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Abstract 
A numerical radius inequality due to Shebrawi and Albadawi says that: If 

, ,i i iA B X  are bounded operators in Hilbert space, 1,2, ,i n=  , and ,f g  
be nonnegative continuous functions on [ )0,∞  satisfying the relation 

( ) ( )f t g t t=  [ )( )0,t∈ ∞ , then 

( ) ( )
1

2 2

1 12

rn n r rr
i i i i i i i i i

i i

nw A X B A g X A B f X B
−

∗ ∗ ∗ ∗

= =

      ≤ +       
∑ ∑  for all  

1r ≥ . We give sharper numerical radius inequality which states that: If 
, ,i i iA B X  are bounded operators in Hilbert space, 1,2, ,i n=  , and ,f g  

be nonnegative continuous functions on [ )0,∞  satisfying the relation  

( ) ( )f t g t t=  [ )( )0,t∈ ∞ , then 

( ) ( )
1

2 2

1 12

rn n r rr
i i i i i i i i i

i i

nw A X B A g X A B f X B α
−

∗ ∗ ∗ ∗

= =

     ≤ + −     
∑ ∑  where 

( ) ( )
21 21 1 2

2 2

1 1
sup , ,

2

r n r r

i i i i i i
x i

n A g X A x x B f X B x xα
−

∗ ∗ ∗

= =

    = −     
∑ . 

Moreover, we give many numerical radius inequalities which are sharper than 
related inequalities proved recently, and several applications are given. 
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1. Fundamental Principles 

Let ( )B H  denote the C∗ -algebra of all bounded linear operators on a Hilbert 
space H. In the case when dim H n= , we identify ( )B H  with the matrix al-
gebra nM  of all n n×  matrices with entries in the complex field. The numeri-
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cal radius of ( )T B H∈  is defined by 

( ) { }sup , : , 1 .w T Tx x x H x= ∈ =                  (1) 

It is well-known that ( ).w  defines a norm on ( )B H , which is equivalent to 
the usual operator norm. Namely, for ( )T B H∈ , we have 

( )
2
T

w T T≤ ≤                         (2) 

These inequalities are sharp. The first inequality becomes an equality if 
2 0T = , and the second inequality becomes an equality if T is normal (see [1]). 
An important inequality for ( )w T  is the power inequality stating that 

( ) ( )( )nnw X w X≤  for 1, 2,n =   see ([2]: p. 118).  
An important property of the numerical radius norm is its weak unitary inva-

riance, that is, for ( )X B H∈ , 

( ) ( )w U XU w X∗ =                         (3) 

for every unitary ( )U B H∈ . For further information about the properties of 
numerical radius inequalities we refer the reader to [2]-[7] and references there-
in. 

Let 1 2,H H  be Hilbert spaces, and consider the direct sum 1 2H H H= ⊕ . By 
considering this decomposition, every operator ( )T B H∈  has a 2 2×  opera-
tor matrix representation ijT T =    with entries ( )1 2ijT B H H∈ ⊕ . 

2. Introduction 

Hirzallah, Kittaneh and Shebrawi have proved in [8] that: 
If ( )X B H∈ , then: 

( )
Re Im

2 2
X XX

w X
−

+ ≤                  (4) 

also, they proved that: 
If ( )X B H∈ , then: 

( )
Re Im

2 2
2 4 4

X X
X X

X
w X

− −

+ + ≤             (5) 

Moreover, they showed that: 
if ( ),X Y B H∈ , then: 

( ) ( )0
0 2

w X Y w X YX
w

Y
+ + −  

≤  
  

                (6) 

Shebrawi and Albadawi have proved in [9] that: 
If ( ) ( ), , , 1, 2, ,i i iA B X B H i n∈ = 

 and ,f g  be nonnegative continuous 

functions on [ )0,∞  satisfying the relation ( ) ( )f t g t t=  [ )( )0,t∈ ∞ , then: 

( ) ( )
1

2 2

1 12

rn n r rr
i i i i i i i i i

i i

nw A X B A g X A B f X B
−

∗ ∗ ∗ ∗

= =

      ≤ +       
∑ ∑      (7) 
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for all 1r ≥ . 
In the special case, where ( ) kf t t=  and ( ) 1 kg t t −= , ( )0,1α ∈ , they proved 

that: 

( )1 2 1 2

1 12

r rn n rk kr
i i i i i i i i i

i i

nw A X B A X A B X B
− −∗ ∗ ∗ ∗

= =

      ≤ +          
∑ ∑     (8) 

In particular, they proved the following inequalities: 
1) 

( )
1 1

1
2

n n

i i i i i i i i i
i i

w A X B A X A B X B∗ ∗ ∗ ∗

= =

  ≤ + 
 
∑ ∑            (9) 

2)  

( )( )1 2 1 2

1 12

rn n r rkr
i i i

i i

nw X X X
κ− −∗

= =

  ≤ + 
 
∑ ∑             (10) 

3) 

( )1

1 12

rn n r rr
i i i

i i

nw X X X
−

∗

= =

  ≤ + 
 
∑ ∑                (11) 

4) 

( ) ( )1
2

rrrw X X X ∗≤ +                    (12) 

The main purpose of this paper is to give considerable improvements of the 
inequalities (7), (8), (9), (10), (11), and (12). In order to achieve our goal, we 
need the following three lemmas which are essential in our analysis. 

The first lemma was proved in [10]. 
Lemma 1 If , 0a b ≥  and 0 1v≤ ≤ , then:  

( ) ( ) ( )
21 1vva b k a b va v b− + − ≤ + −               (13) 

where { }min ,1k v v= − . 

If 1
2

v = , the inequality (13) becomes an equality where 

( )2

2 2

a ba bab
−+

= −                    (14) 

The second lemma follows from the spectral theorem for positive operators 
and Jensen’s inequality (see [11]). 

Lemma 2 Let ( )T B H∈ , 0T ≥  and x H∈  such that 1x ≤ . Then:  

1) , ,r rTx x T x x≤  for 1r ≥ . 

2) , , rrT x x Tx x≤  for 0 1r< ≤ . 

The third lemma was proved in [11] 
Lemma 3 Let ( )T B H∈  and ,x y H∈  be any vectors. If ,f g  are non-

negative continuous functions on [ )0,∞  which are satisfying the relation 
( ) ( )f t g t t=  [ )( )0,t∈ ∞ , then:  
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2
, , ,Tx y T x x T y y∗≤                     (15) 

and more general, 

( ) ( )2 2 2, , ,Tx y f T x x g T y y∗≤                (16) 

3. Main Results  

The first result in this paper is numerical radius inequality which is sharper than 
the inequality (7). 

Theorem 3.1 Let ( ), ,i i iA B X B H∈ , 1,2, ,i n=  , and ,f g  be nonnega-

tive continuous functions on [ )0,∞  satisfying the relation ( ) ( )f t g t t=  

[ )( )0,t∈ ∞ . Then:  

( ) ( )
1

2 2

1 12

rn n r rr
i i i i i i i i i

i i

nw A X B A g X A B f X B α
−

∗ ∗ ∗ ∗

= =

     ≤ + −     
∑ ∑     (17) 

where 

( ) ( )
21 21 1 2

2 2

1 1
sup , ,

2

r n r r

i i i i i i
x i

n A g X A x x B f X B x xα
−

∗ ∗ ∗

= =

    = −     
∑  (18) 

 
Proof.  

( )

( )( )
( )

( ) ( )

1

1

1

1

1 21 22 2
1

,

( ) ,

,

,

, ,

rn
i i ii

rn
i i ii

rn
i i ii

rn
i i ii

r
n

i i i i i ii

A X B x x

A X B x x

A X B x x

X B x A x

f X B x B x g X A x A x

∗
=

∗
=

∗
=

=

∗
=

=

≤

=

 ≤  
 

∑

∑

∑

∑

∑

 

( ) ( )
( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

221 2 2
1

1 21 2
1 2 2

1

1
2 2

1

21 21 1 2
2 2

1

, ,

, ,

, ,
2

, ,
2

rrnr
i i i i i ii

rrnr
i i i i i ii

r rrn
i i i i i ii

r rrn
i i i i i ii

n B f X B x x A g X A x x

n B f X B x x A g X A x x

n B f X B x x A g X A x x

n B f X B x x A g X A x x

− ∗ ∗ ∗
=

− ∗ ∗ ∗
=

−
∗ ∗ ∗

=

−
∗ ∗ ∗

=

≤

≤

 = +  
  
 − −     

∑

∑

∑

∑

 

Taking the supremum over all unit vectors x H∈ , we get 

( )
( ) ( )

1

1
2 2

12

nr
i i ii

r r rn
i i i i i ii

w A X B

n A g X A B f X B

∗
=

−
∗ ∗ ∗

=
   ≤ +   

∑

∑
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( ) ( )

( ) ( )

21 21 1 2
2 2

1
1

1
2 2

1

sup , ,
2

.
2

r r rn
i i i i i ii

x

r r rn
i i i i i ii

n A g X A x x B f X B x x

n A g X A B f X B α

−
∗ ∗ ∗

=
=

−
∗ ∗ ∗

=

    − −     

   = + −  

∑

∑
 

Remark 1 In view of the inequalities (7) and (17), it clears that the inequality 
(17) is sharper than the inequality (7).  

As special case of the inequality (17), let ( )f t tκ=  and ( ) 1g t t κ−= , 

( )0,1κ ∈ , we will get the following inequality which is sharper than the inequa-
lity (8). 

Corollary 4 Let ( ), ,i i iA B X B H∈ , 1,2, ,i n=  , 1r ≥ , and 0 1κ< < . 
Then:  

( )1 2 1 2

1 12

r rn n r
r

i i i i i i i i i
i i

nw A X B A X A B X B
κ κ β

− −∗ ∗ ∗ ∗

= =

      ≤ + −          
∑ ∑    (19) 

where 

( )
21 2 1 21 2 1 2

1 1
sup , ,

2

r rn r

i i i i i i
x i

n A X A x x B X B x x
κ κβ

− −∗ ∗ ∗

= =

     = −      
∑   (20) 

In particular, if 1r = , 1
2

α =  we get the following inequality which is char-

per than the inequality (9), 

( )
1 1

1
2

n n

i i i i i i i i i
i i

w A X B A X A B X B γ∗ ∗ ∗ ∗

= =

  ≤ + − 
 
∑ ∑           (21) 

where  
21 2 1 2

1 1

1sup , ,
2

n

i i i i i i
x i

A X A x x B X B x xγ ∗ ∗ ∗

= =

    = −    
∑       (22) 

By letting 0i iA B= =  in the inequality (19), we obtain the following inequa-
lity which is sharper than the inequality (10). 

Corollary 5 Let ( )iX B H∈ , 1,2, ,i n=  , 1r ≥ , and 0 1κ< < . Then:  

( )( )1 2 1 2

1 12

rn n r rkr
i i i

i i

nw X X X
κ

η
− −∗

= =

  ≤ + − 
 
∑ ∑       (23) 

where 

( )
21 1 2 1 22 1 2

1 1
sup , ,

2

r n r r
i i

x i

n X x x X x x
κ κη

− −∗

= =

 
= − 

 
∑  

Letting 1
2

κ =  in the inequality (23), we obtain the following inequality 

which is sharper than the inequality (11). 
Corollary 6 Let ( )iX B H∈ , 1,2, ,i n=  , and 1r ≥ . Then:  

( )1

1 12

rn n r rr
i i i

i i

nw X X X ζ
−

∗

= =

  ≤ + − 
 
∑ ∑                 (24) 
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where  
21 1 2 1 2

1 1
sup , ,

2

r n r r
i i

x i

n X x x X x xζ
−

∗

= =

 
= − 

 
∑          (25) 

In the inequality (24), replacing 2 3, , , nX X X  by 0, we have the following 
inequality which is sharper than the inequality (12). 

Corollary 7 Let ( ) , 1X B H r∈ ≥ . Then:  

( ) ( )1
2

rrrw X X X ξ∗≤ + −                   (26) 

where 
21 2 1 2

1

1sup , ,
2

r r

x
X x x X x xξ ∗

=

 
= − 

 
 

Now, we will prove the following inequality which is another version of the 
inequality (6). 

Theorem 3.2 Let ( ),A B B H∈ . Then:  

0
0 2

A BA
w

B
+  

≤  
  

                      (27) 

Proof. Let 1
2

I I
U

I I
− 

=  
 

, then U is unitary, and 

0 0
0 0
A A

w w U U
B B

∗      
=      

      
 ((by Equation (3)) 

1
2

1
2

1
2

2

B A B A
w

B A B A

A A B B
w

A A B B

A A B B
w w

A A B B

A B

 − − − +  
=   − +  

 − − −    
= +    −    

  −   − −    
≤ +       −        

+
=

 

since (
2

0
A A
A A

− 
= − 

, so 
2

A A
A AA A

A
A A

− 
 − −    = =  −  

), 

and (
2

0
B B

B B
− − 

= 
 

, so 
2

B B
B BB B

w B
B B

− − 
  − −    = =  

  
). 

Chaining the inequality (27) with the inequality (4) yields the following in-
equality.  

Corollary 8 Let ( ),A B B H∈ . Then:  

( ) ( )
Re Im Re Im0

0 2 2
A A B BA

w w A w B
B

− −  
≤ + − −  

  
    (28) 
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Proof. In Theorem 3.2, apply the inequality (4) on the right side, we get the 
result. 

Chaining the inequality (27) with the inequality (5) yields the following in-
equality.  

Corollary 9 Let ( ),A B B H∈ . Then:  

( ) ( )
Re Im

0 2 2
0 4 4

Re Im
2 2

4 4

A AA A
A

w w A w B
B

B B
B B

− −
  

≤ + − −  
  

− −

− −

       (29) 

Proof. In Theorem 3.2, apply the inequality (5) on the right side, we get the 
result.  
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