ γ

 
= − + + − 
 

            (3.41) 

Denoting with 0E  the Energy at Rest ( R R′ = ), provided by Equation (3.22), 
by virtue of the Equations (3.6), (3.36) and (3.39), we have: 

2
2

0 ,McE Mc
R

= =                         (3.42) 

( )2 2
0 01 .wE Mc E Mc E Eγ γ= = + − = +             (3.43) 

Now, by dividing both members of Equation (3.31) by R′ , taking into ac-
count Equations (3.8) and (3.34), we obtain: 

2
2 2

2 .McMc Mv
γ

= +                       (3.44) 
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By multiplying both members of the foregoing equation by γ , taking into 
account Equation (3.36), we have: 

2
2 2 ,McMc Mvγ γ

γ
= +                        (3.45) 

22 2
2

2 2
1 .

1 1

Mc Mv vE Mc
cv v

c c

 = = + −  
    − −   

   

            (3.46) 

3.3. “Relativistic Energy”: Punctual Mass and Space Quanta  

In order to obtain the formal definition of the so-called Relativistic Energy, we 
have to impose a Space Quantization.  

If R is regarded as a Primary Measurable Quantity [17], denoting with minR∆  
the (Radial) Quantum of Space [18] (the value of which will be estimated at a 
later time), and with   an integer (obviously, 0≠ ), we can write: 

min .R R= ∆                          (3.47) 

The Punctual (Three-Dimensional) Mass, denoted by m, can be defined as 
follows: 

min .m M R= ∆                          (3.48) 

We can now finally legitimize the hypothesis of constancy of the linear density. 
From Equations (3.6) and (3.48), in fact, we can immediately deduce how the 
punctual mass is not influenced by the motion. In other terms, by virtue of the 
constancy of the linear density, m can be considered as being constant (and the 
misleading concept of Relativistic Mass can be definitively rejected).  

Now, taking into account Equation (3.40), for a Material Point we have: 

( )min min , , , .m k p w k m p m w mE E R E E E R E E E= ∆ = + + ∆ = + +    (3.49) 

By multiplying both members of Equation (3.41) by minR∆ , we have: 

( )
2

2 2 2
2 2

11 1 .m
mcE mc mc mcγ γ

γ γ
 

= = − + + − 
 

          (3.50) 

Now, by multiplying all the members of Equation (3.47) by minR∆ , we finally 
obtain the well-known relation for the Relativistic Energy [3] [4]: 

22 2
2

2 2
1 .

1 1
m

mc mv vE mc
cv v

c c

 = = + −  
    − −   

   

          (3.51) 

Denoting with mp  the Momentum, with   the (Relativistic) Lagrangian, 
and with   the Hamiltonian, we have: 

2
,

1
m

mvp
v
c

=
 −  
 

                      (3.52) 

https://doi.org/10.4236/jhepgc.2019.53041


C. Cataldo 
 

 

DOI: 10.4236/jhepgc.2019.53041 804 Journal of High Energy Physics, Gravitation and Cosmology 
 

2
21 ,v mc

c
 = − −  
 

                        (3.53) 

Consequently, we can rewrite Equation (3.51) as follows: 
.m mE p v= = −                         (3.55) 

3.4. Towards a “New (Special) Relativity” 

According to the results up to now obtained, what we perceive as being a (ma-
terial) point may actually be a straight line (material) segment crossing the cen-
ter of the 4-Ball described by the inequality in Equation (3.12).  

The endpoints represent all we are allowed to perceive of any segment. Cohe-
rently with the hypothesized central symmetry, moreover, the endpoints are to 
be considered as being a unique entity (in a certain sense, they can be regarded 
as “entangled”).  

The Uniform Linear Motion of a punctual mass may actually be a rotation 
(with a constant angular speed) of the corresponding material segment around 
the center of the 4-Ball. The rotation produce, concurrently, a loss of linear 
mass (although the value of the punctual mass is clearly preserved) and a 
(symmetric) reduction of the length: the new radial extension of the segment 
(half its length), denoted by R′ , depends on the value of the tangential speed 
acquired by its endpoints (the constant speed that characterize the apparent 
linear uniform motion, denoted by v). 

The relation between R′  and v is expressed by Equation (3.34). 
The Universe perceived by an observer involved in a linear uniform motion, 

characterized by a constant speed equal to v, is therefore described by the fol-
lowing equality: 

2 2 2 2 2
1 2 3 4 .x x x x R′+ + + =                   (3.56) 

4. The Lorentz Transformations 

The Lorentz Transformations can be considered, without any doubt, as the 
backbone of SR. Nonetheless, both the conventional derivation of the transfor-
mations and the meaning commonly assigned to them have been often savagely 
criticized, to the extent that, despite an alleged empirical evidence, the whole SR 
theory, in several occasions, has been brought into question.  

Firstly, it is worth underlining how, as Lorentz himself was forced to admit at 
a later time [19], the transformations had been already conceived, several years 
before the publication of the famous paper [16], by someone else [20]. Secondly, 
the work of Lorentz was anything but concretely linked to relativistic issues, at 
least in the Einsteinian sense of the term [3] [4]. Very simply, Lorentz’s aim 
fundamentally lay in finding some transformations able to formally make the 
well-known Maxwell Equations [21] (Maxwell, 1873) invariant. On this subject, 
moreover, it can be even proved how the Lorentz transformations are not the 
only ones able to preserve the formal validity of the Maxwell equations [22].  

The so-called Direct Transformations [16] are usually written, with obvious 
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meaning of symbols and signs, as follows:  

2
,

1

x vtx
v
c

′ ′+
=

 −  
 

                          (4.1) 

2

2
.

1

vxt
ct
v
c

′
′ +

=
 −  
 

                          (4.2) 

The so-called Inverse Transformation [16] are usually written in the following 
form: 

2
,

1

x vtx
v
c

−′ =
 −  
 

                          (4.3) 

2

2
.

1

vxt
ct
v
c

−
′ =

 −  
 

                          (4.4) 

It is commonly said that, when the speed assumed by the mobile frame of ref-
erence is far less than that of light, the Lorentz Transformations tend to the Ga-
lilean ones. In other terms, according to the previous assertion, Galilean Relativ-
ity should be interpreted as a particular case of the Einsteinian one. This is an 
erroneous conviction [23]. In fact, referring to the ratio that appears in the nu-
merator of Equations (4.2) and (4.4), it is easy to understand how no limitation 
turns out to be imposed, respectively, on the variables x and x’. Therefore, since 
the above mentioned variables should be able to evidently assume arbitrarily 
large values, the ratio we have taken into consideration could even not tend to 
zero, so making de facto impossible a real identification of the Lorentz trans-
formations with the Galilean ones [24]. As we are about to see, however, this 
misleading problem can be easily overcome by means of an alternative deriva-
tion of the transformations, carried out by imposing the absoluteness of time. 

4.1. The Lorentz Transformations: Alternative Derivation 

In order to deduce the direct transformations, we will consider the scenario in 
Figure 2. 

The deduction will be carried out net of the symmetry.  
We denote with O the origin of the Frame of Reference at Rest, and with O′  

the origin of the Frame of Reference in Motion. At the beginning, obviously, O 
and O′  coincide. We have to hypothesize that when O′  starts moving, with a 
constant speed equal to v, a signal is simultaneously sent from a source, that 
both the observer at rest and the one in motion will perceive as being punctual. 
The initial Angular Distance between the origins and the source is denoted by 
χ .  

https://doi.org/10.4236/jhepgc.2019.53041


C. Cataldo 
 

 

DOI: 10.4236/jhepgc.2019.53041 806 Journal of High Energy Physics, Gravitation and Cosmology 
 

 

Figure 2. Direct transformations. 
 
The signal is actually sent from each of the points that belong to the straight 

line segment bordered by the center of curvature, denoted by C, and P. The lat-
ter represents the source as perceived by an observer at rest. The radial extension 
of any point at rest is evidently equal to the radius of the 4-Ball, denoted by R. 

As soon as O′  starts moving, its radial extension, denoted by R′ , assumes 
the value provided by Equation (3.34). If we denote with OPl  the arc bordered 
by O and P, representing the distance at rest from the source, and with O Pl ′ ′  the 
arc bordered by O′  and P′ , which represents the distance between O′  and 
the source as soon as the motion occurs, taking into account Equation (3.34), we 
can write the following: 

,CO CP R= =                          (4.5) 

,CO CP R′ ′ ′= =                         (4.6) 

,OPl Rχ=                            (4.7) 

,O Pl R χ′ ′ ′=                            (4.8) 

2

1 ,

1

OP

O P

l R
l R v

c
′ ′

= =
′  −  

 

                      (4.9) 

2
.

1

O P
OP

l
l

v
c

′ ′=
 −  
 

                        (4.10) 

The coordinate of the light source as measured by the observer at rest, up until 
now denoted by OPl , can be replaced by x. After a certain time, denoted by t′ , 
the observer in motion intercepts the signal. Let’s denote with E′  the rendezvous 
point. Obviously, the time elapsed is equal to the time taken by light to cover the 
distance E Pl ′ ′ . The above mentioned distance coincides with the coordinate of 
the light source, denoted by x′ , as measured by the observer in motion as soon 
as the signal is received. We have: 

,OPl x=                            (4.11) 

,E Pl x′ ′ ′=                           (4.12) 

,E Pl xt
c c
′ ′ ′

′ = =                         (4.13) 
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,O El vt′ ′ ′=                           (4.14) 

.O P E P O El l l x vt′ ′ ′ ′ ′ ′ ′ ′= + = +                     (4.15) 

From Equations (4.10) and (4.15) we can immediately deduce (4.1), which 
represents the First Direct Lorentz Transformation. 

If we divide the first and second member of Equation (4.1) by c, we obtain: 

2
.

1

x vt
x c c
c v

c

′ ′
+

=
 −  
 

                      (4.16) 

The first member of the previous equation, that can be denoted by t, represents 
the time elapsed between the light signal emission and the moment in which the 
observer at rest succeeds in seeing it. From Equations (4.13) and (4.16) we can 
immediately obtain Equations (4.2), that represents the Second Direct Lorentz 
Transformation. 

In order to deduce the inverse transformations, we will consider the scenario 
in Figure 3. 

This time, referring to the bi-dimensional representation provided by Figure 
3, we have to suppose that the occurs counterclockwise (once again, with a con-
stant speed equal to v). Obviously, the Equations from (4.5) to (4.10) are still va-
lid. We can serenely exploit the line of reasoning previously followed in deriving 
the direct transformations, being careful to switch the superscripts: from the 
point of view of the observer in motion, in fact, the one at rest, placed in O, 
seems to approach the light source (moving with a constant speed equal to v).  

Therefore, we can now write the following:  

,OPl x′=                           (4.17) 

,E Pl x′ ′ =                           (4.18) 

,E Pl xt
c c
′ ′= =                         (4.19) 

,E Ol vt′ ′ =                           (4.20) 

.O P E P E Ol l l x vt′ ′ ′ ′ ′ ′= − = −                    (4.21) 

From Equations (4.10) and (4.21) we can immediately deduce Equation (4.3), 
which represents the First Inverse Lorentz Transformation.  

 

 

Figure 3. Inverse transformations. 
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If we divide the first and second member of Equation (4.3) by c, we obtain: 

2
.

1

x vt
x c c
c v

c

−′
=

 −  
 

                       (4.22) 

The first member of the previous equation, that can be denoted by t′ , 
represents the time elapsed between the light signal emission and the moment in 
which the observer placed in O, actually at rest but considered as being in rela-
tive motion towards the source, succeeds in seeing it. From Equations (4.21) and 
(4.22) we can immediately obtain Equation (4.4), which represents the Second 
Direct Lorentz Transformation. 

It is fundamental to underline that, if we take into account the symmetry, both 
the direct transformations and the inverse ones can be simultaneously applied to 
whatever point in motion with a constant speed equal to v: referring to Figure 4 
(which represents just a modified version of the figure used to deduce the direct 
transformations), in fact, we can easily notice how, due to the symmetry, the 
light signals start not only from P+  and P +′ , but also from P−  and P −′ , 
moving both clockwise and counterclockwise. 

Very simply, the observer in motion travels towards the signal that propagates 
counterclockwise, so making possible the adoption of the direct transformations; 
simultaneously, the same observer moves away from the signal that propagates 
clockwise, so making possible the adoption of the inverse transformations. 

4.2. Some Noteworthy Consequences 

Firstly, referring to both the previously described scenarios, we can state that if 
the motion were suddenly stopped in E′ , the traveler would be instantaneously 
dragged into E, and the signal, after a certain period of time, would be seen once 
again: in other terms, the observer would be involved in some sort of déjà-vu.  

Secondly, we can state that the distance between the traveler and the light 
source undergoes a reduction as soon as the motion takes place: the higher 
the value of the speed, the higher the entity of the reduction. For example, re-
ferring to the first of the two cases previously examined, we can state that the 
traveler is able to cover the distance O Pl ′ ′  by taking a time, denoted by mobt , 
provided by the following relation: 

.O P
mob

l
t

v
′ ′=                          (4.23) 

However, once the traveler reaches the light source, the observer at rest be-
lieves that the covered distance may be equal to OPl . As a consequence, from 
the point of view of the observer at rest, the Apparent Speed of the traveler, 
denoted by appv , is provided by the following relation: 

.OP OP
app

mob O P

l l
v v

t l ′ ′

= =                      (4.24) 
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Figure 4. Symmetry. 
 
From Equation (4.24), by taking into account Equation (4.9), we can im-

mediately write the following: 

2
.

1
app

vv
v
c

=
 −  
 

                      (4.25) 

Coherently with the domain of the relativistic factor, the Real Speed, that 
keeps on being denoted by v, can never equate that of light. On the contrary, 
the virtual speed, that we have denoted with appv , tends to infinity when the 
real speed tends to that of light. This result is qualitatively described by Fig-
ure 5, in which the x-coordinate represents the ratio between the real speed 
and that of light (β), and the y-coordinate represents the correspondent value 
of the virtual speed, in number of times that of light. 

As a consequence, an observer at rest will measure, in any given case, a 
speed greater than the real one. Obviously, from Equation (4.25) it is possible 
to easily deduce the relation that expresses the virtual speed, the one meas-
ured by the observer at rest, as a function of the real one: 

2
.

1

app

app

v
v

v
c

=
 

+  
 

                      (4.26) 

Let’s now choose a “destination”. Generalizing Equation (4.10), if we de-
note with l the distance at rest from the point that we have to reach, and with 

mobl  the corresponding Reduced Distance (the distance that a traveler, who 
starts moving with a speed equal to v, should actually cover in order to reach 
the destination), we have: 

2

1 .mob
vl l
c

 = −  
 

                      (4.27) 
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Figure 5. Apparent speed as a function of real speed. 
 
This result is qualitatively described by Figure 6 in which the x-coordinate 

represents, once again, the ratio between the real speed and that of light (β), 
and the y-coordinate represents the correspondent value of the ratio between 
the reduced distance and the one measured at rest. 

4.3. The Alleged Increase of the Lifetime of Muons (Short  
Account) 

Amongst the so-called “proofs of Special Relativity”, the alleged increase of 
the lifetime of muons stands out. In the light of the results up to now ob-
tained, the phenomenon may be easily explained avoiding time dilations. 
Muons evidently succeed in covering a distance clearly not compatible with 
their mean lifetime: this is irrefutable. On the one hand, we could admit that 
time, for muons, starts slowing down due to the high value of their speed; on 
the other hand, and for the same reason, we may also imagine that, for muons, 
both the radial extension and the distances undergo a reduction (the pheno-
menon, according to our theory, is no longer restricted to the direction of the 
motion). In the latter case, the speed perceived by an observer at rest is great-
er than what it really is, and time, clearly, does not undergo any dilation 
whatsoever. 

5. Again on the Friedmann-Lemaître Equations 

The broad compatibility between our model of Universe and GR has been al-
ready addressed. On this subject, it is forth specifying how the above-mentioned 
compatibility is to be meant as being exclusively referred to each of the 
three-dimensional scenarios that arise from Equation (3.15): GR, in fact, is 
clearly a 3D + 1 theory (at least in its original formulation) [3], while the Un-
iverse herein hypothesized is evidently based on a 4D + 1 model. As a conse-
quence, a direct comparison between our theory and GR turns out to be de 
facto impossible.  
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Figure 6. Reduced distance as a function of real speed. 

 
In this section we carry out an alternative deduction (without resorting to 

GR) of the Friedmann-Lemaître Equations [2]. It is nothing but an “inverse 
procedure”, the finality of which exclusively lies in clarifying some positions, 
such as the one in Equation (2.35), we have previously exploited in building 
our model.  

5.1. The Friedmann-Lemaître Equations: Alternative Derivation 

By virtue of the global (central) symmetry [6] [12] [13] so far hypothesized, 
denoting with M half the mass of the Universe, we can define the density as 
follows: 

3
.

2 π
3

M

R
ρ =                         (5.1) 

Coherently with Equation (2.35), taking into account Equation (2.39), if 

mM  represents the mass when mR R= , from the prior equation we obtain: 

( )

2

2

2
3

3
.

2 π 4π3 2

m m
m m

m
m

m

c
M R

R
c RR

M

ρ ρ= = =               (5.2) 

Coherently with Equation (2.37), we can now carry out the following posi-
tion: 

2

.
2

m

m

R c
G

M
=                          (5.3) 

From the previous position, taking into account Equation (5.2), we obtain: 
2

23
.

4π
m

m

c
R
G

ρ =                          (5.4) 

We can now define the cosmological constant as follows: 

2

3 .
mR

Λ = −                          (5.5) 
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Taking into account the foregoing, from Equation (5.4) we recover Equa-
tion (2.30). 

Now, denoting with p the pressure, and with σ the Surface Tension (which 
must be clearly considered as being constant), we can write the well-known 
Young-Laplace Equation [25] as follows:  

2 .p
R
σ

=                           (5.6) 

From the foregoing, by virtue of Equation (2.10), we can write: 

( ) ( ) ( )2d 1 d d1 0.
d 2 d d

pR c R
t t t
σ ν ρ= = − =              (5.7) 

From the previous, we deduce Equation (2.32) or, equivalently, the follow-
ing:  

.m
m

R
R

ρ ρ=                           (5.8) 

According to our hypotheses, moreover, we have: 

( ) ( ) ( )d d1 0,
d d

pV V
t t

ν νν ρ= − =                  (5.9) 

,m mV Vν νρ ρ=                          (5.10) 

3 3 .m mR Rν νρ ρ=                        (5.11) 

By carrying out a banal comparison between Equations (5.8) and (5.11), we 
can finally set 1 3ν = . Consequently, from Equation (2.10) we immediately 
obtain:  

22 .
3

p cρ= −                           (5.12) 

From Equations (5.2) and (5.8) we immediately obtain: 
23 ,

4π
m

m
m

R c
R G RR

ρ ρ= =                     (5.13) 

2 4π .
3m

c G
RR

ρ=                          (5.14) 

From Equations (2.40 and (2.41) we have: 

( )
2

2 2 2 2 2
21 cos 2 .

m m

R RR c c c
R R

α= − = −�                (5.15) 

If 0R ≠ , from the previous, by virtue of Equations (5.5) and (5.14), we 
have: 

2 22 2 2

2

8π2 ,
3 3mm

R c R c c G
R R RRR

ρ
    Λ

+ = − = =   
   

� �
             (5.16) 

( )
2

2 2d 1 8π .
d 3
R G c R
t

ρ  = + Λ 
 

                     (5.17) 
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Evidently, the previous equation is nothing but Equation (2.1) with 0k = .  
Now, Equation (5.15) can be easily rearranged as follows: 

2 2
2 2

22 1 .
m m m

c R RR R c
R R R

 
= − + 

 
�                  (5.18) 

From the foregoing, by virtue of Equations (2.42) and (5.5), if 0R ≠  we 
have: 

2 2
2 2 2

22 2 ,
3m

R cR RR c RR R
R

Λ
= + = −� �� ��               (5.19) 

2 2

2 .
3

R R c
R R

  Λ
= − 

 

� ��
                     (5.20) 

From Equations (5.12) and (5.16) we obtain: 
2 2

2

4π ,
3

R c G p
R c

  Λ
− = − 

 

�
                  (5.21) 

2 2 2
2 2

2

2 2 8π2 .
3 3

R R R Gc c p
R R R c

     
− Λ = + − Λ = −     

     

� � �
     (5.22) 

From the previous, by taking into account Equation (5.20), we finally ob-
tain the usual writing of the Second Friedmann-Lemaître Equation [2] [3]: 

2
2

2

8π2 .R R Gc p
R R c

 
+ −Λ = − 
 

�� �
               (5.23) 

5.2. The Metric Expansion/Contraction as an Apparent  
Phenomenon 

Actually, we consider the variations of cosmological distances as being an ap-
parent phenomenon: in other terms, we postulate that the amount of space be-
tween whatever couple of points remains the same with the passing of time (on 
this subject, it could be worth bearing in mind how Hubble himself started 
bringing into question the relation between the Redshift and the Recessional 
Velocity of Astronomical Objects) [26].  

More precisely, we hypothesize that the so-called Cosmological Redshift may 
banally related to the conservation of energy.  

As is well known, the energy of a Quantum of Light can be expressed as the 
product between the value of its frequency and the Plank Constant.  

On the one hand, as an alternative to the conventional interpretation of the 
cosmological redshift, we could accept that, in travelling through the interstellar 
vacuum, light may somehow “get tired”, so losing part of its energy [27] [28] 
[29].  

On the other hand, we may simply imagine that the Plank Constant could 
vary over time [30] [31] [32]: consequently, just in order to preserve its energy, a 
photon could be forced into modifying its frequency.  
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In the latter case, evidently, all the cosmological equations can be rewritten as 
a function a Plank Parameter. 

On this subject, it can be proved that, according to the Generalized Uncer-
tainty Principle, minR∆  in Equation (3.47) can be expressed as follows [17]: 

min 2 .PR α′∆ = �                        (5.24) 

In the previous, P�  represents the so-called Planck Length and α′  a con-
stant.  

There are several methods to estimate the value of α′  [33] [34] [35] [36]: in 
any case, however, we obtain 1α′ ≅ . Consequently, from Equations (3.47) and 
(5.24), making explicit the expression of P�  and setting 1α′ = , we obtain: 

min 32 .GR R
c

= ∆ =
�

                      (5.25) 

From the previous, taking into account Equation (2.43), we can easily deduce: 
22

2 1 .
4

R hH
R h

  
= =   

   

��
                     (5.26) 

Therefore, Equation (5.17) can be rewritten, by resorting to the foregoing, as 
follows: 

( )
2

2 2d 4 8π .
d 3
h G c h
t

ρ  = + Λ 
 

                  (5.27) 

Beyond doubt, the possible variability of the Planck constant could still sound 
like a shocking hypothesis: nonetheless, it is worth bearing in mind how several 
physical quantities, initially considered as being constant, have been later classi-
fied as variables. The Hubble constant faced exactly this fate, and quite soon it 
was downgraded, so to say, to the rank of parameter (the value of which is still 
under investigation) [37] [38] [39].  

6. Gravitation: A Simple Model 

In the light of what specified in the sub-paragraph 5.2, mR  and mM  can be 
conventionally considered, respectively, as the real values of radius and mass. 

Replacing, for convenience, mR  with sR , and mM  with totM  (half the 
real mass of the Universe, coherently with the symmetry), we now can rewrite 
Equation (2.37): 

2

2
.tot

s
GM

R
c

=                         (6.1) 

Obviously, Equations (3.11) and (3.12) assume the following form: 
2 2 2 2 2
1 2 3 4 ,sx x x x R+ + + =                      (6.2) 

2 2 2 2 2
1 2 3 4 .sx x x x R+ + + ≤                      (6.3) 

Let us denote with C, as usual, the centre of the 4-Ball (with which we 
identify the Universe in its entirety), with O and P two points, the first of 
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which taken as origin, placed on the hyper-surface defined in Equation (6.2), 
and with O′  the centre of the so-called Measured Circumference, to which P 
belongs. Both O and O′  are considered as lying on 4x . The angular distance 
between O and P, as perceived by an ideal observer placed in C, is denoted by 
χ .  

The arc bordered by O and P, denoted by pR , represents the so-called 
Proper Radius (the measured distance between the above-mentioned points). 
We have: 

( ) .p sR Rχ χ=                       (6.4) 

The straight-line segment bordered by O′  and P, denoted by cR  or X, 
represents the so-called Predicted (or Forecast) Radius (the ratio between the 
perimeter of the measured circumference and 2π). We have: 

( ) ( ) sin .c sR X Rχ χ χ= =                 (6.5) 

From the previous we immediately deduce:  

arcsin .
s

X
R

χ
 

=  
 

                     (6.6) 

Consequently, taking into account Equation (6.4), we have: 

2

dd d .

1

p s

s

XR R
X
R

χ= =
 

−  
 

                (6.7) 

The scenario is qualitative depicted in Figure 7. 
At this point, for the hyper-surface defined in Equation (6.2), the so-called 

Friedmann-Lemaître-Robertson-Walker Metric (with 1k = ) [2] [3] can be 
written: 

 

 

Figure 7. Proper radius, predicted radius and 
measured circumference. 
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( )
2

2 2 2 2 2 2 2
2

dd d d sin d .

1
s

Xs c t X
X
R

θ θ ϕ= − − +
 

−  
 

         (6.8) 

Let us denote with 2S  the 2-Sphere characterized by a radius of curvature 
equal to cR . In order to simplify the notation, from now onwards we shall 
denote with the same symbol both the geometrical object and the corres-
ponding surface area or volume. Denoting, as usual, with θ the Inclination and 
with φ the Azimuth, taking into account Equation (6.5), we have: 

( ) 2π π 4π2 2 2 2 2
2 0 0 0

sin d d d 4π 4π sin .sS X X X R
ϕ θ

χ θ θ ϕ χ
= =

= = Ω = =∫ ∫ ∫    (6.9) 

The above-mentioned surface is simultaneously border of a 3-Ball, denoted 
by 3V , and of a Hyper-Spherical Cap, denoted by 3S . 3V  represents the 
Predicted (or Forecast) Volume, 3S  the Proper Volume. From Equations (6.4), 
(6.5) and (6.9), we have: 

( ) ( ) 2 3 2 3
3 20 0

4 4d 4π d π π sin ,
3 3

cR X
c sV S R X X X Rχ χ χ= = = =∫ ∫     (6.10) 

( ) ( ) ( )3 2 3
3 20 0

d 4π sin d 2π sin cos .cR
p s sS S R R R

χ
χ χ χ χ χ χ χ= = = −∫ ∫   (6.11) 

We can generalize the foregoing as follows: 

( ) ( ) [ ]3
3 , 2π sin cos , 0, .sS R R R Rχ χ χ χ′ ′ ′= − ∈         (6.12) 

The Hyper-Spherical Cap 3S , defined in Equation (6.11), is clearly asso-
ciated to a Hyper-Spherical Sector, denoted by 4V . We have: 

( ) ( ) ( )

( )

3
4 30 0

4

, d 2π sin cos d

1 π sin cos .
2

s sR R

s

V S R R R R

R

χ χ χ χ χ

χ χ χ

′ ′ ′ ′= = −

= −

∫ ∫
     (6.13) 

6.1. Gravitational “Singularities”: Four-Dimensional Scenario 

As previously stated, the (curved) space we are allowed to perceive can be ap-
proximately identified with a Hyper-Sphere, the radius of which depends on 
our state of motion: at rest, according to Equation (3.34), this radius equates 

sR .  
In our simple model the total amount of mass is constant: in other terms, 

mass can only be redistributed. Let us consider a generic point Q, belonging 
to the surface of the 4-Ball, and let us denote with maxχ  the angular distance 
between this point and the origin O. In order to create a Gravitational “Sin-
gularity” in correspondence of the origin, we have to ideally concentrate in O, 
from the point of view of an observer at rest (who is exclusively allowed to 
perceive a three-dimensional curved universe), all the mass enclosed in the 
2-Sphere defined by Equation (6.9) (with maxχ χ= ). This surface represents 
the border of the Hyper-Spherical Cap defined in Equation (6.11) (with 

maxχ χ= ) which, in turn, is associated to the Hyper-Spherical Sector defined 
in Equation (6.13) (with maxχ χ= ). 
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According to our theory, in enacting the ideal procedure previously ex-
pounded, we actually hypothesize that all the mass of the Hyper-Spherical 
Sector earlier defined may be concentrated (and evenly spread) along the ma-
terial segment bordered by C and O. The procedure entails a linear mass 
(energy) density increment, no longer compatible with the previous radial 
extension: consequently, both the segment and the corresponding space un-
dergo a radial contraction (the segment shortens together with space) and the 
surrounding spatial “lattice”, the integrity of which must be in any case pre-
served, results deformed. We want to determine the new radial extension of 
the segment (that represents the singularity) and the shape of the deformed 
spatial lattice.  

It is worth specifying how, abiding to the global central symmetry pre-
viously introduced, the procedure just described is symmetric with respect to 
the centre of the 4-Ball: consequently, we should have actually considered two 
opposite Hyper-Spherical Sectors, characterized by the same amplitude, and a 
single material segment, crossing the centre C, bordered by O and its antipo-
dal point. 

6.2. Gravitational “Singularities”: Three-Dimensional Scenario 

From Equation (6.3), by setting equal to zero, one at a time, 1x , 2x  and 3x , we 
obtain the following three-dimensional scenarios: 

2 2 2 2
4,1 2 3 ,sx x x R+ + ≤                      (6.14) 

2 2 2 2
1 4,2 3 ,sx x x R+ + ≤                      (6.15) 

2 2 2 2
1 2 4,3 .sx x x R+ + ≤                      (6.16) 

Evidently, if we take into consideration one among the static scenarios we 
have just obtained, the procedure previously discussed (the creation of the sin-
gularity) is equivalent to concentrating along a segment the mass of a spherical 
sector. 

Taking into account Equation (6.5), let us denote with 2 1S − , the Circumfe-
rence defined by the following relation: 

( )2 1 2π .S Xχ− =                      (6.17) 

In the three-dimensional scenario we have been considering, 2 1S −  “plays the 
role” of 2S , defined in Equation (6.9).  

The circumference defined in Equation (6.17) is simultaneously border of a 
Disc, denoted by 3 1V − , and of a Spherical Cap, denoted by 3 1S − . In the three- 
dimensional scenario we have been considering, the first “plays the role” of the 
Predicted (or Forecast) Volume 3V , defined in Equation (6.10), while the 
second “plays the role” of the Proper Volume 3S , defined in Equation (6.11). 
We have:  

( ) ( ) 2 2 2
3 1 2 10 0

d 2π d π π sin ,cR X
c sV S R X X X Rχ χ χ− −= = = =∫ ∫       (6.18) 
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( ) ( ) ( )2
3 1 2 10 0

d 2π sin d 2π 1 cos .pR
p sS S R R

χ
χ χ χ χ χ− −= = = −∫ ∫      (6.19) 

We can generalize the foregoing as follows: 

( ) ( ) [ ]2
3 1 , 2π 1 cos , 0, .sS R R R Rχ χ− ′ ′ ′= − ∈            (6.20) 

The Spherical Cap 3 1S − , defined in Equation (6.19), is clearly associated to a 
Spherical Sector, denoted by 4 1V − . We have: 

( ) ( ) ( )

( )

2
4 1 3 10 0

3

, d 2π 1 cos d

2 π 1 cos .
3

s sR R

s

V S R R R R

R

χ χ χ

χ

− − ′ ′ ′ ′= = −

= −

∫ ∫
       (6.21) 

In the three dimensional scenario we have been considering, 4 1V −  “plays the 
role” of 4V , defined in Equation (6.13).  

As previously highlighted, the new radial extension of the segment (that 
represents the singularity) is still unknown, as well as the shape of the deformed 
spatial lattice. 

Let us denote with r the Radial Coordinate of a generic point of the warped 
surface. 

According the well-known Shell Theorem, a spherically symmetric body af-
fects the external particles as if its entire mass were concentrated at the centre. 
Therefore, coming back for a while to the four-dimensional scenario and limit-
ing our analysis to the perceived space, the points belonging to the 2-Sphere de-
fined by Equation (2.9) (with maxχ χ= ) are not influenced by the creation of 
the singularity: hence, their distance from the origin (as well as their radial ex-
tension) must be preserved. 

Obviously, sR  must represent an absolute maximum for r, which is clearly 
supposed to be monotonically increasing (in the range max0 χ χ< < ).  

Lastly, since the one herein proposed is not a Pseudo-River Model [40], space 
does not flow towards the singularity: as a consequence, the angular distance 
between whatever couple of points must be considered as being constant.  

In the light of the previous assumptions, resorting to the subscript “g”, from 
now onwards, every time we refer to a quantity measured after the creation of 
the singularity, we have to simply impose the following [18]: 

2
2

, 0

d d .
dp g s p

rR r R R
χ

χ χ
χ

 
= + = = 

 
∫               (6.22) 

From the previous, if the derivative of r with respect to χ  is not null for 

maxχ χ<  (otherwise we would banally have sr R= ), the underlying equation 
is easily obtained:  

2

2

d 0.
d

r r
χ

+ =                         (6.23) 

As for the boundary conditions, according to our hypotheses, we have:  

( )max ,sr Rχ =                        (6.24) 
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( )max
d 0.
d

r χ
χ

=                       (6.25) 

From Equation (6.23), taking into account Equations (6.24) and (6.25), we 
obtain: 

( ) ( )maxcos ,sr Rχ χ χ= −                   (6.26) 

( )min max0 cos .sr r R χ= =                   (6.27) 

Figure 8 qualitatively shows how space results in being deformed due to the 
Gravitational Singularity, perceived as being placed in gO .  

At the beginning, the origin coincides with O. If we concentrate in O (actually 
along the segment bordered by C and O) the mass of the Spherical Sector (ac-
tually a Hyper-Spherical Sector) with an amplitude equal to max2χ , space un-
dergoes a contraction. The new origin coincides with gO , and the surrounding 
space is symmetrically warped. The initial radial coordinate of a generic point P 
(actually its initial radial extension) is represented by the segment bordered by C 
and P. The corresponding angular distance is denoted by χ . The final coordi-
nate (actually the final radial extension), represented by the segment bordered 
by C and gP , is shorter than the initial one, and its value is provided by Equa-
tion (6.26). The proper radius does not undergo any modification: the arc bor-
dered by O and P, in fact, is evidently equal to the one bordered by gO  and 

gP . 
If we denote with x the Reduced Forecast Radius, we have: 

( ), maxsin sin cos .c g sR x r Rχ χ χ χ= = = −            (6.28) 

Now, by virtue pf Equations (6.26) and (6.27) we can immediately write: 

( ) ( ) ( )max1 cos ,s sR r Rδ χ χ χ χ = − = − −             (6.29) 

( ) ( )max max0 1 cos .sRδ δ χ= = −                (6.30) 

Let us now denote with totM  the total mass of the 3-Ball and with 
max

M χ  
the mass contained in the spherical sector characterized by an amplitude equal 
to max2χ . 

By virtue of Equation (6.30), we can write (with obvious meaning of the nota-
tion): 

max max
max1 cos ,

tot s

M
M R
χ δ

χ= − =                  (6.31) 

max max

maxmax ,2

2
.s s

tot

M GM
R R

M c
χ χ

χδ = = =              (6.32) 

In other terms, the procedure entails a reduction of the radial coordinate of O 
(actually, the material segment bordered by C and O undergoes a contraction) 
the size of which is equal to the Schwarzschild Radius corresponding to 

max
M χ .  

Figure 9 shows once again (in detail) how the singularity, perceived as being 
placed in gO , does not influence the measured distance (the proper radius).  
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Figure 8. Gravitational singularity. 
 

 

Figure 9. Gravitational singularity (particular). 
 
The arc bordered by O and P, is evidently equal to the one bordered by gO  

and gP . On the contrary, the Forecast Radius undergoes a reduction. The seg-
ment bordered by B and P represents the Forecast Radius (X) when matter is 
evenly spread; the segment bordered by gB  and gP  represents the Reduced 
Forecast Radius (x).  

6.3. Quantization (Static Configuration) 

If mass homogeneously fills the 4-Ball with which we identify the Universe 
(static configuration), by virtue of the symmetry, the energy of a material seg-
ment provided with a mass M, can be written as in Equation (3.22). 

The Linear Mass Density, which we keep on denoting with M , can be imme-
diately obtained from Equation (3.6) by banally replacing R with sR : 

.
s

MM
R

=                         (6.33) 

By virtue of the foregoing, taking into account Equation (3.22), the (Linear) 
Energy Density can be defined as follows: 

2
2 .

s s

E McE Mc
R R

= = =                     (6.34) 
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Keeping on denoting with minR∆  the (Radial) Quantum of Space and with m 
the punctual mass, Equations (3.47) and (3.48) can be immediately rewritten as 
follows: 

min ,sR R= ∆                        (6.35) 

min min .
s

Mm M R R
R

= ∆ = ∆                   (6.36) 

As for the energy of a punctual mass, denoted by mE , from the Equations 
(6.34) and (6.36) we have:  

2
2

min min .m
s

McE E R R mc
R

= ∆ = ∆ =               (6.37) 

Let us now introduce some Fundamental Quantities.  
If we denote with minM  and minE , respectively, he Minimum Linear Mass 

and the corresponding energy, taking into account Equation (3.22) we can write: 
2

min min .E M c=                     (6.38) 

By virtue of the foregoing, taking into account Equation (6.33), we define the 
Minimum Linear Mass Density, denoted by minM , as follows: 

min
min .

s

MM
R

=                     (6.39) 

Denoting with minE  the Minimum (Linear) Energy Density, from Equations 
(6.34) and (6.38) we have: 

2
2min min

min min .
s s

E M cE M c
R R

= = =              (6.40) 

Denoting with minm  the Minimum Punctual Mass, from Equations (6.36) 
and (6.39) we immediately obtain: 

min
min min min min .

s

Mm M R R
R

= ∆ = ∆             (6.41) 

Consequently, denoting with ,minmE  the Minimum Energy for a Punctual 
Mass, from Equations (6.37), (6.40) and (6.41) we have:  

2
2min

,min min min min min .m
s

M cE E R R m c
R

= ∆ = ∆ =         (6.42) 

By virtue of Equation (6.32), we can now write the expression for the Mini-
mum Schwarzschild Radius: 

min
,min 2

2
.s

GMR
c

=                     (6.43) 

We can interpret minM  as the value of linear mass, still unknown, below 
which no deformation of spatial lattice (no radial contraction) occurs. 

Now, taking into account the central symmetry we have been resorting to in 
building our simple model, the Maximum Wavelength for a photon can be writ-
ten as follows: 
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max π .sRλ =                        (6.44) 

Taking into account the foregoing equation, denoting with h, as usual, the 
Planck Constant, we can determine the Minimum (Perceived) Energy: 

photon,min
max

.
π s

hc hcE
Rλ

= =                   (6.45) 

From the previous, taking into account Equation (6.42), we have: 

2
photon,min min

max

,
π s

hc hcE m c
Rλ

= = =              (6.46) 

min .
π s

hm
cR

=                      (6.47) 

For a (linear) mass to induce a spatial deformation (a radial contraction), the 
value of the corresponding Schwarzschild Radius must be greater than or equal 
to the value of the (Radial) Quantum of Space.  

Let us carry out the following position: 

min ,min .sR R∆ =                       (6.48) 

Now, from Equations (6.41) and (6.43), taking into account the previous, we 
have: 

2
min min min

min min ,min 2

2
.s

s s s

M M GMm R R
R R R c

= ∆ = =          (6.49) 

From the foregoing, by virtue of Equation (6.47), we obtain: 
2
min
2

2
.

π ss

GM h
cRR c

=                     (6.50) 

From the previous, taking into account the well-known definition of Reduced 
Planck Constant, we finally obtain: 

2
min ,

2π
h c cM

G G
 = = 
 

�                    (6.51) 

min .P
cM M

G
= =
�                     (6.52) 

The Minimum Value for the Linear Mass formally coincides with the one of 
the so-called Planck Mass, herein denoted with PM . 

From Equations (6.35) and (6.41), taking into account the previous, we have: 

min
min min min

1 1 .
s

R cm M M
R G

∆
= = =

�
 

            (6.53) 

From Equations (6.43) and (6.52), resorting to the definition of Planck Length, 
we finally obtain the value of the (Radial) Quantum of Space: 

min
min ,min 2 3

2
2 2 .s P

GM GR R
c c

∆ = = = =
�

�             (6.54) 

The value just found is evidently coherent with the one in Equation (5.24). 
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At this point, we can also carry out a Time Quantization. By virtue Equation 
(6.54), denoting with Pt  the so-called Planck Time, we define the Quantum of 
Time as follows: 

min
min 52 2 .P

R Gt t
c c

∆
∆ = = =

�
                   (6.55) 

7. (Non-Rotating and Non-Charged) “Black Holes”  

Referring to Figure 8, let us now suppose that the total available mass may be 
concentrated in O: in other terms, we set max π 2χ = .  

Abiding by our model, from Equation (6.26) we obtain: 

( ) πcos sin ,
2s sr R Rχ χ χ = − = 

 
                 (7.1) 

max
π .
2 sr r R = = 

 
                        (7.2) 

Evidently, the value of the Radial Coordinate (the Reduced Radial Extension) 
coincides, for any χ , with the one of the Predicted Radius provided by Equa-
tion (6.5): 

.cR X r= =                            (7.3) 

For the Reduced Predicted Radius, by virtue of Equation (6.28), we have: 
2

, sin sin sin .c g s cR x X R Rχ χ χ= = = =              (7.4) 

The scenario is qualitatively portrayed in Figure 10. 

7.1. Variable Quanta (And Locally Variable Planck “Constant”)  

We want now to carry out a quantization of the coordinate r.  
As shown in Equation (7.1), this coordinate exclusively depends on the angu-

lar distance χ  (since we have set max π 2χ = ): the more we approach the 
“singularity”, the more the value of r decreases.  

However, once again, r does not shorten within space: it shortens together 
with space, since space itself undergoes a progressive (radial) contraction in ap-
proaching the “singularity” (actually, as we will later see, the previous statement 
is not properly correct). 

Consequently, we consider a Variable (Radial) Space-Quantum, denoted with 

min,r χ∆ , the value of which depends on the angular distance χ .  
If   represents the same integer introduced in Equation (3.47), we impose: 

min, .r r χ= ∆                          (7.5) 

According to the previous, taking into account Equations (6.35), (6.54) and 
(7.2), we must have, with obvious meaning of the notation, the following: 

max min,π 2 min ,sr r R R= ∆ = = ∆                  (7.6) 

min,π 2 min 2 .Pr R∆ = ∆ = �                     (7.7) 

From Equations (7.5) and (7.6) we immediately obtain: 
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Figure 10. “Black hole”. 
 

min, min,π 2 min

.s sR Rr
r r Rχ

= = =
∆ ∆ ∆

                    (7.8) 

From Equation (7.8), taking into account Equation (7.1), we have: 

min, min,

min,π 2 min

sin .
s

r r r
r R R

χ χ χ
∆ ∆

= = =
∆ ∆

                    (7.9) 

In the light of the previous relation, we can now introduce the following 
Non-Dimensional Parameter, which represents nothing but a simple Scale Fac-
tor: 

min

min,π 2 min

min, min,

1 .
sin

s
r

r RR
r r rχ χ

η
χ∆

∆ ∆
= = = =

∆ ∆
               (7.10) 

Now, from Equations (6.54) and (7.9) we immediately obtain: 

( )2

min, min 3

sin
sin 2 sin 2 .P

G
r R

cχ

χ
χ χ∆ = ∆ = =

�
�           (7.11) 

Let us carry out the underlying position: 
2sin .χ χ=� �                          (7.12) 

In other terms, we have been hypothesizing a local variability of the Planck 
“Constant” [41] [42] [43] [44].  

From the previous, taking into account Equation (7.9), we deduce, with ob-
vious meaning of the notation, the following: 

2
2

π 2

sin .
s

h h r
h h R
χ χ χ

 
= = =  

 
                    (7.13) 

Finally, from Equation (7.11) and (7.11), denoting with ,P χ�  the Variable 
(Reduced) Planck Length, we immediately obtain: 

min, ,32 2 .P

G
r

c
χ

χ χ∆ = =
�

�                      (7.14) 
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By virtue of the previous, the Variable Quantum of Time is now defined as 
follows: 

( ) min,
min, min, ,52 2 .g P

r G
t t t

c c
χ χ

χ χχ
∆

∆ = ∆ = = =
�

        (7.15) 

From the foregoing, taking into account Equations (6.55) and (7.12), we ob-
tain: 

min,π 2 min 2 .Pt t t∆ = ∆ =                     (7.16) 

Finally, from Equations (6.55), (7.13) and (7.16), we easily deduce: 

min

min, min,

min,π 2 min

1sin .
r

t t
t t

χ χ χ
η∆

∆ ∆
= = =

∆ ∆
              (7.17) 

7.2. “Gravitational” Mass  

In case of singularity, a material segment does not undergo any radial reduction 
(in other terms, it does not shorten within space). 

As previously remarked, in fact, both the segment and the corresponding 
space undergo a radial contraction (the segment shortens together with space).  

Consequently, the mass of any material segment must be regarded as con-
stant. 

If we now denote with M the (constant) mass of a “Test” Material Segment, 
the (Variable) Linear Mass Density, in case of singularity, can be defined as fol-
lows: 

.MM
r

=                          (7.18) 

The relation that express the Mass of a Test Particle (the mass we perceive) 
must clearly resemble Equation (6.36).  

Consequently, taking into account Equations (7.9) and (7.18), we can write, 
with obvious meaning of the notation, the following: 

min,π 2min,
min, π 2 .

s

rr
m M r M M m

r R
χ

χ χ

∆∆
= ∆ = = =         (7.19) 

From the previous, by virtue of Equations (6.36) and (7.6), we have: 

π 2 min .
s

M Mm m R m
Rχ = = ∆ = =


               (7.20) 

In other terms, thanks to the position in Equation (7.5) (the meaning of which 
should now be clearer), the “Gravitational” Mass and the Inertial Mass coincide 
(as requested by the Equivalence Principle) [3] [4]. 

7.3. The Conservation of Energy (Motion Induced by a  
“Singularity”)  

In presence of a singularity, the total energy of a material segment cannot be 
written by directly resorting to Equation (3.30).  
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Due to the singularity, in fact, the linear density, defined in Equation (7.18), is 
no longer constant (once again, the segment does not shorten within space, but 
together with space): consequently, Equations (3.7) and (3.8) are no longer valid. 
In particular, since the linear mass is now considered as being constant, the term 
in Equation (3.28) must necessarily vanish.  

Therefore, the conservation of energy can still be expressed by Equation (3.30), 
on condition that we preliminarily set M M′ =  and replace, obviously, R′  with 
r.  

Finally, we have:  
2

2 2 2 .
s

rE Mc Mv Mc
R

 
= = +  

 
                    (7.21) 

From the previous relation, taking into account Equation (7.20), being  
0≠ , we immediately obtain the conservation of energy for a (Free-Falling) 

Test Particle: 
2

2 2 2 ,m
s

E M M r ME c v c
R

 
= = = +  

    
               (7.22) 

2
2 2 2 .m

s

rE mc mv mc
R

 
= = +  

 
                    (7.23) 

According to the foregoing equation, referring to Figure 10, the test particle 
placed in gP , in order to preserve its energy, starts moving towards C (actually, 
the segment bordered by C and gP  starts rotating counter-clockwise). 

7.4. The (Gravitational) Potential and the Coordinate R*  

From Equations (7.1) and (7.23) we can easily deduce as follows: 

2

1 cos ,
s

rv c c
R

χ
 

= − = 
 

                    (7.24) 

2

1 sin ,
s

r v
R c

χ = − = 
 

                    (7.25) 

2
2 2 2 2 21 1 1 11 cos 0.

2 2 2 2s

rmv mc mv mc
R

χ
  
 − − = − = 
   

       (7.26) 

From Equation (6.1) we immediately obtain: 

2 2
.tot

s

GM
c

R
=                           (7.27) 

Consequently, we have: 

2 2 21 cos cos .
2

tot

s

GM
c

R
χ χ− = −                  (7.28) 

Let us introduce a New Coordinate [18], denoted by *R , defined as follows: 
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( )*
2 .

cos
sR

R χ
χ

=                     (7.29) 

Obviously, from the foregoing we have: 

( )* 0 ,sR R=                      (7.30) 

*

π 2
lim ,R
χ→

= +∞                     (7.31) 

*cos ,sR
R

χ =                     (7.32) 

*sin 1 .sR
R

χ = −                     (7.33) 

Now, from Equation (7.26), taking into account Equation (7.28), we obtain: 

2
*

1 0.
2

totGM
mv m

R
− =                   (7.34) 

Let us define the Pseudo-Newtonian Potential, denoted by φ , as follows: 

( )2 2
*

1 cos .
2

totGM
c

R
χ φ χ− = − =               (7.35) 

Evidently, the potential reaches its minimum at 0χ =  (or, equivalently, at 
*

sR R= ). 
Therefore, we can write:  

( ) 2
min

10 .
2

cφ φ= = −                    (7.36) 

Finally, from Equation (7.26), taking into account Equation (7.35), we have: 

21 0.
2

mv mφ+ =                      (7.37) 

The previous equation represents, net of the symmetry, the conservation of 
energy for a Free-Falling Particle (the Free-Fall starts from rest at π 2χ = ) [3].  

7.5. Speed of a Free-Falling (Test) Particle  

From Equations (7.24), (7.32) and (7.35), we have: 

* 2 * *

2 2
cos 2 .tot tot sGM GM R

v c c c
R c R R

χ φ= = = = =        (7.38) 

According to the Schwarzschild Geometry (see Paragraph 8), the value just 
deduced formally coincides with the (escape) speed as measured by a so-called 
Shell Observer (a stationary observer placed at a finite distance *R  from the 
singularity) [3].  

As for the Velocity Components, denoted by Iv  and IIv , we can evidently 
write: 

2 2 .I IIv v v= +                     (7.39) 

Now, from Equation (7.38) we immediately obtain: 

https://doi.org/10.4236/jhepgc.2019.53041


C. Cataldo 
 

 

DOI: 10.4236/jhepgc.2019.53041 828 Journal of High Energy Physics, Gravitation and Cosmology 
 

* 2

2 .sR
R c

φ
=                            (7.40) 

Consequently, Iv  and IIv  assume the following forms: 

2

* * 2 2

2 2sin cos 1 ,s s
I

R R
v c c c

R R c c
φ φχ χ    = = − = −      

       (7.41) 

2
*

2cos .s
II

R
v c c

cR
φ

= = =                     (7.42) 

The Velocity Components are depicted in Figure 11. 

7.6. Parameterization  

We want to find two new coordinates, denoted with sR  and *
Kr , which could 

“play the role”, respectively, of sR  and r. Let us denote with *
pR  the Paramete-

rized Predicted Radius, and with *
,p gR  the Parameterized Reduced Predicted 

Radius. 
Firstly, in the light of Equation (6.22), we must impose:  

2 2
2

, 0 0

d d
d d .

d d
K K

p g K K p
r RR r R R

χ χ
χ χ

χ χ

∗ ∗
∗ ∗ ∗ ∗   

= + = + =   
   

∫ ∫       (7.43) 

Secondly, in the light of Equation (7.1), we must additionally impose: 
* * sin .K Kr R χ=                       (7.44) 

From the two previous equations, if the derivative of *
KR  with respect to χ  

does not vanish (for 0χ > ), we easily obtain the following: 
*

*

d
2 tan d .K

K

R
R

χ χ=                      (7.45) 

The general solution of the foregoing, denoting with K an arbitrary constant, 
is: 

*
2 .

cosK
KR
χ

=                       (7.46) 

From the previous we immediately deduce the underlying noteworthy identi-
ties: 

*cos ,K
R

χ =                      (7.47) 

*sin 1 .
K

K
R

χ = −                     (7.48) 

From Equation (7.46) we have: 
*

3

d sin2 .
d cos

KR K χ
χ χ

=                     (7.49) 

From Equations (7.44) and (7.46) we have: 

* *
2

sinsin ,
cosK Kr R K χχ

χ
= =                  (7.50) 
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Figure 11. Velocity components. 
 

* 2

3

d 1 sin .
d cos

Kr K χ
χ χ

+
=                     (7.51) 

As for the parameterized predicted radius, denoted by *
cR  or *

KX , cohe-
rently with Equations (7.1) and (7.3), we have: 

* * * *sin .c K K KR X R rχ= = =                     (7.52) 

According to Equation (7.4), the relation between parameterized predicted 
radius (no singularity) and parameterized reduced predicted radius (in case sin-
gularity, additional subscript “g”) must be the following: 

* *
, sin .c g cR R χ=                         (7.53) 

Therefore, by virtue of Equations (7.52) and (7.53), for the parameterized re-
duced predicted radius, equivalently denoted by *

Kx , we have: 
* * * * * * 2
, sin sin sin sin .c g K c K K KR x R X r Rχ χ χ χ= = = = =        (7.53) 

From the previous, taking into account Equation (7.47), we obtain: 

* 2 *
2tan ,

cosK K
Kx K K R Kχ
χ

= = − = −             (7.54) 

* *d d
.

d d
K Kx R
χ χ

=                        (7.55) 

According to Equation (7.43), the parameterized proper radius is not influ-
enced by the singularity. Therefore, from Equations (7.46), (7.49), (7.50) and 
(7.51), we have: 

2* *
* 2

, 2

* *
2

d d 1d d 1 d
d d 4 tan

11 d d ,
4 tan

K K
p g K

K p

R RR R

R R

χ χ
χ χ χ

χ

∗ 
= + = + 

 

= + =

          (7.56) 

( )

2 2* *
* * 2

, 2

2 2
* *

22

d d sin cosd d 1 d
d d 1 sin

sin cos1 d d ,
1 sin

K K
p g K

K p

r rR r

r R

χ χχ χ
χ χ χ

χ χ

χ

   
= + = +   +  

= + =
+

       (7.57) 
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( )
2 2

* * * *
, 2 22

1 sin cosd d 1 d 1 d .
4 tan 1 sin

p g p K KR R R rχ χ
χ χ

= = + = +
+

       (7.58) 

In Figure 12, a useful comparison between old and new (parameterized) coor-
dinates (in the particular case sK R= ) is qualitatively displayed.  

7.7. Parameterized Quantization  

The parameterization also affects the quantization [18].  
Obviously, it is not a real phenomenon. 
Coherently with the parameterization we have been resorting to, taking into 

account Equations (6.35) and (7.7), we must now impose, with obvious meaning 
of the notation, the following: 

* * *
min min,π 2 .KR R r= ∆ = ∆                      (7.59) 

From the previous, by virtue of Equation (7.46), we obtain:  
*

*
min 2

1 .
cos

KR KR
χ

∆ = =
 

                    (7.60) 

If we set sK R= , taking into account Equations (6.35), from the foregoing we 
have: 

* min
min 2 2

1 .
cos cos

sR RR
χ χ

∆
∆ = =


                    (7.61) 

Obviously, by virtue of Equation (7.5), we must also impose: 
* *

min, .Kr r χ= ∆                        (7.62) 

From the previous, by virtue of Equation (7.50), we obtain: 
*

*
min, 2

sin .
cos

Kr Kr χ
χ
χ

∆ = =
 

                    (7.63) 

If we set sK R= , taking into account Equation (7.9), from the foregoing we 
have: 

min,* min
min 2 2 2

sin sin1 .
cos cos cos

s rR Rr χχ χ
χ χ χ

∆∆
∆ = = =


              (7.64) 

 

 

Figure 12. Parameterization ( sK R= ).  
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Evidently, by virtue of Equations (7.60) and (7.63), we can write: 
*
min,

*
min

sin .
r
R

χ χ
∆

=
∆

                      (7.65) 

Therefore, at infinity ( π 2χ → ), we obtain: 
* *
min,π 2 min .r R∆ = ∆                       (7.66) 

From Equations (7.9), (7.60) and (7.63), taking into account the foregoing, we 
have: 

* *
min, min, min, min,
* *

min min,π 2min,π 2 min

sin .
r r r r

R rr R
χ χ χ χχ

∆ ∆ ∆ ∆
= = = =

∆ ∆∆ ∆
          (7.67) 

In the light of the previous, resorting to Equation (7.48), we can now intro-
duce the new following Parameterized Scale Factor: 

min

*
* min min

*
min,min,

*

1 1 .
sin

1
r

K

R R
rr K

R
χχ

η
χ∆

∆ ∆
= = = =

∆∆
−

           (7.68) 

The Parameterized Quantum of Time is defined as follows: 

( )
*
min,* *

min, min, .g

r
t t

c
χ

χχ
∆

∆ = ∆ =                    (7.69) 

Taking into account Equations (7.17) and (7.68), from the previous we obtain: 

min

* *
min, min,

* * * *
min,π 2 min

1sin 1 ,
r K

t r K
t R R

χ χ χ
η∆

∆ ∆
= = = = −

∆ ∆
            (7.70) 

* *
min, min, min, min,

* *
min min,π 2min,π 2 min

.
t t t t

t tt t
χ χ χ χ∆ ∆ ∆ ∆
= = =

∆ ∆∆ ∆
               (7.71) 

It is worth highlighting how, from Equations (3.32), (7.10), (7.24), (7.47), 
(7.48) and (7.68), we easily obtain: 

min min

*

2

*

1 1 1 .
sin

1 1
r r

K

K v
R c

η η γ
χ∆ ∆= = = = =

 − −  
 

           (7.72) 

8. Schwarzschild-Like Solution 

In 1916, Karl Schwarzschild succeeded in finding an exact solution to the Eins-
tein Field Equations. The astonishing outcome was obtained by hypothesizing a 
spherically symmetric static scenario (all the time derivatives vanish), and im-
posing that, outside the mass that produces the field (the singularity is not con-
sidered as being part of the solution), there is the “absolute nothing” (neither 
matter nor energy). 

In this section we firstly build an initial metric which, far from the origin (in 
correspondence of which the singularity will be later placed), may be considered 
as being flat. 
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Then, we carry out two different derivations of the Schwarzschild-Like Solu-
tion [18].  

The first procedure can be regarded as a conventional “mixed” derivation: 
conventional, since we clearly resort to GR (following, in a certain sense, a “Hil-
bert-Like” approach to the problem) [45], and “mixed”, since we obtain the de-
sired outcome by starting from a metric explicitly built as a function of the pa-
rametric coordinate *

KR , defined in Equation (7.46) (obviously, this is not a pe-
remptory condition, otherwise Schwarzschild himself could have never achieved 
his well-known solution).  

The second (alternative) procedure, carried out without resorting to GR, is en-
tirely based on a simple assumption (see Sub-Paragraph 8.3), which can be qua-
litatively and briefly summarized as follows: the “shape” of the Universe cannot 
be modified with respect to something else, taken as a reference.  

8.1. Initial Flat Metric (No Singularity) 

We can start from the following general metric: 

( )2 2 2 2 2 2 2 2d d d d sin d .p cs c t R R θ θ ϕ∗ ∗ ∗ ∗= − − +            (8.1) 

Now, from Equation (7.52) we have: 
* * *

* * *π 2 π 2 π 2 π 2
lim lim lim lim sin 1.c K K

K K K

R X r
R R Rχ χ χ χ

χ
→ → → →

= = = =            (8.2) 

Consequently, far from the origin, the parameterized predicted radius and the 
parameterized radial coordinate are interchangeable. We can write: 

* * .c KR R≅                            (8.3) 

Now, we evidently have: 

2π 2

1lim 1 1.
4 tanχ χ→

+ =                      (8.4) 

Far from the origin, therefore, by virtue of Equation (7.56), the parameterized 
proper radius and the parameterized radial coordinate are interchangeable. We 
can write: 

* *d d .p KR R≅                           (8.5) 

Finally, far from the origin (in correspondence of which the singularity will be 
created), by virtue of Equations (8.3) and (8.5), from Equation (8.1) the follow-
ing Flat Metric is immediately obtained: 

( )2 2 2 2 2 2 2 2d d d d sin d .K Ks c t R R θ θ ϕ∗ ∗ ∗ ∗= − − +             (8.6) 

It is fundamental to underline how the approximation in Equation (8.3) pre-
vents the parameterized predicted radius from assuming a null value. In detail, 
by virtue of Equation (7.46) ( 0K ≠ ), with obvious meaning of the notation, we 
have: 

( ) ( ) ( )* * *
,min 0 0 .c c KR R R Kχ = = =                  (8.7) 
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8.2. Schwarzschild-Like Solution: Conventional “Mixed”  
Derivation  

As is well known, the general static, spherically (and time) symmetric solution 
can be written as follows: 

( ) ( ) ( )( )
( ) ( ) ( )

2 2 2 2 2 2 2

* * *

d d d d sin d ,

, , 0.

K K K K

K K K

s A R c t B R R C R

A R B R C R

θ θ ϕ∗ ∗ ∗ ∗ ∗= − − +

>
    (8.8) 

Let us carry out the following position [18]: 

( )* * .K KC R R=                        (8.9) 

Thanks to the previous, the metric in Equation (8.8) can be written as follows: 

( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2

* * * *

d d d d sin d ,

, 0.

K K K K

K K

s A R c t B R R R

A R B R

θ θ ϕ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= − − +

>
    (8.10) 

As for the Metric Tensor, from the foregoing we have: 

( )
( )

* *

* *

2

2 2

0 0 0

0 0 0 ,
0 0 0
0 0 0 sin

K

K
ij

K

K

A R

B Rg
R

R θ

∗

∗

 
 
 −=  
 −
 

− 

         (8.11) 

( )

( )

* *

* *

2

2 2

1 0 0 0

10 0 0
.

10 0 0

10 0 0
sin

K

ij K

K

K

A R

B R
g

R

R θ

∗

∗

 
 
 
 
 −
 

=  
 − 
 
 

− 
 

       (8.12) 

It is fundamental to underline how *A  and *B  exclusively depend on the 
Flat Coordinate *

KR , the form of which does not necessarily coincide with the 
one derived in equation (7.46). In particular, coherently with the hypothesized 
static scenario, whatever time derivatives must necessarily vanish.  

Let us deduce the Christoffel Symbols. Generally, we have: 

1 .
2

hj ijk kh hi
ij j i h

g gg
g

x x x
∂ ∂ ∂

Γ = + − 
∂ ∂ ∂ 

                (8.13) 

The indexes run from 0 to 3 (0 stands for *t , 1 for *
KR , 2 for θ , and 3 for 

ϕ ). 
Setting 0k = , from Equations (8.11), (8.12) and (8.13), we obtain: 

*
0 0
01 10 * *

1 d .
2 d K

A
A R

Γ = Γ =                       (8.14) 

All the other symbols (if 0k = ) vanish. 
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Setting 1k = , from Equations (8.11), (8.12) and (8.13), we obtain: 
*

1
00 * *

1 d ;
2 d K

A
B R

Γ =                       (8.15) 

* **
1 1 1 2
11 12 13* * * *

1 d  , , sin .
2 d

K K

K

R RB
B R B B

θΓ = Γ = − Γ = −        (8.16) 

All the other symbols (if 1k = ) vanish. 
Setting 2k = , from Equations (8.11), (8.12) and (8.13), we obtain: 

2 2
12 21 *

1 ,
KR

Γ = Γ =                     (8.17) 

2
33 sin cos .θ θΓ = −                     (8.18) 

All the other symbols (if 2k = ) vanish. 
Setting 3k = , from Equations (8.11), (8.12) and (8.13), we obtain: 

3 3
13 31 *

1 ,
KR

Γ = Γ =                     (8.19) 

3 3
23 32

1 .
tanθ

Γ = Γ =                     (8.20) 

All the other symbols (if 3k = ) vanish. 
Let’s now deduce the components of the Ricci Tensor [3] [4]. Generally, with 

obvious meaning of the notation, we have:  

.
kk
ij l k l kik

ij ik jl ij klj kRic
x x

∂Γ∂Γ
= − + Γ Γ −Γ Γ
∂ ∂

              (8.21) 

From the previous, taking into account Equations from (8.14) to (8.20), the 
following non-vanishing components can be easily obtained:  

2 * * * * *

00 * 2 * * * * * * * * *

1 d 1 d 1 d 1 d 1 d ,
2 d 4 d d d dK K K K K K

A A A B ARic
B R B R A R B R R B R∗

 
= − + + − 

 
  (8.22) 

2 * * * * *

11 * 2 * * * * * * * * *

1 d 1 d 1 d 1 d 1 d ,
2 d 4 d d d dK K K K K K

A A A B BRic
A R A R A R B R R B R∗

 
= − + − 

 
  (8.23) 

* * *

22 * * * * * *

1 1 d 1 d 1,
2 d d

K

K K

R A BRic
B B A R B R

 
= + − − 

 
           (8.24) 

* * *
2 2

33 22* * * * * *

1 1 d 1 dsin 1 sin .
2 d d

K

K K

R A BRic R
B B A R B R

θ θ
  

= + − − =  
   

   (8.25) 

If we denote with RS  the Ricci Scalar and with ijT  the generic component 
of the Stress-Energy Tensor, the Einstein Field Equations [3] [4] can be written 
as follows:  

4

1 8π .
2ij R ij ij

GRic S g T
c

− =                     (8.26) 

We impose that, outside the mass that produces the field, there is neither 
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matter nor energy ( 0ijT = ): consequently, the first member of Equation (8.26) 
(the so-called Einstein Tensor), must necessarily vanish. In other terms, we have:  

1 0.
2ij R ijRic S g− =                     (8.27) 

From the foregoing, exploiting the fact that the Einstein Tensor and the Ricci 
Tensor are trace-reverse of each other, we have: 

0.ijRic =                     (8.28) 

Now, from Equations (8.22), (8.23) and (8.28) we obtain: 
2 * * * * *

* * 2 * * * * * * * * * * *

1 d 1 d 1 d 1 d 1 d 0,
2 d 4 d d d dK K K K K K

A A A B A
A B R A B R A R B R R A B R∗

 
− + + − = 

 
 (8.29) 

2 * * * * *

* * 2 * * * * * * * * 2 *

1 d 1 d 1 d 1 d 1 d 0.
2 d 4 d d d dK K K K K K

A A A B B
A B R A B R A R B R R B R∗ ∗

 
− + − = 

 
  (8.30) 

From the previous two equations we have: 
* *

* *

d d ,B A
B A

= −                       (8.31) 

* 1
* .

KB
A

=                          (8.32) 

The value of the constant 1K  can be deduced by imposing that, at infinity, 
the flat metric in Equation (8.6) must be recovered. In other terms, we must 
impose: 

( ) ( )* *

* * * *lim lim 1.
K K

K K
R R

A R B R
→∞ →∞

= =               (8.33) 

From Equation (8.32), taking into account the condition in Equation (8.33), 
we have: 

*
*

1 .B
A

=                         (8.34) 

The foregoing, taking into account Equation (8.11), we can be also written as 
follows: 

00 11 1.g g = −                         (8.35) 

Now, from Equations (8.24), (8.28) and (8.34), we have: 
* * *

* *
* * * *

1 d d 1 1 0,
2 d d

K

K K

R A AA A
A R R A

  + − − =  
  

           (8.36) 

( )
*

* * * *
* *

d d1 1 0,
d dK K

K K

AA R R A
R R

+ − = − =               (8.37) 

* 2
*1 .
K

KA
R

= +                         (8.38) 

Finally, by setting 2 sK K= −  (just in order to further simplify the notation), 
from Equations (8.10), (8.34) and (8.38), we obtain:  
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( )
2

2 2 2 2 2 2 2
*

*

d 1 d d sin d .
1

s K
K

sK

K

K dRs c t R
KR
R

θ θ ϕ
∗

∗ ∗ ∗ 
= − − − + 
  −

       (8.39) 

The previous represents the Schwarzschild-Like Form for the Vacuum Solu-
tion.  

The coordinate *
KR , once again, does not necessarily coincide with the one 

derived in equation (7.46), basing on which the particular (initial) metric in Eq-
uation (8.6) has been built. On this subject, if we temporarily modify the nota-
tion by replacing *s  with s, *t  with t, *

KR  with R, sK  with α , denoting 
with r ( 0r > ) the initial Flat Coordinate, which here does not coincide with the 
one defined in Equation (7.1), the Original Schwarzschild (Exact) Solution [7] is 
immediately obtained: 

( )

( )

2
2 2 2 2 2 2 2

1
3 3 3

d d 1 d d sin d
1  

 

Rs c t R
R

R

R r

α θ θ ϕ
α

α

∗  = − − − +  
  −



 = +

        (8.40) 

For the sake of completeness, it is worth underlying how the value of the arbi-
trary constant α  was never addressed by Schwarzschild himself [7].  

Now, if we denote with ψ  the gravitational potential, for an arbitrary metric, 
as is well known, we must have: 

2

00 21 .g
c
ψ = + 

 
                       (8.41) 

Far from the source, we can resort to the so-called Weak Field Approxima-
tion:  

2

00 2 21 1 2 .g
c c
ψ ψ = + ≅ + 

 
                   (8.42) 

Therefore, if we consider ψ φ= , the latter having been defined in Equations 
(7.35), by virtue of Equations (7.47) and (8.42) we have: 

2
00 2 *1 2 1 cos 1 .

K

Kg
c R
φ χ≅ + = − = −                (8.43) 

By carrying out a banal comparison between Equation (8.38) and (8.43), we 
immediately obtain sK K= . If we set sK R= , taking into account Equation 
(6.1), from Equation (8.43) we immediately obtain: 

00 * 2 *

2
1 1 .s totR GM

g
R c R

≅ − = −                     (8.44) 

From Equations (8.35) and (8.39), taking into account the previous, we obtain, 
far from the source, the underlying well-known form: 

( )
2

2 2 2 2 2 2 2
2 *

2 *

2 dd 1 d d d sin d .
21

tot

tot

GM Rs c t R
GMc R
c R

θ θ ϕ
∗

∗ ∗ ∗ = − − − + 
  −

   (8.45) 
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8.3. Schwarzschild-Like Solution: Alternative Derivation  

In order to set a useful parallelism between the conventional derivation, ex-
amined in the previous paragraph, and the one we are about to carry out, we will 
exactly start from the approximated metric derived in Equation (8.1).  

According to our model, the (parameterized) proper radius is not influenced 
by the singularity; on the contrary, the (parameterized) predicted radius under-
goes a reduction. 

Therefore, bearing in mind that we resort to the subscript “g” every time we 
refer to a quantity measured after the creation of the singularity, taking into ac-
count Equations (7.43) and (7.53), from the metric in Equation (8.1) (no singu-
larity) we obtain, in case of singularity, the following: 

( )2 2 2 2 2 2 2 2 2d d d sin d sin d .g K Ks c t R R χ θ θ ϕ∗ ∗ ∗ ∗= − − +         (8.46) 

By virtue of Equation (7.48), the foregoing can already acquire the following 
form: 

( )2 2 2 2 2 2 2 2
*d d d 1 d sin d .g K K
K

Ks c t R R
R

θ θ ϕ∗ ∗ ∗ ∗ 
= − − − + 

 
       (8.47) 

The previous represents nothing but an (approximated) “analytic solution”, 
built without taking into account the modified values of the Space and Time 
Quanta, related to each other as established by Equation (7.69). The above- 
mentioned condition is clearly expressed by means of 00g , the value of which is 
manifestly unitary. 

The metric in Equation (8.47) can be rewritten in the underlying form: 

( )
00 00 00

2 2 2 2 2 2 2 2
, ,1 1 1

d d d d sin d .g p g c gg g g
s c t R R θ θ ϕ∗ ∗ ∗ ∗

= = =
= − − +     (8.48) 

In other terms, we have carried out the following positions: 

00

* * * *
, *1

sin sin 1 ,c g c K Kg
K

KR R R R
R

χ χ
=
= = = −           (8.49) 

00

* * *
, 1

d d d .p g p Kg
R R R

=
= =                   (8.50) 

Now, from Equations (7.69) and (7.70), we immediately obtain: 

( )
min min

* *
min,π 2* * *min

min, min, min* * *1 .g
r r K

t t Kt t t
Rχχ

η η∆ ∆

∆ ∆
∆ = ∆ = = = ∆ −        (8.51) 

In the light of the previous, we can write: 

min min

* *
π 2* *

* * *

d dd d 1 .g
r r K

t t Kt t
Rη η∆ ∆

= = = −               (8.52) 

From Equation (8.49), taking into account Equations (7.59) and (7.67), we 
have: 

00

* *
, min min,π 2 min,1

sin sin .c g g
R R r r χχ χ

=
= ∆ = ∆ = ∆           (8.53) 

By resorting to Equations (7.59), (7.67), (8.3) and (8.49), we can temporarily 
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introduce the two following Non-Dimensional (Normalized) Coordinates: 
* * *

*
* * *
min min,π 2 min

,c K K
c

R R RR
R r R

= = = =
∆ ∆ ∆

                (8.54) 

00

00

*
* * *, 1*

, * * * *1
min, min, min,π 2 min

sin
.

c g g K K K
c g g

R R R RR
r r r Rχ χ

χ=

=
= = = = =

∆ ∆ ∆ ∆
       (8.55) 

Evidently, the value of the (parameterized) predicted radius, as long as it is 
expressed in terms of Space-Quanta, can be regarded as being constant. In other 
terms, from Equation (8.54) and (8.55) we can banally write: 

00

* *
, 1

.c c g g
R R

=
=                       (8.56) 

If we want to take into account the quanta variability, we must replace *dt  
with *d gt . In other terms, we have to modify the value of 00g , so far still unita-
ry.  

Consequently, by virtue of Equation (8.52), we must impose: 

min

00 * 2

11 .
K r

Kg
R η∗

∆

= − =                      (8.57) 

Evidently, we have simply changed the Units of Measurement (we have mod-
ified the scale factor), nothing else: 00g , in fact, simply reveals how we measure 
time (and space).  

By virtue of Equation (8.57), we can rewrite the metric in Equation (8.47) as 
follows: 

( )

2 2
00 00

2
00

2 2 2 2
,*1 1

2 2 2 2
, 1

d 1 d d

d sin d .

g p gg g
K

c g g

Ks c t R
R

R

η η

η
θ θ ϕ

∗ ∗ ∗

= =

∗

=

 
= − − 
 

− +

          (8.58) 

From Equations (8.49) and (8.50), with obvious meaning of the notation,  

2 min00 00

* * * *
, ,1 1

,c g r c g Kg g
R R R

η
η∆= =

= =                 (8.59) 

2 min min00 00

*
* * * *

,1 1

*

d
d d d .

1

K
p r p g r Kg g

K

RR R R
K
R

η
η η∆ ∆= =

= = =
−

       (8.60) 

Now, by substituting Equations (8.59) and (8.60) into Equation (8.58), we can 
finally write the so-called Droste Solution [46]: 

( )
2

2 2 2 2 2 2 2
*

*

d
d 1 d d sin d .

1

K
g K

K

K

RKs c t R
KR
R

θ θ ϕ
∗

∗ ∗ ∗ 
= − − − + 
  −

       (8.61) 

Obviously, according to Equation (7.46), * 0KR >  (since 0χ > ).  
For the sole purpose of simplifying the notation, the first member Equation 

(8.58) has been replaced with 2d gs∗ : this relabelling, at a first glance misleading, 
is clearly legitimised by the fact that, in Equation (8.61), the value of 00g  is ma-
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nifestly equal to the one defined in Equation (8.57). 
It is worth noticing how, resorting to Equation (7.72), the metric in Equation 

(8.61) may immediately acquire the so-called Lenz-Schiff form [47]: 

( )
2 2

2 2 2 2 2 2 2
2

d
d 1 d d sin d .

1

K
g K

Rvs c t R
c v

c

θ θ ϕ
∗

∗ ∗ ∗
  = − − − +  

      −  
 

      (8.62) 

Now, from Equation (8.61), taking into account Equation (7.54), we obtain: 

( ) ( )
2 22 2 2 * 2 2 2

*

*

d
d 1 d d sin d .

1

K
g K

K

K

xKs c t x K
Kx K

x K

θ θ ϕ
∗

∗ ∗ 
= − − − + + 

+  −
+

 (8.63) 

Clearly, by virtue of Equation (7.54), * 0Kx > . From the previous, we can im-
mediately deduce the original form of the so-called Brillouin Solution [48]:  

( ) ( )
2 2 22 2 * 2 2 2

*

*

dd 1 d d sin d .
1

g K K
K

K

c t Ks x x K
K x
x

θ θ ϕ
∗

∗ ∗ 
= − + − + + 

 +
      (8.64) 

By virtue of Equation (8.60), as for the proper radius, we can now write:  

( ) ( )

( ) ( ) ( )

**
* *

, *

*

2 2* *

d
d

1

2 d .

KK
p g K

K

K

K K

R K KRR R K
K R K
R

R K K R K

− +
= = −

−−

= − + −

∫ ∫

∫

          (8.65) 

We have just found an integral of the following kind:  

( ) ( )22 2 2d ln .
2 2 K
K yy K y y y K y K C′+ = + + + + +∫        (8.66) 

Consequently, from the previous two equations we obtain: 

( ) ( )
*

* * * * *
,

*

d
ln .

1

K
p g K K K K K

K

RR R R K R R K C
K
R

= = + − + − +
−

∫     (8.67) 

As for the constant KC , by imposing ( )* 0pR K = , we immediately obtain:  

ln .KC K K= −                     (8.66) 

Finally, from the previous two Equations we have: 

( )
* *

* *
, ln .K K

p g K K

R K R
R K R R K

K

 − +
 = + −
 
 

          (8.69) 

The foregoing, by virtue of Equation (7.54), can be also written as follows: 

( )
* *

* *
, ln .K K

p g K K

R K R
R K R R K

K

 − +
 = + −
 
 

          (8.70) 
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8.4. “Weak” Generalization and Real Schwarzschild form 

Taking into account Equations (7.46) and (7.54), we have: 
* *

* * *π 2 π 2 π 2
lim lim lim 1 1.K K

K K K

x R K K
R R Rχ χ χ→ → →

 −
= = − = 

 
            (8.71) 

If we consider a real number a (with 0 a< < ∞ ), from the foregoing we have: 

*

*π 2 π 2 π 2
lim lim lim 1.

a a a a
K K K

a a
K K K

x x x K
R R Rχ χ χ

∗ ∗

∗ ∗→ → →

  +
= = = 

 
           (8.72) 

Therefore, far from the source, taking into account Equation (7.54), we obtain: 

( )* ,
aa a a a

K K KR x K R K K∗ ∗≅ + = − +               (8.73) 

( ) ( )
1 1

* * *
, .

a aa a a a
K K K K aR R K K x K R∗ ≅ − + = + =  

          (8.74) 

In the previous we have introduced a New Coordinate, denoted by *
,K aR . Evi-

dently, by virtue of Equation (7.54), we have *
,K aR K=  at 0χ = . Moreover, it 

easy to verify how the derivative of *
,K aR  with respect to χ  (with 0 π 2χ< < ) 

is always positive. To summarise, taking into account Equations (7.49), (7.54), 
(8.72) and (8.74), we have: 

( )*
, 0 ,K aR K=                       (8.75) 

( )
* 1 *

, 1d d
0,

d d

a
K a a a a Ka

K K

R xx K x
χ χ

−
∗ ∗ −= + >              (8.76) 

1
*

,
*π 2 π 2

lim lim 1.
a a a

K a K
a

K K

R x K
R Rχ χ

∗

∗→ →

 +
= = 

 
             (8.77) 

Therefore, the new coordinate defined in Equation (8.74) and the one defined 
in Equation (7.46) are fully interchangeable (since they behave exactly the same 
way) [49].  

In other terms, we have: 
* *

, .K a KR R≅                        (8.78) 

From Equation (8.74), by setting 3a = , we obtain: 

* 3 33
,3 .K KR x K∗= +                     (8.79) 

By substituting the previous into Equation (8.61), we finally obtain the real 
Schwarzschild form (form and not exact solution, since *

Kx  does not coincide 
with the coordinate in the initial flat metric of the original derivation) [7].  

8.5. Gravitational Redshift: Approximated Derivation 

If we impose the conservation of energy, we can write, with obvious meaning of 
the notation, the following: 

photon, π 2 π 2 photon,π 2 .E h f h f Eχ χ χ= = =                (8.80) 
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From the previous, by virtue of Equation (7.13), we obtain: 

π 2 2

π 2

sin .
fh

h f
χ

χ

χ= =                      (8.81) 

If we assume the Speed of Light Constancy (actually, as we will see in the next 
paragraph, this assumption cannot be regarded as properly correct), we have: 

π 2 π 2 .c f fχ χλ λ= =                      (8.82) 

The two foregoing relations allows to define a New Scale Parameter, denoted 
by λη :  

π 2 π 2
2

1 .
sin

h
h λ

χ χ

λ
η

λ χ
= = =                    (8.83) 

According to the definition of Gravitational Redshift [3], usually denoted by z, 
from the previous we have: 

π 2 π 2 1 1.z χ
λ

χ χ

λ λ λ
η

λ λ
−

= = − = −                  (8.84) 

From Equations (7.10) and (7.68) we obtain: 

min min

*

π 2 π 2 π 2
lim lim lim sin 1.r r

χ χ χ
λ λ

η η
χ

η η
∆ ∆

→ → →
= = =              (8.85) 

Consequently, by virtue of the two previous Equations, far from the source we 
have: 

min

11 1.
sinrz η

χ∆≅ − = −                     (8.86) 

From the foregoing, taking into account Equations (7.48) and (8.84), we ob-
tain:  

*

*

π 2

*

1 1.
1

R

R

K

z
K
R

χ

χ

λ λλ λ
λ λ

∞ −−
= = = −

−

             (8.87) 

If we set sK R= , by virtue of Equations (6.1), (7.29) and (7.46), the previous 
can be finally written in the underlying well-known form: 

2 *

1 1.
21 tot

z
GM
c R

= −

−

                    (8.88) 

9. “Black Holes”: A Mystery Still Unsolved  

On the 10th of April 2019, the world was allowed to see something defined as the 
first ever “image” of the alleged (super massive) Black Hole placed in the heart of 
M87, a (super) giant elliptical galaxy in the constellation Virgo [50] [51]. The 
image, captured by the Event Horizon Telescope (EHT, an “earth-size” telescope 
actually consisting of a global network of radio telescopes), shows an object that, 
despite its undeniable compatibility with a so-called Kerr Black Hole [52], does 
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not necessarily represent a Black Hole.  
The “picture”, in fact, lends itself to several interpretations, some of which 

even based on GR. On this subject, it is worth underlining how Einstein himself, 
who was probably never sure that his field equations would ever be exactly 
solved, limited himself to recognizing the mathematic validity of the elegant 
(exact) solution found by Schwarzschild [7]. To be clearer, beyond any doubt, 
Einstein actually never “dreamt” of the existence of astronomical objects pro-
vided with the features of a Black Hole.  

9.1. An Alternative (Relativistic) Point of View: ECOs (Short  
Account) 

Amongst the alternative interpretations of the image captured by the EHT, one 
cannot help but mention the one based on the existence of the so-called Eternal-
ly Collapsing Objects (ECOs), some sort of self-gravitating (and constantly con-
tracting) extremely hot “plasmoids” coherent with GR [53] [54] [55]. These ob-
jects, despite their compatibility with GR (or, paradoxically, exactly by virtue of 
their compatibility with GR, at least in its original conception), are anything but 
related to the existence of Black Holes (and, consequently, of Event Horizons 
and Trapped Surfaces) [56]. In ECOs, very briefly, the collapse may occur with a 
local speed close to that of light: therefore, the accretion process may generate a 
very small (although not null, unlike a “real” Black Hole) radiation output, 
which may be erroneously interpreted as related to the presence of an Event Ho-
rizon.  

For this reason, ECOs may appear extremely similar to the object recently 
captured by the EHT, hastily regarded as the ultimate evidence of the existence 
of Black Holes. 

9.2. Beyond the Metrics: Velocity as a Complex Vector (Short  
Account) 

We have so far discussed in terms of warped space (due to a singularity): actually, 
if it were so, we would be forced to admit that, in a certain sense, the shape of the 
Universe could be modified with respect to something else, taken as a reference. 
Alternatively, we can imagine that, although the space value undergoes local 
modifications, the Universe may preserve its original shape (a 4-Ball, according 
to the model herein proposed).  

Therefore, the speed, the magnitude of which is defined by Equation (7.38), 
may consist of a real component, defined by Equation (7.41), and of an imagi-
nary one, defined by Equation (7.42), exclusively related to the variability of the 
Planck Constant.  

In other terms, denoting with *v  the Complex Velocity (with *v v= ), from 
Equations (7.38), (7.41) and (7.42), we can write:  

* * *
*cos ,s

Re Im
R

v v iv c c
R

χ= + = =                  (9.1) 
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*
* *sin sin cos 1 ,s s

Re I
R R

v v v c c
R R

χ χ χ  = = = = − 
 

         (9.2) 

* 2
*cos cos .s

Im II
R

v v v c c
R

χ χ= = = =                (9.3) 

It is easy to verify how *
Rev  reaches a maximum at * 2 sR R=  (when  

π 4χ = ): consequently, there may concretely be a point in correspondence of 
which, as counterintuitive as the phenomenon may appear, a free falling particle 
starts to slow down. 

Light would not be an exception to the rule. Taking into account Equations 
(7.32) and (7.33), we can write, with obvious meaning of the notation, the fol-
lowing: 

* * * ,Re Imc c ic= +                         (9.4) 

*
*sin 1 ,s

Re
R

c c c
R

χ  = = − 
 

                  (9.5) 

*
*cos .s

Im
R

c c c
R

χ= =                      (9.6) 

Therefore, light may concretely (and monotonically) slow down in approach-
ing the “singularity”: part of its energy, in fact, may compensate for the reduc-
tion of the space-quanta value.  

In relativistic terms [3], taking into account Equation (8.52) (with sK R=  
and, consequently, * *

KR R= ), denoting with *
Rel  the (proper) distance actually 

covered (the motion is considered as being purely radial), from Equations (9.2) 
and (9.5) we obtain: 

** *
*

* * * * * *

dd d
1 1 ,

d d d
gRe Re s s s

Re
g

tl l R R R
v v c

t t t R R R
 ′ = = = − = − 
 

        (9.7) 

* * *
,Light ,Light *

* * * * *

d d d
1 1 .

d d d
Re Re g s s

Re
g

l l t R R
c c c

t t t R R
 ′ = = = − = − 
 

       (9.8) 

In the light of what we have deduced, we could even imagine that, at the time 
referring to the image captured by the EHT, light had not yet reached the (super 
massive) object in question: according to this hypothesis, we will be able to see, 
with the passing of time, all the astronomical objects currently regarded as Black 
Holes. 

10. Final Remarks and Conclusions 

In spite of its length, this paper represents nothing but a mere introduction to a 
work considerably wider and still in progress: for the sake of brevity, therefore, 
several aspects, which surely deserve more accurate discussion, are merely touched 
upon. 

We postulate the existence of a further spatial dimension, not directly per-
ceivable.  
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The Universe is identified with a 4-Ball involved in an apparent cyclic evolu-
tion.  

The concept of material point is replaced by the one of material segment: in 
detail, what is perceived as being a point may actually be a segment crossing the 
centre of the 4-Ball [6] [12] [13] [18]. Two antipodal points, since they evidently 
represent the endpoints of the same segment, must be considered as being a 
unique entity: in other terms, the Universe may be characterized by a (Global) 
Central Symmetry [6] [12] [13] [18].  

Time and space are considered as being quantized physical quantities. 
The extra spatial dimension and the space quantization allow the writing of all 

the relativistic equations concerning energy, although with different connota-
tions [6] [12] [18]. The conservation of energy is derived by considering an ad-
ditional non-material component [6] [12], related to the concept of Quantum 
Potential [14] [15]. In particular, albeit the punctual mass is considered as being 
constant, the linear mass (the four-dimensional mass) may undergo a reduction 
with the increasing of speed [6] [12]. The non-material component, very intui-
tively, may simply compensate for the linear mass reduction. 

Although the topic, for the sake of brevity, is herein not addressed, it is worth 
specifying how, according to our model, the centre of the 4-Ball with which we 
identify the Universe cannot be exactly located. The quantization herein pro-
posed must be regarded as approximate. Actually, the “centre” may consist in a 
minimal 4-Ball, characterized by a diameter equal to the minimal length derived 
by resorting to the Generalised Uncertainty Principle [17]: inside the corres-
ponding border (a minimal hyper-sphere), the concept of “separation” may be-
come de facto meaningless.  

Relativity, at least in its original formulation, is clearly a 3D + 1 theory [3] [4], 
while the Universe herein hypothesized is evidently based on a 4D + 1 model: 
consequently, a direct comparison turns out to be de facto impossible. In our 
theory, however, the Universe is considered as being “triune” (one in three): in 
other terms, its features are deduced by resorting to the superposition of three 
3D + 1 sub-models, so bypassing the obstacle [6] [12] [18].  

Time is considered as being absolute, although instruments and devices of 
whatever kind, commonly employed to measure it, may be significantly influ-
enced by motion and gravity. To be clearer, time does not slow down with the 
increasing of speed or in approaching a gravitational source [6] [12] [13] [18].  

Apparently, muons succeed in covering a distance not compatible with their 
mean lifetime: actually, they may simply exploit a shortcut, as it were. According 
to our model, in fact, the proper distance between whatever couple of points de-
pends on their speed and, what is more, is no longer symmetric. In other terms, 
the very moment a particle starts moving, all the proper distances must be rede-
fined as a function of the speed: on the contrary, all the angular distances pre-
serve their initial value. Obviously, both the angular distances and the proper 
ones vary during the motion. This scenario is formally coherent with the Lorentz 
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Transformations [3] [4] [16] [19], the meaning of which, however, is completely 
altered. Amongst the significant consequences that arise from our approach, the 
possibility of (apparently) moving faster than light stands out [13].  

The Planck Constant is downgraded to the rank of parameter. 
As it is well known, the possibility of a variable Planck “Constant”, both in 

time [6] [30] [31] [32] and in space [18] [41] [42] [43] [44], represents anything 
but a novelty. According to the theory herein expounded, a time dependent 
Planck Constant may represent the real cause of the so-called Cosmological 
Redshift [3], no longer ascribable to a concrete variation of cosmological dis-
tances. [6] In particular, we have shown how an opportune space-quantization 
[17] [18] allows a rewriting of the first Friedmann-Lemaître Equation [2] as a 
function of a variable Planck Constant. The quantization may also allow to by-
pass the singularity at 0t =  by means of a “bounce” [8] [9] [10], herein not ad-
dressed. To extremely simplify, the time at which the Planck Constant should 
mathematically assume a null value would fall between two consecutive time- 
steps.  

The local variability of the Planck Constant may also cause the so-called Gra-
vitational Redshift: in passing through points characterized by different values of 
the gravitational potential, light undeniably modifies its frequency [3], but time 
is not involved in the phenomenon [18]. A cyclic behavior (with a period ap-
proximately equal to one year) in the decay rates of several radionuclides may 
lend support to the existence of a connection between the ellipticity of Earth’s 
Orbit and the variability of the Planck Constant [44].  

The atomic clocks’ “ticking” is governed by the Fine Structure Constant, 
which may lose its constancy (both in time and in space) by virtue of its depen-
dence on h [57] [58] [59] [60] [61]. According to our model, even though the 
atomic clocks are undoubtedly influenced by gravity, time may keep on flowing 
undisturbed. 

The existence of Black Holes is brought into question. 
A Schwarzschild-Like solution [7] [46] [48] can be derived without resorting 

to GR. According to GR, a particle may cross the Event Horizon and continue 
on its way towards the Singularity: however, an external observer (ideally placed 
at infinity), may eternally see the particle lying on the Event Horizon, as if it 
were frozen [3] [4]. According to our model, an Event Horizon may not even 
exist, even if the entire mass of the Universe were concentrated in a single point: 
in this case, however, the speed of a free-falling particle may reach a maximum 
at * 2 sR R= , becoming null at *

sR R= . (i.e. when it reaches the “singularity”). 
Light, in travelling towards the “singularity”, may progressively slow down, 
stopping at *

sR R= : consequently, what we are used to identifying as an Event 
Horizon could actually be nothing but a region not yet reached by light (at the 
time referring to the image we are allowed to observe). Such a scenario simply 
arises from considering velocity as a complex vector: in approaching a gravita-
tional source, the magnitude (the modulus) of the velocity of a free-falling par-
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ticle keeps on increasing, while the magnitude of the velocity of light is con-
stantly equal to c. 
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