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Abstract 
This paper considers a dynamical system defined by a set of ordinary auto-
nomous differential equations with discontinuous right-hand side. Such sys-
tems typically appear in economic modelling where there are two or more re-
gimes with a switching between them. Switching between regimes may be a 
consequence of market forces or deliberately forced in form of policy imple-
mentation. Stiefenhofer and Giesl [1] introduce such a model. The purpose of 
this paper is to show that a metric function defined between two adjacent tra-
jectories contracts in forward time leading to exponentially asymptotically 
stability of (non)smooth periodic orbits. Hence, we define a local contraction 
function and distribute it over the smooth and nonsmooth parts of the peri-
odic orbits. The paper shows exponentially asymptotical stability of a periodic 
orbit using a contraction property of the distance function between two adja-
cent nonsmooth trajectories over the entire periodic orbit. Moreover it is 
shown that the ω-limit set of the (non)smooth periodic orbit for two adjacent 
initial conditions is the same.  
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1. Introduction 

Economic systems may not always satisfy the usual smoothness condition 
everywhere. In particular, a discontinuity in an economic system may occur due 
to a change in economic regime or policy implementation. In this paper, we 
consider an economic system defined by a planar ordinary differential equation 
with discontinuous right-hand side. Similar dynamical systems are considered in 
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various economic models [2] [3] [4] [5] [6]. For such models, there exists a well 
developed existence and uniqueness theory [7]. However, little is known about 
stability results of non-smooth periodic orbits. Moreover, such results depend 
on the explicit calculation of the periodic orbit and employ a global stability 
theory based on Poincaré’s map. Since such explicit calculations may not always 
be possible, we want to establish existence and exponentially asymptotical 
stability of a nonsmooth periodic orbit without its calculation. The advantage of 
such a local stability theory would allow economists to derive analytic results for 
the purpose of economic policy analysis. The theory developed in Stiefenhofer 
and Giesl [1] allows us to do so. In this paper we study the distance function 
between two adjacent trajectories and show it’s contraction property in forward 
time and calculate its ω-limit set. Section two discusses the dynamical system 
with a switching regime and recalls the theorem introduced in Stiefenhofer and 
Giesl [1]. Section three states the main results and provides the proofs. Section 
four is a conclusion. 

2. The Model 

We consider a differential equation 

( ) ,x f x=                              (1) 

where f is a discontinuous function at 2 0x =  and 2x∈  such that for 
:f f ±=  we have  

( ) ( )
( )

2

2
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if 0

f x x
x f x

f x x
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±
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 >= = 
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                     (2) 

This dynamical system is introduced in Stiefenhofer and Giesl [8]. On the 
right-hand side, we provide a condition for switching between economic regimes 
f ± . For simplicity, we consider only two regimes and an exogenously given 

switching condition between them. A stability theory for this dynamical system 
is provided by the following theorem. 

Theorem 1 (Stiefenhofer and Giesl [1], Theorem 2 p. 11). Let 2K∅ ≠ ⊂   
be a compact, connected and positively invariant set with ( ) 0f x± ≠  for all 
x K ±∈ . Moreover, assume that 2:W ± ± →   are continuous functions and 
let the orbital derivatives ( )W ± ′  exist and be continuous functions in ±  and 
continuously extendable up to 0

± . Let following conditions hold: 
1) 
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for all 0x K∈  with ( )2 1,0 0f x± < , ( )2 1,0 0f x < .  
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Then there is one and only one periodic orbit KΩ ⊂ . Moreover, Ω  is 
exponentially asymptotic stable with the real part of the Floquet exponent less or 
equal ν−  except the trivial one and for its basin of attraction the inclusion 

( )K A⊂ Ω  holds.  
Stiefenhofer and Giesl [1] derive the conditions 1 - 2 in theorem 1. Condition 

1 states that two smooth trajectories contract if the weighted Lyapunov function 

W
L ±  is negative. This condition requires that the real part of the Floquet 
exponent be negative. While this condition does not depend on the periodic 
orbit itself, however, it requires to find a function ( )W x± . Condition 2 states a 
contraction property for the discontinuity points of the dynamical system, where 
the system switches. This condition depends on the vector field f ±  and some 
function W ± , and is hence independent of the periodic orbit itself. We now 
investigate the contraction property of the metric function between adjacent 
solutions, and calculate the ω-limit set of the periodic orbit. The details of how 
to derive these conditions are given in [8]. In principle, however, our method is 
a generalization of Borg [9], which introduces the concept of a contraction 
mapping between adjacent trajectories in the following way: 

We want to show that ( ) 0L x <  is a sufficient condition for two adjacent 
trajectories to move towards each other. For example, consider the points 

nx∈  and nx vδ+ ∈  in the phase space. Let 0δ > , ( )v f x⊥ , and 
1v = . Then in order for two adjacent trajectories through the points x and 

x vδ+  to move towards each other it must hold that 

( )0 ,f x v vδ> +                         (3) 

( ) ( ) ,f x Df x v vδ≈ +                      (4) 

( ) ( ), since .Df x v v v f xδ= ⊥                  (5) 

where  

( ) ( ), : , .L x v Df x v v=                      (6) 

Hence, if ( ) 0L x <  then locally, two adjacent trajectories move towards each 
other. See Figure 1. Borg provides the following theorem under slightly different 
assumptions: 
 

 
Figure 1. Borg’s criterion [9]. 
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Theorem 2 (Version of Borg [9]) Let nK∅ ≠ ⊂   be a compact, 
connected and positively invariant set which contains no equilibrium. Let 
( ) 0L x <  hold for all x K∈  with  

( )
( )
( )

1,
: max ,

v v f x
L x x v

= ⊥
=                      (7) 

where 

( ) ( ), : , .L x v Df x v v=                     (8) 

Then there exists one and only one periodic orbit KΩ ⊂ . Ω  is 
exponentially asymptotically stable and its basin of attraction ( )A Ω  contains 
K.  

3. Results 

We now consider the time interval ( )1,j jt t t+ +
−∈  in Figure 2 and show that the 

distance between two adjacent solutions decreases. We also show that for two 
nearby points x and x η+  in K that the ω-limit set is the same. 

We define a time-dependent distance function 0:A+ +→   between two 
adjacent points x and x η+  by  

( ) ( ) ( )( ) ( )
( ) ( )( )T 2

: e ,t
x x

x x

W S x
t tt t

A t S x S x S x S xη ηη η
+ +

+ +
+ + + + + = + − + − 

  
    (9) 

where ( )( )x
x

S t xη η+ +


, tS x+  are two adjacent (non)smooth trajectories, and 

x  is a monotone increasing map for the time structure presented in Figure 2. 
Theorem 3. Let the assumptions of theorem 1 hold. Then there are constants 

0δ >  and 1C ≥  such that for all x K∈  and for all 2η ∈  with 2η δ≤   

( ) ( )1 e for all 0.t
jA t A t tµ+ −
−≤ ≥                   (10) 

Moreover, we have 
( ) ( ).x xω ω η= +                        (11) 

Proof. 
We now show the contraction property of the distance function. 

 We show that ν  defined over a smooth time interval is strictly larger than 
µ  defined over the same time interval including the subsequent time 
interval. 

 

 
Figure 2. Time structure t∈ . 
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 We show that the distance function is decreasing for all positive time.  
By equations (2.17) and (2.30) in Stiefenhofer [8] we have 

( ) ( )1 1 1e for all ,t
j j jA t A t t t tµ− + − − +
− − − ≤ ∈                 (12) 

( ) ( )e for all ,t
j j jA t A t t t tµ− + − − + ≤ ∈                  (13) 

See time structure notation of the graph of ( )A t  in Figure 2. Equations (12) 
and (13) show the contraction rate µ  over each jumping interval in +/− and in 
−/+ direction. We now state similar equations for the smooth intervals with 
contraction rate ν . We have 

( ) ( ) ( )1 1e for all ,t
j j jA t A t t t tν −− + + −
− −≤ ∈               (14) 

( ) ( ) ( )1e for all , .t
j j jA t A t t t tν −− + + −

+≤ ∈               (15) 

We consider the time interval ( )1 1 1 2, ,t t t t− + + −   . Hence by equation (12) and 
equation (14) we obtain 

( ) ( ) ( ) ( )2 1 2 1
1 1e e

t t t t
A t A t

ν µ− + + +− − − −+ + + +≤  

( ) ( )2 1 2 1t t t tν µ− + + +− ≤ −  

2 1

2 1

.
t t
t t

µ ν
− +

+ +

 −
≤  

− 
                       (16) 

We define  

( )1 2: for 1,2,3,j jS t t c j− +
−= − ≥ =                 (17) 

( ) 1: for 1,2,3,j jJ t t c j+ −= − ≤ =                 (18) 

where constants 1 2, 0c c >  are defined by 

1 : 0c δ= >                         (19) 

For the constant 2c  we consider { }2: 0d K x= = . From  

( )1max x K f x s∈ =                     (20) 

and 

t s d⋅ =                          (21) 

we obtain by ( )( )10
d

t
d f x τ τ≤ ∫   

2
1

: .
max x K

dc t
f∈

= ≤                   (22) 

Equation (16) with bounds (17) and (18) and extension of time interval 

( ) ( )2 1 2 1 2 2t t t t t t+ + − + + −− = − + −  yields  

( )( )
2 1 2

12 12 1 2 2
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Since 1c δ=  we can choose δ  small enough so that µ  gets as close to ν  
as we wish. From 

( ) ( ) ( ){ }1 1 1 2 2 2e for all ,tA t t A t t t t t tµ+ − + + − − + + ≤ ∈ − −       (24) 

( ) ( ) ( ){ }1 1 2 3 3 3e for all ,tA t t A t t t t t tµ+ − + + − − + + ≤ ∈ − −       (25) 

we have  

( ) ( )
( ) ( ){ }

1 1

1 2 2 2 2 3 3 3

e

for all , ,

A t A t

t t t t t t t t

µττ

τ

+ − +

+ − − + + − − +

+ ≤

   ∈ − − − −     

    (26) 

which generalizes to 0τ ≥ , by  

( ) ( )
( ) ( ){ }

1 1

1 1 1 3

e

for all , ,j j j j j j j

A t A t

t t t t t t t t

µττ

τ

+ − +

+ − − + + − − +
− + +

+ ≤

   ∈ − − − −     

  (27) 

This shows (10). It remains to show (11). 
Now, we show that all points x η+  with 2η ∈ , ( )f xη ⊥ , and 2η δ≤  

have the same ω-limit set as the point x. We first show the inclusion 
( ) ( )x xω ω η⊂ + . Assume there is a ( )w xω∈ . Then we have a strictly 

increasing sequence it →∞  satisfying 0
it

w S x− →  as i →∞ . Because of 
condition (10) of proposition 3 and the properties of   in Figure 2 there is a 
sequence ( )it  that satisfies  

( ) as ,it i→∞ →∞                      (28) 

and  

( ) ( )( )e as .it
i iA t A t iµ−− +≤ → ∞                (29) 

This proves that ( ) ( )
it

S x wη+ →  and ( )w xω η∈ + . 
We now show that the inclusion ( ) ( )x xω η ω+ ⊂ . Assume there is a 

( )w xω η∈ + . Then we have a strictly increasing sequence iθ →∞  satisfying 
0

it
w S x− →  as i →∞ . Because of condition (10) of proposition 3 and 

properties of   in Figure 2 there is a sequence ( )1
iθ

−  that satisfies 
( )1

iθ
− → ∞  as i →∞ . This proves that ( ) ( )

it
S x wη+ →  and 

( )w xω η∈ + . 
This concludes the proof of proposition 3.  
Proposition 4. Let the assumptions of theorem 1 be satisfied. Then for all 

,x y K∈   

( ) ( ) :x yω ω∅ ≠ = = Ω                     (30) 

Proof. Let 0
0 \x K∈Ω . Since for all 0t ≥  we have 0tS x K⊂ , which is a 

compact set, hence  

( )0 : .x Kω∅ ≠ = Ω ⊂                     (31) 

Now, pick an arbitrary point 0
0 \x K∈Ω . By proposition 3 we have 

( ) ( )x yω ω−  for all y in a neighbourhood of x. Hence  

( ) ( ){ }1 0: :K x K x yω ω= ∈ =                 (32) 
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( ) ( ){ }2 0: :K x K x yω ω= ∈ ≠                (33) 

are open sets. Since 1 2K K= 

  and 0 1p K∈  with K connected, it must be that 

2K  is empty and 1K K= .  

4. Conclusion 

Differential equations are ubiquitous in economics. Economic regimes, where 
there is a switching between them, fit particularly well within the framework of 
differential equations with discontinuous right-hand side, where the 
discontinuity represents the switching condition. In this paper, we assume an 
exogenous switching condition. However, this can without loss of generality be 
generalized by modelling the explicit economic context. The novelty of the 
stability theory discussed in this paper is that it is independent of the explicit 
solution of the system. This is a major advantage of our theory. However, it 
requires defining a weight function W, which may not always be easy. In 
particular, the paper shows that a distance function between two adjacent 
trajectories contracts in forward time over both, smooth and nonsmooth parts 
of the periodic orbit, where the dynamical system is discontinuous. It also 
shows that for two adjacent initial points the ω-limit set of nonsmooth period 
orbits is the same. Stiefenhofer and Giesl provide an example of the theory 
discussed in this paper [10] and compare it to global stability theory [11]. 
Further research should investigate the full basin of attraction of this model. 
Such a result would allow economists to fully characterize the set of initial 
conditions of exponentially asymptotically stable periodic orbits and to hence 
perform effective policy analysis. 
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