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Abstract 

Ammonia is toxic, colorless, and harmful to human health. It is important to 
detect ammonia effectively by gas sensors. In this paper, the mechanism of 
ammonia sensing on polypyrroles (PPy) films at room temperature has been 
investigated using a real-time, in-situ Fourier-transform infrared (FT-IR) 
spectroscopy. The introduction of ammonia results in a structural transfor-
mation of PPy films, which is confirmed by FT-IR spectrums. The structure 
and morphology of the products after the reaction between ammonia and 
PPy were investigated in detail by FT-IR spectrum and scanning electron mi-
croscope (SEM). It was found that the morphology of PPy films was changed 
to some degree after the reaction. Our results demonstrate that FT-IR spec-
troscopy is an extremely suitable technique for the characterization of the 
specific reaction between PPy and ammonia, since it allows monitoring the 
reaction at room temperature in real time. After the reaction between PPy 
and ammonia, the concentration of the carrier increases, and the resistance of 
PPy films decreases, indicating the sensitivity of detection of ammonia.  
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1. Introduction 

Ammonia is toxic, colorless, pungent, and harmful to skin [1]. It is important to 
detect ammonia rapidly by gas sensors. Compared to traditional metal oxide 
materials, conducting polymers show obvious advantages for sensors, such as 
low price, good selectivity, and usage at room temperature [2] [3] [4] [5]. In the 
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1980s, doped polyacetylene was found to be good conductors [6] [7] [8] which 
drew large amounts of attention to the field of conducting polymers. Conjugated 
polymers, such as polyaniline (PAN) [9], polypyrroles (PPy) [10] and polythio-
phene (PTP) [11], become high conductive materials by doping. Researchers 
have adopted conducting polymers to detect toxic gases by gas sensors known as 
“electronic noses” [12] [13] [14]. PPy was chosen as the research object because 
of its facile synthesis, low electropolymerization potential, and good stability in 
air [15]. Chen and Li [16] have fabricated gas sensors based on PPy/silver com-
posite nanotubes, which were found to be effective in response to ammonia (10 
ppm). 

A novel ammonia sensor with high surface-to-volume ratio PPy nanowire ar-
rays was researched by Zhang [17]. Different PPy-coated/composited materials, 
such as TiO2/ZnO [18], SnO2 [19], ZnO [20], and other materials [21] [22] [23], 
to ammonia were researched and exhibited different sensitivities. Although var-
ious conductive polymer materials for gas sensors have been prepared by various 
methods [24] [25] [26], their working mechanisms have rarely been studied. Ex-
isting research [27] [28] indicated that polymer films had a complex redox reac-
tion after the adsorption of gas, which decreased the conductivity of the polymer 
films. So far, however, there has been no uniform explanation of the sensitivity 
mechanism of conductive polymers. 

The FT-IR spectrum is frequently used to investigate organics and shows great 
potential in the investigation on the mechanism of sensitivity change for organ-
ics. Carquigny et al. produced an ammonia gas sensor based on PPy films, and 
discussed the sensitivity mechanism using ex-situ FT-IR spectrum [29]. For bet-
ter understanding the mechanism the real-time process of detection in sensitivi-
ty and the structure change of materials is highly desireable. 

In this paper, conducting polymer PPy films were successfully prepared by an 
electrochemical in-situ polymerization method. The stable geometry of the PPy 
films enabled the films to maintain their original shape and structure during the 
ammonia testing. The interaction between PPy films and ammonia was then in-
vestigated, and the sensitivity mechanism was detected in real time and by 
in-situ FT-IR. An analysis of the FT-IR spectrum of PPy films before and after 
the flowing gas found that a chemical reaction occurred between the PPy films 
and the ammonia during the detecting process. The sensitivity mechanism of 
PPy films to toxic ammonia was studied at room temperature. 

2. Experimental 
2.1. Materials 

Distilled pyrrole (Py, Sinopharm Chemical Reagent Research Institute Co., Ltd.) 
was dissolved under reduced pressure into acetonitrile (Shanghai Chemical 
Reagent Co., Ltd.), and KClO4 (Shanghai Chemical Reagent Co., Ltd.) was dis-
solved in deionized water. The final solution is the mixture of the aforemen-
tioned solvents. 
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2.2. Characterizations 

The morphology and the size of the as-prepared PPy films were characterized 
using SEM with the acceleration voltage of 10 kV (Sirion 200, manufactured by 
FEI, Holland). 

FT-IR was applied to evaluate the functional group of PPy films. The FT-IR 
transmission spectra were obtained by using a FT-IR spectrophotometer (VERTEX 
70, made by Bruker Co., Germany) in the range of 500 - 4000 cm−1. 

2.3. Preparation of the Substrate and the Polymer 

Figure 1 shows the schematic of the fabrications process. The ceramic substrates 
(7 mm × 6 mm printed interdigital gold electrodes) were cleaned by ultrasound 
for 10 min each in deionized water, ethanol and acetone, respectively, to remove 
surface dirt and oil stains; then the substrate was kept in deionized water and 
dried before being used [Figure 1(a)]. 

Initially, monomer pyrrole was added to acetonitrile to form a 0.1 M solution. 
Meanwhile, KClO4 was dissolved into deionized water to form a 0.1 M solution. 
After 10 min ultrasonic dispersion for each solution, they were mixed together. 

The potentiostatic polarization method was used in the polymerization 
process. The polarization voltage was 0.8 V and the polarization time was 2 hr. 
The working electrode and the auxiliary electrode were exchanged every 20 
sec. 
 

 
(a) 

  
(b)                                      (c) 

Figure 1. Schematic of the fabrication process (a) the ceramic substrates (b) and (c) after 
deposited. 
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2.4. Ammonia Measurements 

The sensitivities of PPy films were tested in different concentrations of ammo-
nia. A 30 L container with a removable lid served as a test chamber, as the sensor 
could be set within. The films were statically exposed in the gas after the liquid 
evaporated. The sensitivity was defined as (R0/R1) × 100% (R0 = the initial resis-
tance and R1 = the tested resistance). 

3. Results and Discussion 
3.1. Morphological Characterization 

Figure 2(a) shows the SEM micrograph of the PPy films produced by the elec-
trochemical in-situ polymerization method. It is apparent that flower-like par-
ticles are obtained. Figure 2(b) shows the image of the PPy films, which is al-
ternately deposited on the interdigitated golden electrodes. It can be concluded 
that the films firmly adhere to the golden electrodes. After desorption of the 
ammonia, the morphology of the PPy films is changed. Holes appear among the 
initial compacted thin films [Figure 2(c)]. It can be presumed that a reaction 
between PPy films and ammonia occurs. 
 

 
Figure 2. SEM images of the PPy films (a) as synthesized (b) deposited on the gold elec-
trodes (c) after desorption of ammonia. 
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3.2. Sensitivity to Ammonia 

The sensitivity feature of the sensor in 800 ppm ammonia is shown in Figure 3. 
The resistance of PPy films decrease after ammonia fills the container. The sen-
sitivity time is less than 15 s and the recovery time is about 100 s. When the 
ammonia comes in contact with the PPy films, physical adsorption occurs be-
tween them in a complex chemical reaction, which results in a decrease in the 
resistance of the film. When PPy films were placed in ammonia, ammonia could 
be adsorbed and diffused on the films. Ammonia is a kind of reducible gas which 
is able to provide electrons, and increases the electron concentration of PPy 
films. Therefore when ammonia contacted the PPy films, the resistance of the 
PPy films decreased. As the result of incomplete reversible reaction, the resis-
tance of PPy films did not recover to the original value [30]. 

With the increase of ammonia concentration, the resistance of the films de-
creased, as shown in Figure 4. As the result of limited recovery time and incom-
plete reversible reaction, the resistance of the PPy films did not return to the 
original value. As the concentration of ammonia increased the sensitivity of the 
films increased, as shown in Figure 5, it can be seen that the sensitivity of PPy 
films is only 120% in 100 ppm ammonia. When the gas concentration changed 
from 300 ppm to 500 ppm, the sensitivity of the PPy films increased from 180% 
to 250%. From the data in Figure 5, it can be concluded that the relation be-
tween the sensitivity and the concentration is almost linear. 

Figure 6 shows a typical sensitivity-recovery curve obtained for 500 ppm 
ammonia. To investigate the recovery ability of PPy films in ammonia, eight 
continuous sensitivity tests were conducted in 500 ppm ammonia. The resis-
tance of the films gets back to the initial value, which leads to the conclusion that 
this material has enough stability for continuous detecting in ammonia. 

Figure 7 shows the sensitivities of PPy films 8 trials in 500 ppm ammonia. By 
comparing the eight sensitivities, it can be deduced that the test has good relia-
bility, and that this material also possesses competitive gas sensing characteris-
tics, thus PPy films can be used to test ammonia for commercial purposes. 
 

 
Figure 3. Resistance—time curve in 800 ppm ammonia. 
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Figure 4. Resistance—time curve in different concentration ammonia. 

 

 
Figure 5. Sensitivity of PPy film in different concentrations of ammonia. 

 

 
Figure 6. Resistance—time curve of 8 retests in 500 ppm ammonia. 
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Figure 7. The sensitivities of PPy films 8 trials in 500ppm ammonia. 

3.3. Sensitivity Mechanism 

In order to discuss the sensitivity mechanism between PPy films and ammonia, 
we designed the experiment that the process was in-situ monitored by FT-IR 
spectroscopy. PPy films were placed in the ammonia flow for 2 min, during 
which FT-IR spectrums were used to scan at intervals of 10 sec. 

In Figure 8, we present the FT-IR plural spectra of PPy films before, during 
and after the detection process. In Figure 8(a), the peak in 1650 to 1150 cm−1 
can be assigned to the symmetric/asymmetric C=C/C-C vibrations. From the 
band at 960 cm−1, we conclude that PPy films are doped with 4ClO− . The band at 
1300 cm−1 is attributed to the C-N stretching vibration modes. These would ac-
count for the presence of the pyrrole ring after electrochemical polymerization. 

Figure 8(b) shows the FT-IR spectrum of PPy films after the adsorption of 
ammonia. Compared with Figure 8(a), two broad adsorption bands appear 
when PPy films are exposed to ammonia flow. The first band at 3340 cm−1 is as-
signed to ammonia. After the adsorption of ammonia, PPy chemically reacted 
with the ammonia. As the band at 1600 cm−1 is assigned to amino, we proposed 
that by losing electrons, ammonia becomes amino, attaching to the main chain 
of PPy. 

Figure 8(c) illustrates the FT-IR spectrum of PPy films after desorption of the 
ammonia. There is no band at 3340 cm−1, indicating that the reaction between 
PPy films and ammonia is reversible. Compared with Figure 8(a), the main 
groups of infrared characteristic absorption peaks have returned to their original 
positions, but some bias still exists, which indicates that the reaction is not fully 
reversible. In addition, a lot of infrared absorption peaks disappear in the band 
at 1600 cm−1 due to the disappearance of the amino. 

In order to further illustrate the sensitivity mechanism between ammonia and 
PPy films, the adsorption process was investigated by real-time FT-IR spectro-
meter. Figure 9 shows the FT-IR plural spectra of PPy films in ammonia with  

https://doi.org/10.4236/msa.2019.107036


L. Wang, R. Z. Jiang 
 

 

DOI: 10.4236/msa.2019.107036 504 Materials Sciences and Applications 
 

 
Figure 8. FT-IR plural spectra of PPy films (a) before adsorption of ammonia (b) during 
adsorption of ammonia and (c) after desorption of ammonia. 
 

 
Figure 9. FT-IR plural spectra of PPy films in ammonia with different times. 
 
different times. When ammonia contacted PPy films, physical adsorption oc-
curred first. A tiny peak at 3340 cm−1 appears in Figure 9(b). As result of the 
reducibility of ammonia, PPy films receive the electrons. The lost electrons, 
which do not belong to any atoms, attach themselves to the π-conjugated carbon 
chains. This leads to the change in the film conductivity, with the resistance of 
PPy films decreasing. The obvious band at 1600 cm−1 appears in Figure 9(c) and 
Figure 9(d). The reaction process is shown in Figure 10. 

There were two kinds of reaction mechanism between PPy films and ammo-
nia. The cases are shown in 1-1 and 1-2. 

0
4 3 3 4PPy ClO NH PPy NH ClO+ − + −+ → − ⋅             (1-1) 

( ) 0

4 3 4 4PPy ClO NH PPy H1 NH ClO+ − + + − + → − +          (1-2) 

As shown in Figure 8(b), the band at 1600 cm−1 is assigned to amino. By los-
ing electrons, ammonia becomes amino, attaching to the main chain of PPy. We 
proposed that there are the simple compensation effects involving electron  
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Figure 10. Schematic of the reaction process between PPy films and ammonia. 

 
transfer. In electron transfer compensation, ammonia molecules compensated 
the PPy films charge, which caused changes in the electrical conductivity of the 
PPy films. The results proved that there is direct evidence for the first case. 

4. Conclusions 

The conducting polymer PPy films were successfully prepared by an electro-
chemical in-situ polymerization method. The sensitivities of PPy films to differ-
ent concentrations of irritant ammonia were tested at room temperature. The 
interaction between PPy films and ammonia were studied by real-time, in-situ 
FT-IR spectrometer. The results indicated that redox reactions took place be-
tween the PPy film and ammonia, causing changes in the electrical conductivity 
of the PPy films. As the donor to PPy films, the electrons of ammonia contri-
buted to the increase of electron concentration in PPy films, thus the resistance 
of the films decreased. The results showed that in a certain range of concentra-
tion of ammonia, there was a good linear relationship for the concentration of 
ammonia and sensitivity. 

Based on these results, the conducting polymer PPy is promising for the de-
tection of ammonia. The research work is insufficient, not detecting the other 
gases. We hope that this work is helpful for further exploring more PPy-based 
materials with even novel sensing performance for NH3 sensing at room tem-
perature. 
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