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Abstract 
The ability to quantify and predict the energy absorption/transmission cha-
racteristics of multi-layered porous medium is imperative if one is involved in 
the automotive, launch vehicle, commercial aircraft, architectural acoustics, 
petroleum exploration, or even in modeling human tissue. A case in point, 
the first four aforementioned fields rely on effective Noise and Vibration 
(NV) development for their commercial success. NV development requires 
the setting of NV targets at different system levels. The targets are then trans-
lated to Transmission Loss (TL), Insertion Loss (IL), and absorption (Alpha) 
performance for the multi-layered porous materials being utilized. Thus, it 
behooves to have a thorough understanding of the physics behind the energy 
dissipating mechanism of the material that entails the effects of the fluid 
meandering through the pores of the material and its interaction with the 
structural skeleton. In this section of the project the focus is on the thermal 
interchange that occurs within the porous medium. Via the acoustic model-
ing at the micro/macro level it is shown how this thermal exchange affects the 
acoustic compressibility within the porous material. In order to obtain a 
comprehensive approach the ensuing acoustic modeling includes the effects 
due to relaxation process, thus bulk viscosity and instantaneous entropy 
functions (effects due to vibration of diatomic molecules of air) are incorpo-
rated into the equation. The instantaneous entropy functions are explained by 
means of the Boltzmann’s distribution, partition function, and quantum 
states. The concept of thermal length and its connection to thermal permea-
bility is clarified. Lastly, the results for TL calculations employing the afore-
mentioned thermal exchange into the Transfer Matrix Method with finite size 
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correction, (FTMM), pertaining to a simple multi-layered material is com-
pared with experimentally obtained data. 
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1. Introduction 

Teagle et al. [1] derived a coupled set of fluid/structure equations for a porous 
medium applying asymptotic and homogenization techniques. Via this model-
ing it is established in [1] that there are mainly 3 modes of energy transforma-
tion: 1) The first mode is through the connection between the micro and macro 
structural framework of the porous skeleton, 2) the second is via the viscous 
boundary layer, and 3) the third interaction is through thermal (entropy) boun-
dary layer. The combination of the viscous boundary layer and how tortuous the 
porous material is, results in the encapsulation of the fluid medium. This, in turn, 
changes the apparent mass of the structural medium. Details pertaining to these 
encapsulating phenomena can be found in the work by Johnson, et al. [2]. In [2] 
the concepts of tortuosity, viscous length, and viscous permeability are ex-
plained. 

This current work concentrates in the third interaction mode. There is a 
boundary layer where the flow experiences changes in entropy, therefore a 
loss/gain of energy due to thermal exchange will occur. This thermal exchange 
also changes the acoustic bulk modulus at certain frequencies and in turn 
changing the speed of sound. This is depicted through Equation (31) found in 
[1] 

* * * * * * *
1( ( 1) ) ( , ) ino y x o x fi p Prk i i i Dω γ γ ω ω ω∗ ∗′− + − = − ⋅ + ⋅ + ⋅     * * *v u w x y∇ ∇ ∇ (1) 

From this equation it is understood that the compressibility factor, aβ , is de-
fined as 

( )1a
Pri kβ γ γ ω ρ
µφ

′= + −                       (2) 

where 1
a

a

κ
β

=  is the bulk modulus of the air inside the pore. k ′  is the 

thermal permeability and is defined as 

( ) o
o

PkT
t

ωφ
κ
′ ∂

= −
∂

                        (3) 

,o oT P  are the first terms of the asymptotic expansion (macro scale) pertaining 
to the temperature and pressure respectively, their equations are derived in [1]. 
The bulk of this work is to derive a frequency dependent general expression for 
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the thermal permeability, ( )k ω′ . In order to attain this goal a good under-
standing of the physics behind the thermal exchange process has to be accom-
plished. This is achieved by: 1) analyzing the intensity escaping the main acous-
tic mode or 2) deriving a partial differential equation incorporating the porous 
wall impedance due to the thermal/viscous boundary layer; both are accom-
plished here. 

This work also models an additional energy absorbing phenomena and that is 
the relaxation process. This is the hysteresis effect due to compression/decompress- 
sion cycle of the molecules. The application of quantum mechanics, explained 
via the construct of Hilbert Spaces along with its dual space, facilitates the mod-
eling of this hysteresis effect. 

The main interest of the current authors is to calculate transmission loss (TL), 
Insertion loss (IL), and absorption coefficient (Alpha) for multi-layered porous 
medium. Therefore, calculation results for TL pertaining to a layered material, 
consisting of 2 different foams, are shown. This calculation is achieved by in-
corporating all of the aforementioned energy phenomena into the Finite-Cor- 
rection Transfer Matrix Method (FTMM) [3] [4] [5]. 

In addition to the goals mentioned in the last paragraph a parallel effort is 
underway to lay down the mathematical foundation to understand how the 
propagating energy transfigures as it travels through the porous medium. This 
creates a tool that will allow design teams to make efficient absorption compari-
son of porous mediums consisting of different rheological substances. 

2. Formulation 
2.1. Basic Statistical Mechanics: Partition Function/Boltzmann 

Distribution/Quantum States 

One of the goals is to obtain a comprehensive set of fluid equations that incor-
porates any phenomena that leads to energy depletion. This means that in addi-
tion to viscous and thermal effects that transpire within their respective boun-
dary layers, a quantification of the hysteresis effects due to the delay in thermal 
response should be obtained and incorporated. The most efficient tool to de-
scribe this process and for that matter any process is to apply statistical mechan-
ic techniques. Once the Partition Function, Z, is obtained any macro level cha-
racteristic pertaining to the system can be derived. In this study Boltzmann’s  

version of the combinatorial arrangement, 
1

!
!m

ii

NC
n

−

=
∏

� , is used. N represents  

the number of states, and ni are the number of states at each energy level. Ap-
plying Sterling’s formula, this arrangement number becomes, 

ln( ) ln( )i iiC C p p= = −∑� , where i
i

n
p

N
= , is the probability of being in the ith  

energy state that has energy iE . The statistical mechanic definition of Entropy, 
s, is the measure of information plus its distribution and is defined as finding the 
pis that will maximize the arrangement number, C, under the following con-
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straints: 1ii p =∑ , and i ii p E E=∑  (E = Average Energy). From this mathe-
matical framework, the temperature, T , plays the role of a Lagrange Multiplier. 
The main results are that 

iE

i
ep

Z

β−

=                          (4) 

where Z is the partition function defined as 

1
iE

iZ e T kT k Boltzmann Constant
T

β β−= = = =∑         (5) 

and note that the units for T  (“theorist” temperature) is in Joules. It is easily 
shown that the average energy and the Helmholtz Free Energy, A, are represented 
respectively as, 

ln( )ZE
β

∂
= −

∂
 and ln( )A E TS T Z= − = −              (6) 

In quantum mechanics (see Section 2.2 below) the probability density is 
defined as ( ) 2,p r t ψψ ψ= = , where ψ  is a state vector of the system. Ap-

plying Schrodinger’s equation, ˆ ( , )i H r t
t

∂Ψ
= Ψ

∂
� , and Hamilton’s operator, 

defined in Equation (19a), the following differential equation is derived which 
expresses the propagation of probability 

[ ]0,
2

p iJ J
t m

ψ ψ ψ ψ∂
+∇ = = ∇ − ∇

∂
�  

J  is the probability flux. For adiabatic processes the divergence of the proba-
bility flux is shown to be zero, 0J∇ = ; therefore the probability density is sta-
tionary with respect to time. This means that the pis are adiabatic invariant 
(which in turn means that entropy is constant) and thus the following expres-
sion for pressure holds 

( ) ln( )

adiabatic

S T T V T T

T T

E E S E E SP T
V V V S V V

E TS T Z
V V

∂ ∂ ∂ ∂ ∂ ∂
= − + = − +

∂ ∂ ∂ ∂ ∂ ∂

∂ − ∂
= − =

∂

 →

∂


      (7) 

The average potential between the particles is defined as 0U  and under clas-
sical mechanic conditions the partition function is 

2
0

0 ( ) 1
2
N U

Z Z
V

β
β

 
= − 

 
                    (8) 

( )
3
2

0
2

NN
e mZ πβ
ρ β

   
=    
   

 is the partition function pertaining to the Ideas Gas. 

In order to obtain a general expression for the average energy of the gas, Equa-
tion (6) is applied 

( ) 2

0 0

ln 3 3
2 2 2 2

Z NE N UT T U N
V

ρ
β

∂  = − = + = + ∂  

�
         (9) 
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Diatomic molecules like O2 and N2 can be modeled as stiff oscillators. As a 
simple representative example, a model of a simple oscillator with stiffness k will 
be studied. The total energy for this system is 

2 2

2 2T
p kxE
m

= +                         (10) 

Via the Boltzmann distribution, the Partition Function pertaining to the os-
cillator, osZ , is 

2 22 2

2 22 2
p pkx kx
m m

osZ e e dpdx e dp e dx
β β− −

= =∫∫ ∫ ∫             (11) 

By applying Gaussian integrals the Partition Function for an undamped oscil-
lator is 

2 2 2 2 1
os

n

m mZ
k k

π π π π
β β β ω β

= = =               (12) 

As before, Equation (6) is used in order to obtain the average energy of the 
oscillating system 

( )
( )2ln ln

ln 1nosZ
T

π β
ω

β β β

  
∂ −  

∂   − = − = =
∂ ∂

           (13) 

The analysis above, especially Equation (11), assumes classical mechanic con-
ditions. Equation (13) states that the average energy of the oscillating system is 
T  which, based on prior analysis, is connected to kinetic energy. This result is 
somewhat suspect since it states that regardless of how stiff the system is, the av-
erage energy is always T . In classical mechanics, the path integrals measured 
with respect to the Max Planck constant, � , are relatively large. An observable 
in classical mechanics is simply a real function in Euclidean space. In quantum 
mechanics every possible state of a given system corresponds to a separable Hil-
bert Space over the complex number field. Additionally, to every physical ob-
servable there corresponds, in the Hilbert space, a linear Hermitian operator that 
has a complete set of orthogonal eigenvectors. The following limit applies to 
systems oscillating at relatively high energy levels, 

1lim lim / 0
2n n

n

E n
E

ω ω→∞ →∞
∆   = + →    

� �  thus, in classical mechanics, it can 

be assumed that the energy forms a continuous spectrum; as compared to quan-
tum mechanics where there is now a quantization (discretization) of the energy 
states [6]. In quantum mechanics a unit of energy is proportional to the natural 
frequency of the system by the constant, � . The nth energy state is defined as 

nE n ω= �                            (14) 

Thus, the Partition Function is 

( ) 1
1

nn
q n nZ e e

e
β ω β ω

β ω
− −

−= = =
−∑ ∑� �

�  

Equation (6) is utilized once more in order to obtain the average energy of the 
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stiff oscillator 

( )ln 1
1

Z Z eE
Z e

β ω

β ω

ω
β β

−

−

∂ ∂
= − = − =

∂ ∂ −

�

�

�                 (15) 

At high temperatures 1β �  and therefore Equation (15) becomes 

1~
1

eE T
e

β ω

β ω

ω ω
β ω β

−

−= = =
−

�

�

� �
�

                (16) 

Therefore at high temperature levels there is enough energy such that the 
quantization of energy is not required. The criteria to follow are the following 

1 1Quantum Mechanics Classical Mechanicsβ ω β ω> → < →� �    (17) 

The cross-over point is Tω =� . Lastly, it is possible to extract the Energy’s 
standard deviation from the Partition Function. It is easy to show that 

2
2

2

1 ZE
Z β
∂

=
∂

. What follows is the following definition 

( ) ( )2 22
22 2

2 2 2

ln1 1 ZZ Z E E TE E E
Z TZ β β ββ β

∂ ∂ ∂ ∂ ∂ ∂
∆ = − = − = = − = − ∂ ∂ ∂ ∂∂ ∂ 

(18a) 

Recognize that V
E C
T
∂

=
∂

, the specific heat constant at constant volume and 

2T T
β
∂

= −
∂

 

( )2 2
VE T C∆ =  or VE T C∆ =  fluctuation-susceptibility Theorem (18b) 

The specific heat constant at constant volume is proportional to standard 
deviation of the energy. 

2.2. Relaxation Process: Fluid Hysteresis/Bra-Ket Vectors,  
Schrodinger’s Equation 

The vibration due to the collision of molecules extract energy from the passing 
wave but releases the energy after some delay, thus the relaxation process. This 
delay, akin to mechanical damping systems leads to hysteretic energy losses. The 
internal energy can be partitioned into translated (defined relative to the average 
flow velocity), rotational kinetic energy and energy due to molecular natural 
frequency, 

tr rotu u u uνν= + +∑  

uν  quantum energy level/mass 

The temperatures, Ttr and Trot, related to translational and rotational energies 
are larger than the temperatures related to molecular oscillation. They usually 
satisfy the second criteria in Equation (17) and therefore can be considered us-
ing Classical Theory. For the molecular vibration case, kTνω >� , and, based on 
Equation (17), quantum mechanics should be applied. 

The first postulate in quantum theory states that everything that can be 
known about the state of a system can be extracted from its state vector (wave 
function) and this is represented as a vector in Hilbert Space; these are denoted 
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as ket-vectors ( )xΨ . The bra-vectors are denoted as ( )xΨ , the vector space 
of bras is the dual space(one-to-one correspondence with the space of function-
als) to the kets vector space. The Riesz representation theorem allows the fol-
lowing notation Ψ Ψ . 

The 1-D Hamilton operator is given as 

( ) ( )
2 2 2

2
ˆ  

2 2
ˆ ˆ ˆhH V V x
m m x

p x ∂
= + =− +

∂
               (19) 

where p̂  is the Linear Momentum operator, ˆ i
x

p ∂
= −

∂
� , and x̂  is the position 

operator. p̂  and x̂  are both observables and thus are hermitian operators on 
the Hilbert Space, therefore Ĥ  has a purely discrete spectrum of eigenvalues, 

nE , that has a complete set of eigenstates, ( )nE x , i.e. ( ˆ ( ) ( )n n nH E x E E x= ). 
Hence, any state or ket-vector, ( )xΨ , can be expanded by the set of eigens-
tates, ( ) ( )n nnx a E xΨ =∑ . Due to Schrodinger’s equation the eigenstates 
pertaining to the energy operator are stationary with respect to time. For a di-
atomic molecule the oscillating like characteristics between the 2 atoms can be 
simply represented by a spring constant K. Given a particular natural frequency, 
fe, K can be represented as 2 24 eK f mπ= . The potential energy pertaining to the 
simple oscillator is represented as 

( ) 2 2 2 2 2
0 0 0

4 2e eФ x Fdx Kxdx f mxdx f mxπ π
∞ ∞ ∞

= − = = =∫ ∫ ∫  

Therefore the potential operator becomes ( ) 2 21
2

ˆ ˆ ˆx xmV ω= . Hamilton’s oper-

ator can be pseudo separated as follows 

( ) ( )1/2 1/2ˆ ˆˆ ˆ / /
2 22

ˆ
2

m ia x mp m
xm

xωω ω ω

ω η
η

∂ = + = + ∂ 

 ∂
= + ∂ 

�
� �

�
     (20a) 

( ) ( )1/2 1/2*ˆ ˆ / /
2 22

ˆ
2

ˆ ˆm ia x m m
x

p x
m

ωω ω ω

ω η
η

∂ = − = − + ∂ 

 ∂
= − + ∂ 

�
� �

�
   (20b) 

where ( )1/2ˆ ˆ/m xη ω= � . It can be shown that the commutator *ˆ ˆ[ , ]a a ω= �  and 
therefore  

* *1 1ˆ ˆ ˆ ˆ ˆ
2 2

H a a aaω ω= + = −� �                  (20c) 

Based on Equation (20c) the eigenvalue equation can be written as 

* *1 1ˆ ˆ ˆ ˆ( ) ( ) , ( ) ( )
2 2n n n n n na a E x E E x aa E x E E xω ω   = − = +   

   
� �   (21) 

Built on the ideas in Equation (21) the concept of annihilators, â , and crea-
tors, *â , are established; the following relationships exists 
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1ˆ ( ) ( )n na E x E x−=  corresponding eigenvalue 1n nE E ω− = − � } annihilator 
*

1ˆ ( ) ( )n na E x E x+=  corresponding eigenvalue 1n nE E ω+ = + � } creator 
Another possible solution, tied to the annihilator equation, is that  

0ˆ ( ) 0a E x = . Here, 0 ( )E x  is known as the zero-point wave-function and 

0E  is the zero-point energy level. Equation (20a) pertaining to the zero-point 
state results in 

0ˆ 0
2
ω η ψ

η
 ∂

+ = ∂ 

�
, 0

0ˆ 0
ψ

ηψ
η

∂
∴ + =

∂
 normalized solution  

2
1/4

/2
0

m e ηωψ
π

− =  
 �

 

The eigenstates pertaining to the higher energy levels can be generated by ap-
plying the Riesz representation notation. 

* * *
1 1

ˆˆ ˆ ˆ ˆ
2

( 1)

n n n n n n n n

n n

a a aa H

n

ωψ ψ ψ ψ ψ ψ ψ ψ

ω ψ ψ

+ +
 = = = + 
 

= +

�

�

 

Thus, if nψ  is normalized so is 

( ) ( )1/2 1/2*
1

1 ˆˆ( 1) 1
2n n nn a nψ ω ψ η ψ

η
− −

+
 ∂

= + = + − + ∂ 
�  

As a consequence, the recurring formula for the eigenfunctions/states be-
comes 

( ) ( ) ( )
2 21

1 41/2 2 222 ! 2 ! 0,1, 2, ,
n

n n
d mn e n H e n

d

η ηωψ η η
η π

− −− −   = − + = = …   
   �

(22) 

where ( )nH η  are the Hermite polynomials. Additionally due to Equation 

(19a) the pertaining eigenvalues of Ĥ  are 1
2nE nω = + 

 
�  

An alternative approach is to apply Schrodinger’s Equation ˆ ( , )i H r t
t

∂Ψ
= Ψ

∂
� . 

Plugging in the definition for the Hamilton Operator defined in Equation (19a) 
results in the following simple oscillator equation 

( )( ) ( )
2 2

2
2 2 2 2

2 2 1 0
2

v v
j v j v

d dm mE x E m x
dx dx

ω
Ψ Ψ  + −Φ Ψ = + − Ψ = 

 � �
 (23) 

Setting 

mz xω
=

�
, 2

2 jmE
α =

�
, and 

2

2
z

v e w
−

Ψ =              (24) 

Schrodinger’s Equation simplifies to 

2 2

2 2 2

2
2 1 2 1 0jEd w dw d w dwz w z w

dz dzdz dzdz
dx

α
ω

 
    − + − = − + − =          

�
    (25) 
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When 
2

1 2 0,1,2,3,jE
j

ω
− = = …

�
 the solutions to this equation are the Hermite  

Polynomials. Note that the solution is equivalent to Equation (22). Applying this 
definition and solving for jE , the energy levels are defined as 

1 0,1,2,
2jE j jω = + = = … 

 
�                   (26) 

Due to the assumption of independence of the different energies the partition 
function pertaining to internal energies can be represented as 

int rot v chemZ Z Z Z=                         (27) 

The partition function for the vibrational portion pertaining to a particular 
type of molecule v (e.g. O2, N2) is represented as 

( )0

1 1
v vj

v

j

kT

v v
v

Z e
kTT

β

 − − 
 
 = = =∑



               (28) 

0v  is the ground vibrational state energy (obtained by setting j = 0 in Equa-
tion (26)). Using Equation (26) in (28), the vibrational partition function can be 
rewritten as 

*0

1 1

1 1

v

e
v v

j
kT

v j
kT T

Z e

e e

ω

ω θ

 
− ∞  

=  
− − 
 

= = =

− −

∑
�

�
             (29) 

Such that *
e k

ωθ =
� . 

Applying Equation (6), an expression for the average energy is obtained 

2 ln int
int

V

Z
u RT

T
∂ =  ∂ 

                   (30) 

Therefore the vibrational internal energy becomes 

( )
*

* *0

* *
2

2

1 1

e

v

e e

v v

T
e e

v v v
vT T

Reu u RT
T

e e

θ

θ θ

θ θ
−

−

 
  

− = − − =  
   − − 

          (31) 

Differentiating this equation with respect to temperature one obtains [7] [8] 
*

*

*2

2 2

1

e

v

v
e

v

T
v e

v
v v

T

du ReC
dT T

e

θ

θ

θ
= =

 
 −
 
 

                     (32) 

Applying the Boltzmann distribution definition for entropy 

( ) ( )( )ln lni iis p p E Zβ β= − = +∑  

results in 

https://doi.org/10.4236/jamp.2019.77097


A. Teagle-Hernandez et al. 
 

 

DOI: 10.4236/jamp.2019.77097 1449 Journal of Applied Mathematics and Physics 
 

*

*

*ln 1

1

e

v

e

v

T
e

v
v

T

e
kT

s R
R

e

θ

θ

θ
−  

  −
  

  = − + 
 −  
 

               (33) 

Recall that ,v tr rotT T T�  and the temperatures pertaining to Translational 
and rotational energy levels are high enough to be considered by classical  

mechanics. The combination of kinetic energies 
2 2

2 2
p L
m I

 
+ 

 
 and positions are  

considered as possible states, the application of the Boltzmann distribution re-
sults in the following equation for average energies. 

n Bpσ µ− = − ⋅ v∇  such that 
2

2
rot

B
rot c

up bulk viscosity
N u

µ
β

= =     (34) 

The instantaneous change of entropy can be represented in the following form 
1Tds du pd A dTυ υυρ−= + +∑                    (35) 

The A dTυ υυ∑  terms represent the small deviation from equilibrium. The 
affinities Aυ  are to be determined. The portion devoid of vibration energy is 
denoted from now on with subscript fr (frozen), and the portion pertaining to 
vibrational energy is indicated with subscript v [9]. 

( )1, ( )fr tr rots s u u s Tυ υυρ−= + +∑                    (36) 

( ) 1
fr tr rotTds d u u pdρ−= + +                      (37) 

Set 

,tr rot V fru u C T+ =  assuming ideal gas P RTρ=                   (38) 

, 1V fr
RC

γ
=

−
, ,V frC  = coefficient of specific heat at constant volume. (39) 

Substituting Equation (38) into (37) and solve for frs  the following expres-
sion is obtained 

( ) 1
, ln lnfr V fr tr rots C u u R const recall that u u u uυ υυ υρ−= − + + − = +∑ ∑  (40) 

Utilizing Equation (37) - (40) and applying them into Equation (35) yields 

,
,

1 1 1V fr
V v

tr rot

C du du duT TA T C
u u dT T dT T dT T

υ υ υ
υ

υ υ υ υ υ υ

−     
= + = − = −     +     

     (41) 

The expression in Equation (32) can be substituted into Equation (41). Since 
*
eTυ θ� , ,V vC  can deduce to 

*2  *

,
 

 
e

Te
V v

du n
C R e

dT n T
υ

θ
υ υ

υ υ

θ − 
= =  

 
                  (42) 

,V vC  act as the specific heat pertaining to each molecular type v. 
The inclusion of these energy terms into the standard energy equations results 
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in 
1 1

  v
n B

Ds DTDu D DT s
Dt Dt Dt Dt Dt

υ
υυ

ρ ρσ µ
− −

− = − − ⋅∑ v∇          (43) 

Applying the conservation of mass and the heat flux the entropy balance equ-
ations become 

( ) ( )2 2
2

1 1 :
2B

DTDs v v T A
Dt T T T T DtT

υ
υυ

κ ρρ µ µ+ ⋅ = ⋅ + ∇ ∇ + ∇ + ∑D D
������ ������q v∇ ∇  (44) 

The Navier Stokes Equation with the inclusion of the bulk viscosity becomes 

( )B
D p v
Dt

ρ µ µ= − + ⋅ + ⋅ ∇D
������v v∇ ∇ ∇ ∇                (45) 

Applying conservation of energy results in the following expression for the 
vibration energy 

,V v c
Du DT

C n N
Dt Dt

υ υ
υ υ υ= = ∆                    (46) 

cN υ  represents the number of collisions a molecule of type υ  has per unit 
time, nυ  is the number of molecules of type υ , and υ∆  is the average energy 
gained per collision. It is known that most of the high temperature resides in the 
translational and rotational portions, therefore υ∆  can best be expressed as 

( )k T Tυ υ υβ∆ = −                         (47) 

and yields 

( ) 1DT
T T

Dt
υ

υ
υτ

= −  such that ,V v

c

C
n N kυ
υ υ υ

τ
β

=              (48) 

More elaborate modeling for υ∆  can be achieved by applying Discrete 
Boltzmann Equations but these are outside the scope of this project [10]. Solving 
the differential equation for Tυ  results in 

/( (0)) tT T T T e υτ
υ υ

−= − −                      (49) 

If T is changed by an amount T∆  it will take a time of υτ  for the incre-
mental change in Tυ  is 1(1 )e t−− ∆ . Therefore υτ  is called the relaxation time. 
And it is this relaxation time that introduces the hysteretic energy losses [11]. 

The energy conservation dissipation equation is in the form of 

w D
t

∂
+ ⋅ = −

∂
I∇  

where 
2

,2 2 2
2

1 1 1 1
2 2 2 2

V v
o fr

po oo

Cp Tw v s T
C Tc υυ

ρρρ
ρ

   
= + + +       

∑      (50a) 

( ) ( ) 1
0Bp v T T Tµ µ κ −= − ⋅ − ⋅ ∇ −I D

������
v v v v∇ ∇         (50b) 

( ) ( ) ( ) ( )

( )

2 21
0

2,

1 :
2B

o V v

o

D v v T T

C
T T

T υυ
υ

µ µ κ

ρ
τ

−= ⋅ + ∇ ∇ +

 
+ − 

 
∑

D D
������ ������

v∇ ∇

       (50c) 
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From the coupled system of acoustic equation, asymptotic techniques result in 
different dispersion relationships for 3 different regimes; for the viscous and en-
tropy boundary layers, and the equations pertaining to the acoustic mode. These 
translate to different set of partial differential equations pertaining to the 3 dif-
ferent regimes. The vibrational relaxation terms will mostly affect the acoustic 
mode regime.  In order to obtain the new dispersion relationship a solution in 
the form of ikx i te e ω−  is plugged into the equation of motion (see Appendix A.1 
- A.5), the ensuing is obtained 

2 2 2

0

4
3 ˆˆ

B
k p i k

µ µ
ω ω ρ

ρ

 + 
= + 
  
 

                (51a) 

,2
0

0

ˆ
1

ˆ V
f v

v
r

o v

C
i k T

T i
s i

T
κ ωρωρ

ωτ
    = −     −    

∑          (51b) 

( ) ( )
( ) ( )

2

0
2

0

ˆˆ/ / ˆˆˆ
ˆˆ1 / /

p fr

P fr

pT C s T

c T C T
p

s

β
ρ = −

−
               (51c) 

Plugging this last equation into Equation (51a) the dispersion relation is ob-
tained [12] 

( ) ( )
( ) ( )

22
0

2

0
2 2

0

ˆ1 / /1
4 ˆˆ1 / /
3

fr p

p frB

T s T C ck
c T C s T

i k

γ

µ µ
ω ω

ρ

−
= −

−+
+

      (51d) 

For the acoustic mode and the frequency range of interest the following  

approximations exist: 
2

,2
2 2

0 0

, 1, 1, 1V v

p p

C
k

c C C c c
ω ωκ ωµ

ρ ρ
 =  
 

� � �  the last 2 

expressions can be found in Kirchhoff’s dispersion relation and were considered 
small in [14]. Given these assumptions, the following asymptotic expansion is 
obtained 

( ) ( )
2

,
3

0

/14 1 1
3 2 12

V v pB
v

p v

C C
k i

c C c ic
γ κµω ω µ ωγ

µ µ ωτρ

 −
= + + + + − 

−  
∑     (51e) 

The absorption coefficients are the imaginary portion of Equation (51e) 

( ) ( )
( )

2 2
,

3 2
0

/14 1 1
3 22 1

v V v pB
v

p v

C C
C cc

τγ κµω µ ωγ
µ µρ ωτ

 −
+ + + − 

+  
∑      (51f) 

where 

( )
( )

2
,

2

/
1

2 1
v V v p

v
v

C C
c
τπ ωα γ

λ ωτ
= −

+
                (51g) 

Recall that 2 cπλ
ω

= . At relatively low frequencies, 1

υ

ω
τ

�  Equation (51g) 

indicates that 
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( ), 21V v
v

p

C
c C
υτα γ ω→ −  quadratic increase w.r.t. ω        (51h) 

and at relatively high frequencies, 1

υ

ω
τ

� , results in the following 

( ), 1V v
v

p

C
c C
υτα γ→ −  approaches a constant value       (51i) 

2.3. Energy Loss: Thermal Boundary Layer-Bessel Functions 

In [1], multi-scales technique is used on the coupled fluid/structure set of equa-
tions. Equation (16), in that publication, represents the partial differential equa-
tion that connects fluctuations of temperature and pressure in the fluid medium. 
The dimensional form of this equation is 

2 0
0 0 0 iny f

i PPrT i T D
ω

ωρ
υ κ

∇ + =                   (52) 

Before deriving the thermal exchange for a general porous medium (with 
pores of arbitrary geometry), the thermal exchange for a typical cylindrical pore 
with cross-sectional radius R will be analyzed. The form this solution takes will 
be used as a pattern to emulate when considering solutions for the general case. 
Equation (52) in cylindrical form is 

0 0
0 0

1 in f
dT i Pd Prr i T D

r dr dr
ω

ωρ
υ κ

  + = 
 

               (53) 

The Bessel function generator is defined as 

( ) ( ) ( ) ( )sin
0 1 22 sin 2 cos 2ixe J x i J x J x xθ θ= + + +…          (54a) 

The 0J  Bessel function is efficiently represented via Hankel’s integral 

( )
( )

( )
( )

1 1
0 1 02 2

cos1 2

1 1

ixt xteJ x dt dt
t tπ π−

= =
− −

∫ ∫             (54b) 

It can be deduced from Equation (54a) that 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
2 and 2 n

n n n n n

J xn J x J x J x J x J x
x x− + − +

∂
= + = −

∂
  (55a) 

The ensuing 2 equations are obtained by combining the equations in (55a) 

( ) ( ) ( ) ( ) ( ) ( )
1 1andn n

n n n n

J x J xn nJ x J x J x J x
x x x x− +

∂ ∂
= + = −

∂ ∂
    (55b) 

Applying Equation (55b) results in 

{ }1 0( ) ( )d xJ x xJ x
dx

=                    (55c) 

Equation (55c) is integrated from 0 to R, this generates an equation that will 
be utilized shortly 

( ) ( )0 10

R RxJ x dx Jγ γ
γ

=∫                  (55d) 
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Teagle [1] showed that 0P  is independent of the micro (fast) scale y. Therefore  

the particular solution for Equation (53) is 0
0 0

p

P P
Pr C

ρυ
κ

= . The homogeneous 

solution is 0
1 0

i Pr
A J r

ωρ
µ

 
  
 

, where 1A  is a derived so that boundary conditions  

at the wall of the cylinder pores are met, ( )0 0T R = . Combining the particular 
and homogenous solutions and satisfying boundary conditions, the following 
expression for temperature is obtained 

( ) ( )
( )

00 0
0 0

0

1
p

J r i Pr
T r P

C J R
χρ ωρ

χ
χ µ

 
= − =  

 
             (56) 

For statistical energy analysis calculations, average temperature of the pore 
cross-section suffices, therefore 

( ) ( )
( )

( ) ( )
( )

0 10 0
0 02

0

10
0

0 0

2 2
1

2
1 1

R

p

p

T r rdr J R
T P

C R J RR

J R
P i

C RJ R Pr

π χρ
χ χπ

χρ µ
χ ωρ

 
= = −  

 
 

= − −  
 

∫
           (57) 

For the more general case, the focus is on analyzing the energy flux escaping 
the acoustic mode into the entropy boundary layer. Johnson et al. [2] accom-
plished similar work for the viscous boundary layer. 

Trilling [13] gave a detailed explanation of the separation technique utilized to 
obtain 3 dispersion relations from the Navier-Stokes Equation. Applying asymp-
totic expansion for each of these relationships, it is possible to derive 3 sets of 
simple partial differential equations along with their pertinent conditions. The 
process polarized the linear Navier-Stokes equation into 3 different flow regimes. 
The superposition principle can be applied to obtain the total velocity. The flow 
regimes or modes can be characterized by the following: 

Vorticity Mode field 

2 vor
vor t

ρ
µ
∂

∇ =
∂
v

v , 0vor∇⋅ =v , 0vor vor vors p T= = =        (58) 

It is important to point out that Equation (58) is a classical diffusion equation 
The entropy Mode field 

2 entP
ent

scs
t

ρ
κ

∂
∇ =

∂
                    (59a) 

 

0, , 0,

,

ent ent ent ent
P o

ent ent ent ent
P P o

Tp s
c

T TT s s
c c

β κ
ρ

β ρρ

 
= = × = 

 

   
′ ′= =   

   

v v∇ ∇

           (59b) 

Acoustic Mode field 

2, 0, 0, ,a
ac ac

ac ac ac a acc
P o

c
pTp s T p

t c c
βρ ρ
ρ

 ∂ ′ ′= − = × = = = ∂  

v
v∇ ∇   (60) 
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Due to the superposition principle the microscopic velocity flow field can be 
written as 

vor ent ac= + +v v v v                       (61) 

The dispersion for the vorticity and entropy modes are 

2 2and P
vor ent

i cik k ωρωρ
µ κ

= =                  (62) 

Therefore the vorticity and entropy mode field extend to 1

vork
 and 1

entk
 so 

( )

1/21/2

1/2

2 2and vor
vor ent

Pc Pr
δµ κδ δ

ωρ ωρ
  

= = =  
   

          (63) 

Near the solid surface it can be assumed that the solution has the form 

( ) ( ) ( )1 /, , , ,0 enti zx y z x y e δ− −Ψ = Ψ .                 (64) 

where this relation satisfies the following equation 
2

2

( , , ) 2 ( , , )x y z i x y z
z δ

∂ Ψ −
= Ψ

∂
. Additionally, as in the aforementioned 

cylindrical case, the temperature fluctuation at the wall is zero. The temperature 
conditions in Equations (58) (29b) (60) produces the following 

0enac tT T′ + =                          (65) 

Applying Equation (64) into Equations (58), (59a), (59b) and splitting the “del” 
operator into tangential and normal components (where the tangential portion 
will have a subscript T) yields the following 

( ) ( ) ( ), , 1 , 0T vor T vor
vor

i
δ
⋅⋅ − − =

nv x y v x y∇              (66) 

( ), , 0ent T T ent
P

T
c
βκ
ρ

= =x yv ∇                  (67) 

( )1 ent
ent

P ent

T
i

c
βκ
ρ δ

⋅ = − −nv                   (68) 

At z = 0 plane Equation (61) will give the following boundary condition 

wall vor ent ac= + +v v v v                    (69) 

and applying the T∇ ⋅  (horizontal divergence) along with Equation (67), 
Equation (69) can be rewritten the following way 

( ) ( ) ( ), , 1 , 0T ac T vor
vor

i
δ

⋅ + − ⋅ =
nv x y v x y∇                   (70) 

Remember that 
22 2 2

1 ST

p p p

T KT K T c
C C C

ββ γ βγ
ρ ρ

− = = =
�� �

 /T SK K  

= isothermal/adiabatic bulk modul                (71) 
Additionally, using Equation (68) and (70) the subsequent conditions are ob-

tained in the direction normal to the surface 
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( ), 2(1 ) , (1 )( 1)
2 2
vor ent ac

wall T ac T ac
p

i i
c

δ δωγ
ρ

⋅ = − + ⋅ + − − + ⋅v n v x y v n∇  (72) 

Recall that the main goal is to obtain an expression for the energy that is being 
dissipated and this is dictated by the net power flowing out of the acoustic (ac) 
mode close to the boundary. Multiplying Equation (72) by the complex conju-
gate of the acoustic mode pressure, *

acp , and solving for *
ac acp− ⋅v n , which is 

the intensity leaving the acoustic mode, provides the following equation 

( )

( ) ( ){ }
( )

* *
,

*
,

2

2

1 (1 ) ,
2 4

(1 ) ,
4

1 (1 )( 1)
2 2

ac av

vor
ac wall ac ac T

vor
T ac ac T

acent

Re p Re i p

Re i p

p
Re i

c

δ

δ

δωγ
ρ

− ⋅

 = ⋅ − ⋅ + 

 + + ⋅ 

 
 + − −
  

I n

v n v x y

v x y

∇

∇         (73) 

Recall that the relative velocity at the wall is equal to zero. From the first rela-
tion in Equation (60) it can be deduced that 

( )* *
, ,T ac ac Tp iωρ= v x y∇                       (74) 

The second term in the right hand side of Equation (73) will average out to 
zero given enough surface area. Equation (74) will be applied in the third term of 
Equation (73) to finally obtain the following relation 

( )( )
21/21/22

2
, 2v , ( 1)

2 2
ac av

ac T av
Pdiss

pd E
dAdt c c

ωρµ ωρκγ
ρ

    = + −    
    

x y      (75) 

For the mechanical dissipation the first term in the right hand side is used by 
[2]. The second term will be utilized in this study to treat the thermal dissipation 
and derive the acoustic bulk modulus. 

The thermal counterpart of dynamic permeability and tortuosity are 

( ) o
o

PkT
t

ωφ
κ
′ ∂

= −
∂

                       (76) 

( ) o o
P f

T P
c

t t
α ω ρ

∂ ∂′ =
∂ ∂

                     (77) 

where oT  and oP  satisfy the following 

2     0 in and 0o o
P f o o o

T P
c T P V T V

t t
ρ κ

∂ ∂
= ∇ + ∇ = ∈ = ∈∂

∂ ∂
r r     (78) 

The real constant 0lim ( )ok kω ω→′ ′=  acts like a thermal form of a static ther-
mal permeability, i.e. the thermal counterpart to Darcy’s static equation of ok . 

A volume of porous sample enclosed by a thin membrane is considered. In 
this particular case, it is assumed that the thin membrane acts like an adiabatic 
wall. The interest is to know where the singularities to ( )k ω′  and ( )α ω′  lie. 
The existence of a singularity means that there exists a nontrivial solution to the 
above microscopic equation while the macroscopic input is zero, i.e. 0oP = . 
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This is equivalent to saying that there is no mechanical power entering the ele-
ment. Therefore Equation (78) becomes 

2o
P f o

T
c T

t
ρ κ

∂
= ∇

∂
                      (79) 

To guarantee that no thermal power is entering the element, the following has 
to hold 

( ) ( )*
0 , , 0y o yT T dA⋅ =∫∫ x y x y n∇                 (80) 

Since the membrane is adiabatic and since conditions listed in Equation (78) 
are being satisfied the integral in Equation (80) is consequentially fulfilled. Pre 
multiplying the Fourier equation of heat diffusion equation, Equation (79), by 
the complex conjugate *

0T , assuming a solution of the form i te ω− , and then 
perform a volume integral in terms of the microscopic variable yields 

* * 2
0 0P f o y o yi c T T dV T T dVω ρ κ− = ∇∫∫∫ ∫∫∫               (81) 

Making use of the usual identification 

( )* * * 2
0 0 0o o oT T T T T T⋅ = ⋅ + ∇∇ ∇ ∇ ∇                 (82) 

( )* 2 * *
0 0 0o o oT T T T T T∴ ∇ = ⋅ − ⋅∇ ∇ ∇ ∇                 (83) 

So 

( )( )* 2 * *
0 0 0

2*
0

o y o o y

o y o y

T T dV T T T T dV

T T dA T dV

∇

⋅

⋅= ⋅ −

= −

∫∫∫ ∫∫∫
∫∫ ∫∫∫n

∇ ∇ ∇ ∇

∇ ∇
          (84) 

The first term in the right hand side of Equation (84) goes to zero because of 
boundary condition found in Equation (80). Inserting this result in Equation (81) 
and solving for ω  the following is obtained 

2

2  iny o y
f

P f o y

T dV
i D
c T dV
κω
ρ

= − ∫∫∫
∫∫∫
∇

                 (85) 

Due to the shifting rule, this indicates that the singularity for ( )k ω′  lies in 
the negative imaginary axis. In the meantime consider Equation (77) where the 
boundary condition is that of 0oT = . Additionally, no mechanical power is en-
tering through the adiabatic wall. The aim is to find where the singularities of 

( )α ω′  lie. Equation (78) is multiplied by *
0T . A volume integral results in 

* * 2 *
0 0 0P f o y o y o yi c T T dV T T dV i T P dVω ρ κ ω− = ∇ −∫∫∫ ∫∫∫ ∫∫∫          (86) 

In [1] it is shown that oP  is independent of the micro scale variable and 
therefore it is considered as an external source of power for this thermal element. 
Applying Equation (82), (83), and the Green’s theorem to the first term in Equa-
tion (86), the same result of Equation (85) is obtained; again, the singularities of 

( )α ω′  also lie in the negative imaginary axis. 
Following the same steps performed in [2] in deriving the relation for viscous 

length, the last term in the right hand side of Equation (73) 
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21/2

2

1 (1 )( 1)
2 2

ac av

P

p
i

c c
ωρκγ

ρ
 

− −  
 

 is studied. It is understood that this term repre-  

sents the thermal portion of the energy flux exiting the main acoustic mode. The 
third term in the RHS of Equation (50a) is the thermal energy. Multiplying this 
term by the speed of sound, c, the energy flux entering the pore is attained. The 
ensuing equation represents the ratio of thermal energy that is leaving the acous-
tic mode to that of thermal energy that is entering the thermal element. 

2

2

2

1 (1 )( 1)
2 2

1
2

acent
wall

frVol
p o

p
i ds

c
Tc s dv

C

δωγ
ρ

ρ

− −

 
  
 

∫∫

∫∫∫
                 (87) 

Recall temperature condition 0ac entT T′ + =  and from Equation (59b),  

ent fr
P

TT s
c

 
′ =  

 
. Additionally from Equation (60), ac

P
c

o
a

TT p
c
β
ρ

 
′ =  

 

�
. Lastly,  

applying Equation (71), Equation (87) simplifies to 

( ) ( ) ( )
2

21 1 1
22

acwall ent
ent ent

acVol

p ds Si i i
c c V cp dv

δω ω ωδ δ− = − = −
′Λ

∫∫
∫∫∫

      (88) 

In Equation (88), 0acp P= . The integration takes place at the micro level and 
it has been established that 0P  is independent of the micro scale variable, y, and 
thus the first equality sign in Equation (88). ′Λ  is the Thermal Length and is  

defined as 
2
S
V

. Using Equation (57) as a pattern solution, the general solution  

for average temperature is defined as (assuming ideal gas conditions) 

( )0 0
0

1 1 1 ent

p

T P i
C

δ
ρ

 = − − ′Λ 
                 (89) 

In Equation (89), as increases the thinner the entropy boundary layer, entδ , is 
and therefore the limit as ω →∞  the acoustic mode condition (ideal gas)  

0
0 0

p

T P
C
ρ

=  applies for the whole cross-section. This equation for 0T  is  

plugged into Equation (3). The following expression for thermal permeability  
is obtained 

( ) ( )
1/2

0 0

1 21 1 1ent

p p p

i ik i
i C C C

δκφ κφ κω
ω ρ ωρ ωρ

  −   ′ = − − = −     ′  ′ − Λ Λ    
   (90) 

The second term in Equation (90) is obtained by applying the definition of 

entδ . This term can asymptotically (as ω →∞ )be represented as 

0
1/2 1/22

0 0
2 2 2 2 2 2

1  
4 4p p p p

k
i C i C i C k i C kωρ ρω ωρ ρω
κφ κ φ κφ κ φ

=
− −   − −

− −    ′Λ ′Λ   

      (91) 

where, 0k  is the thermal permeability as 0ω → . A combined asymptotic re-
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presentation that interpolates thermal permeability for the whole frequency range 
is represented as 

( ) 0
1/22

0 0
2 2 2

4
  1p p

k
k

i C k i C k
ω

ωρ ρω
κφ κ φ

′ =
 − −

+ −  ′Λ 

            (92) 

Finally, this is the term that is used in Equation (2) to obtain the compressibil-
ity factor of the fluid of the porous medium. 

3. Conclusions and Closing Remarks: Absorption 

Consider the acoustic medium near the wall of a tube (the x axis is taken to be 
along the tube). Set iθ  as the angle of incident and recall that the solution to the 
wave equation tangent to the tube wall will have the form of  

( ),
T

i Tf t f t
c

 − = −  ⋅
 

x n x  therefore ,T i T
pc p t
∂= − ∂n∇ . Also recognize that  

2
, , sin ( )i T i T iθ⋅ =n n . With these definitions, the *

,T ac ac T⋅p v∇  term in Equation 
(73) can be represented as 

2
*

, 2

sin ( )i
T ac ac T

p
tc

θ
ρ

∂
⋅ −

∂
=p v∇                     (93) 

An expression for the wall impedance can be given as 

( ) ( )

( )
( )

2
2

1/2/4
2

2 1/2

1 0.5 (1 ) sin 1

1sin

wall
vor i ent

wall

i

i

i
Z p c

e
c c Pr

π

ω δ θ γ δ
ρ

ωµ γθ
ρ ρ

−

  = − = − + −   
   −

= +  
 

⋅

  

v n

    (94) 

The objective is to obtain a simple partial differential equation that incorpo-
rates the impedance effects of the viscous and thermal boundary layer. Following 
techniques introduced by Crandall et al. [15], The variational form of the 
Helmholtz equation is 

( )2 2

1 1

221 0
2

x x
wallx x

Mp p dAdx p p dldxδ δ − + ⋅ = ∫ ∫∫ ∫ ∫ n�∇ ∇       (95) 

The dl  is a segment of the perimeter of the tube and 
32

2 4

2 cli
M

c c
ω δω

= +  

Applying the definition of impedance, the following is obtained 

wall
ip p
Z
ωρ

⋅ =n∇                        (96) 

and applying this to the variational Helmholtz Equation yields 

( )2

1

22 21 0
2 2

x

x

iMp p dA p dl dx
Z
ωρδ   − + =   ∫ ∫∫ ∫�∇         (97) 

As a first order approximation, it is assumed that the parameters do not vary 
with respect to the cross-sectional area 
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(a)                                                          (b) 

Figure 1. Left: TL comparison (dB); Right: TL difference(dB) measured data is the reference. 

 

 
Figure 2. Multi layer configuration. 

 

2

1

2
2 21 0

2 2
x

px

pMp A p L dx
x Z

ωρδ
  ∂  − + =   ∂     

∫   pL  perimeter length  (98) 

Performing the variation generates 

0p
d dp iA MA L p
dx dx Z

ωρ   + + =   
   

              (99) 

For the case pertaining to constant cross-sectional area, the dispersion rela-
tionship is 

( )
( )

( )
1/2/4

2 2
2 1/2

1sin 1
i

p
i wall

Li e ik M M i
c A cc Pr

πω ωµ γ ωθ α
ρ

−    −
= + + = + −  

    
�  (100) 

( )
( )

1/2
/4 2

2 1/2

/2

1  sin

i

pi
wall i

L
e

Ac Pr
π

θ π

ωµ γα θ
ρ

−

=

   −
= +  

    
�  is the absorption 

coefficient of the wall. It is interesting to note the similarity in form between the 
imaginary part of Equations (100) and (88). 

Equation (51g) pertaining to the absorption due to the relaxation process, vα , 
combined with the effect of the thermal permeability, ( )k ω′ , on the bulk mod-
ulus, β , of the porous medium are incorporated into Transmission Matrix 
Method with finite size correction via Green’s functions techniques (FTMM) 
[16]. The parameters to this study are listed in Table 1 in [1]. Figure 1 shows the 
comparison between experimental data and the FTMM calculations for the mul-
ti-layer configuration shown in Figure 2. Further analysis, especially a parame-
ter study on the different relaxation and thermal components is currently being 
done. This study mainly assumes air within the porous medium but there is cur-
rent interest in applying these to pores with different rheological make up. 
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Appendix A: Linear Acoustic Equation 

0 0v
t
ρ ρ
′∂
+ ∇ ⋅ =

∂
                           (A.1) 

( ) ( )0
v p v D v
t βρ µ µ∂
= −∇ + ∇ ∇⋅ + ∇ ⋅ ∇

∂

������
                (A.2) 

2
0

0 0

0fr
V

s T
c T

t T t T
υ

υυ

ρ κρ
∂ ∂  ′+ − ∇ = ∂ ∂ 

∑                (A3) 

2
0

fr
p

P T s
cc
ρβρ

 
′ = −   

 
                       (A4) 

0 0

fr
p p

T TT p s
c c
β

ρ

   
′ = +      

   
                     (A.5) 

( ) [ ]1 2
2 3

TD v v v Itr v ∇ = ∇ + ∇ − ∇  

������ �
 

( ) ( )( ) 
( ) ( ) ( ) ( )
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) ( )
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i j

A h A h A
h h
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( ) ( )( ), ,k
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Nomenclature 

0p  = Fluid Pressure, Macro Scale 
ϕ  = Porosity 
η  = Viscosity 

fD  = Domain Occupied by Fluid 

p vC Cγ =  Cp = specific heat at constant pressure Cv = Specific heat at con-
stant volume 

κ  = Coefficient of thermal Conductivity 

Pr  = Prandlt Number = pCη
κ

 

fρ , 0 ρ  = density of the Fluid 
T = Temperature deviation 

vT  = Vibrational temperature pertaining to molecular type v 
T  = theorist temperature, kT, k = Boltzmann constant 

( )k ω  = Dynamic Viscous Permeability 
( )k ω′  = Dynamic Thermal Permeability 

*a  = asterisk superscript means conjugate 
A
�

 = special tilde 
�

 2nd rank tensor 
s  = Entropy, frs  = Entropy without molecular vibration,  

vs  = molecular vibration entropy 

β�  = Thermal expansion coefficient = 1

pt
ρρ− ∂ 

 ∂ 
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