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Abstract 
This paper proposes the Laplace Discrete Adomian Decomposition Method 
and its application for solving nonlinear integro-differential equations. This 
method is based upon the Laplace Adomian decomposition method coupled 
with some quadrature rules of numerical integration. Four numerical exam-
ples of integro-differential equations in both Volterra and Fredholm inte-
grals are used to be solved by the proposed method. The performance of the 
proposed method is verified through absolute error measures between the 
approximated solutions and exact solutions. The series of experimental 
numerical results show that our proposed method performs in high accu-
racy and efficiency. The study clearly highlights that the proposed method 
could be used to overcome the analytical approaches in solving nonlinear 
integro-differential equations. 
 

Keywords 
Integro-Differential Equation, Volterra Integro-Differential Equation,  
Fredholm Integro-Differential Equation, Laplace Adomian Decomposition 
Method, Quadrature Rules 

 

1. Introduction 

One of the issues in finding the solutions of integro-differential equations is the 
choices of approaches used that are either analytical or numerical. Previous lite-
rature suggested that analytical solutions of integro-differential equations are 
not usually obtainable especially when the equations are entangled with nonli-
near terms. Therefore, it is required to find an efficient approximate solution 

How to cite this paper: Bakodah, H.O., 
Al-Mazmumy, M., Almuhalbedi, S.O. and 
Abdullah, L. (2019) Laplace Discrete Ado-
mian Decomposition Method for Solving 
Nonlinear Integro Differential Equations. 
Journal of Applied Mathematics and Phys-
ics, 7, 1388-1407. 
https://doi.org/10.4236/jamp.2019.76093 
 
Received: June 29, 2018 
Accepted: June 27, 2019 
Published: June 30, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2019.76093
http://www.scirp.org
https://doi.org/10.4236/jamp.2019.76093
http://creativecommons.org/licenses/by/4.0/


H. O. Bakodah et al. 
 

 

DOI: 10.4236/jamp.2019.76093 1389 Journal of Applied Mathematics and Physics 
 

numerically. Much attention has been devoted for the search of better and more 
efficient methods in recent years with the introduction of several numerical me-
thods such as the Galerkin methods [1], Runge-Kutta methods [2], Chebyshev 
collocation method [3], Taylor collection method [4], rationalized Haar func-
tions method [5], Galerkin methods with hybrid functions [6], and Adomian 
Decomposition Method (ADM) [7]-[12]. In addition to these numerical me-
thods, Khuri [13] [14] used Laplace transform numerical scheme, based on the 
ADM to solve nonlinear differential equations and Bratu’s problem, respectively. 
This method is popularly known as Laplace Adomian Decomposition Method 
(LADM) where the ADM and Laplace transforms are combined. 

The LADM is known for its rapid convergence in solution and also uses only 
little iteration as successfully applied in Kiymaz [15]. Furthermore, several mod-
ifications of the ADM and LADM methods can be seen in [16]-[22] with wide 
applications ranging from differential equations, partial differential equations, 
integral equations and integro-differential equations among others. It seems that 
the LADM method is always open for further modifications especially on discre-
tizing the Adomian decomposition. In this paper, we aim at extending the Lap-
lace Adomian decomposition method for finding the solution of nonlinear 
integro-differential equations by firstly discretizing the Adomian decomposition 
method, followed by coupling some numerical integration schemes or quadra-
ture rules. These quadrature rules are used to approximate the definite integrals 
which are analytically impossible [23] [24] [25] [26] as the solution is given at 
the nodes. For convenience, the proposed extension is known as Laplace Dis-
crete Adomian Decomposition Method (LDADM). The rest of this paper is ar-
ranged as follows. Section 2 describes the proposed LDADM. Section 3 presents 
numerical results with four examples and finally Section 4 concludes.   

2. Laplace Discrete Adomian Decomposition Method 

In this section, we present the Laplace discrete Adomian decomposition method 
over the integro-differential equation of the form 

( ) ( ) ( ) ( ) ( )( )( ), d ,
b

a
u x f x k x t Ru t N u t t′′ = + ⋅ +∫            (2.1) 

Subject to the following initial conditions  

( ) ( )0 , 0 .u uα β′= =  

To solve the nonlinear integro-differential Equation (2.1) using the Laplace 
transform method, we recall the Laplace transform of the second derivative of 
( )u x , that is ( ){ } ( ){ } ( ) ( )2 0 0u x s u x su u′′ ′= − −  . Thus on applying the Lap-

lace transform to both sides of Equation (2.1) we obtain  

( ){ } ( ) ( )

( ){ } ( ) ( ) ( )( )( ){ }
2 0 0

, d
b

a

s u x su u

f x k x t Ru t N u t t

′− −

= + ⋅ +∫



 
           (2.2)  

We thus obtain the following equation after using the above prescribed initial 
conditions  
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( ){ } ( ){ } ( ) ( ) ( )( )( )2 2 2

1 1 , d .
b

a
u x f x k x t Ru t N u t t

s s s s
α β

= + + + +∫    (2.3) 

The decomposition method represents the solution ( )u x  as a series of the 
form: 

( ) ( )0 ,nnu x u x∞

=
= ∑                     (2.4) 

and the nonlinear term ( )Nu t  is decomposed into an infinite series of the form: 

( )( ) 0 ,nnN u t A∞

=
= ∑                   (2.5) 

where nA ’s are the Adomian polynomials of 0 1, , , nu u u  given by the formula  

( )0 0

1 d , 0,1,2,
! d

n
n i

n in iA N u i
n λ

λ
λ =

=

 = =
 ∑           (2.6) 

On substituting Equation’s (2.4) and (2.5) in Equation (2.3) and making 
comparison between the right and left hand sides, we thus obtain: 

( ){ } ( )( )

( ){ } ( ) ( ) ( )( )

0 2 2

1 2

1

1 , , 0.
b

k k ka

u x f x
s s s

u x k x t Ru x A x k
s

α β

+

 = + +

 = + ≥
 ∫

 

 
      (2.7)  

Furthermore, if the evaluation of the integrals in Equation (2.7) is analytically 
possible, the ADM can be applied directly. However, in the case where the eval-
uation of integrals is analytically impossible we consider the numerical integra-
tion scheme given by the following formula: 

( ) ( )0
, ,0d ,

b
n i n ija

f t t w f t
=

≈ ∑∫                    (2.8) 

where ( )f t  is continuous function on [ ],a b , ,n it a ih= +  are the nodes of the 

numerical integration, 
b ah

n
−

=  is the fixed step length and , 0,1,, 2, ,n iw i n=   

are the weights functions. Now, applying the formula given in Equation (2.8) on 
Equation (2.7) to obtain 

( ){ } ( )( )

( ){ } ( ) ( )( ) ( )( )( )
0 2 2

1 , , , ,2 0

1

1 , , 0.n
k n i n i k n i k n ii

u x f x
s s s

u x w k x t R u t A t k
s

α β

+ =

 = + +

 = ⋅ + ≥


∑

 

 
 (2.9) 

Finally, on applying the inverse Laplace transform to the first part of Equation 
(2.9) gives ( )0u x , and, consequently will define 0A . Also, using 0A  enables us 
to evaluate ( )1u x . The determination of ( )0u x  and ( )1u x  leads to the de-
termination of 1A  that will allow us to determine ( )2u x , and so on. This in 
turn will lead to the complete determination of the components of , 0ku k ≥  
upon using the second part of Equation (2.9).  

( ) ( )( )

( ) ( ) ( )( ) ( )( )( )

1
0 2 2

1
1 , , , ,2 0

1

1  , , 0n
k n i n i k n i k n ii

u x f x
s s s

u x w k x t R u t A t k
s

α β−

−
+ =


= + +


  = ⋅ + ≥   

 
 
 

∑

 

 
(2.10) 
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From this recursive relation in Equation (2.10), 0 1 2, , ,u u u   can be calcu-
lated. The solution of Equation (2.1) is now determined in Equation (2.10). 
However, in practice the series 0 nn u∞

=∑  must be truncated to the series: 

0 n
n ii uϕ

=
= ∑  with limn n uϕ→∞ =                 (2.11) 

2.1. Trapezoidal Method (TR) 

We couple the trapezoidal method (TR) to Equation (2.10) to obtain: 

( ) ( )

( ) ( ) ( )( ) ( )( )(
( ) ( )( ) ( )( )

( ) ( )( ) ( )( ))

1
0

1
1

1
1

,
2

 2 ,

, , 0.

k k k

n
i k i k ii

k k

u x x L f x

hu x L k x a R u a A a

k x x R u x A x

k x b R u b A b k

α β −

−
+

−

=

 = + +


 = + 
 + +

 + + ≥

∑
        (2.12) 

2.2. Simpson’s Method (SM) 

Also, on coupling the Simpson’s method (SM) to Equation (2.10), we get: 

( ) ( )

( ) ( ) ( )( ) ( )( )(

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )( ))

1
0

1
1

2
2 1 2 1 2 11

1
2

2 2 21

,
2

 4 ,

2 ,

, , 0.

k k k

n

i i k ii

n

i i k ii

k k

u x x L f x

hu x L k x a R u a A a

k x x R u x A x

k x x R u x A x

k x b R u b A b k

α β −

−
+

− − −=

−

=

 = + +


 = + 


+ +

 + +


+ + ≥


∑

∑

      (2.13) 

3. Computational Results and Analysis 

In this section, we consider several nonlinear integro-differential equations as 
examples in order to show the efficiency and the simplicity of the proposed me-
thod. We start with the nonlinear Volterra and Fredholm integro-differential 
equations down to their systems, respectively.  

Example 3.1  
Consider the nonlinear Volterra integro-differential equation  

( ) ( )( ) ( )5 2
0

1 2 d , 0 0,
5

x
u x x u t t u′ = − − =∫                (3.1) 

with the exact solution given by ( ) 2u x x= . 
In order to use the quadrature rule for Equation (3.1), let t x v= ⋅ , we get 

( ) ( )( ) ( )15 2
0

1 2 d , 0 0.
5

u x x x u x v v u′ = − ⋅ − =∫  

Taking the Laplace transform of both sides of the above equation gives 

( ){ } ( )( )( )15 2
0

1 2 d .
5

u x x x u x v v ′ = − ⋅ − 
  ∫    
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So that, 

( ){ } ( ) ( )( )( )1 2
6 0

240 2 d ,s u x u x u x v v
s

− = − ⋅ −∫   

or equivalently 

( ){ } ( )( )( )1 2
7 0

24 1 2 d .u x x u x v v
ss

= − ⋅ −∫   

1) Trapezoidal Method (TM) 
We divide the interval (0, 1) into subinterval of equal lengths 0.2, 5h n= =  

and denote ,0 5iv a ih i= + ≤ ≤ . 
The recursive relation is given by 

( ){ }

( ){ } ( ) ( ) ( )

0 7

4

1 0 5
1

24 ,

0.1 2 , 0k k k i k
i

u x
s

u x x xA v xA v xA v k
s+

=

 =
    = − ⋅ + + ≥     

∑



 
 

or  

( ){ }

( ){ }

1 3 15

2 11 23

2 7.900194170 ,

3315.398639 3.15801038 ,

u x
s s

u x
s s

 = −

 = − −

 




 

Taking the inverse Laplace transform of both sides of the first part of recursive 
relation, and using this recursive relation gives 

( )

( )

6
0

2 14
1

1
30

0.00000906

u x x

u x x x

 =
 = −
 

  

The series solution is obtained by summing the following iterates 

( ) 0 1 2u x u u u= + + + . 

The results produced by the present method with only few components (m = 
5) are in a very good agreement with the exact solution results as shown in Table 
1 and illustrated graphically in Figure 1. 

2) Simpson’s Method (SM) 
We divide the interval (0, 1) into subinterval of equal lengths 0.1, 10h n= =  

and denote ,0 10ix a ih i= + ≤ ≤ . The recursive relation is given by 

( ){ }

( ){ } ( ) ( )

( ) ( )

0 7

5

1 0 2 1
1

4

2 10
1

24 ,

0.1 4
3

2 , 0,

k k k i
i

k i k
i

u x
s

u x xA v xA v
s

xA v xA v k

+ −
=

=


=


  = − + 


  + + ≥ 

∑

∑
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Table 1. Comparison between the exact solution ( )u x  and approximate solution using 

LDADM based on TM in EX. 3.1. 

x Exact LDADM Absolute Error 

0 0 0 0 

0.20 0.04000000 0.03999986 1.41640000e−07 

0.40 0.16000000 0.15999094 9.05930000e−06 

0.60 0.36000000 0.35989712 1.02878600e−04 

0.80 0.64000000 0.63942742 5.72582800e−04 

1 1.00000000 0.99787295 2.12705460e−03 

 

 

Figure 1. Curves of the exact solution ( )u x  and approximate solution using LDADM 

based on TM in EX. 3.1. 
 
Or  

( ){ }

( ){ }

1 3 15

2 11 23

2 5.36881755 ,

2692.40899737 1.05763414 ,

u x
s s

u x
s s

 = −

 = − +

 




 

Taking the inverse Laplace transform of both sides of the first part of recursive 
relation, and using this recursive relation gives 

( )

( )

6
0

2 14
1

1 ,
30

0.00000616 ,

u x x

u x x x

 =
 = −
 

 

The series solution is obtained by summing the following iterates 

( ) 0 1 2u x u u u= + + + . 

The results produced by the present method with only few components (m = 
5) are in a very good agreement with the exact solution results as shown in Table 
2 and illustrated graphically in Figure 2. 

Example 3.2 
Consider the nonlinear Fredholm integro-differential equation  
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Table 2. Comparison between the exact solution ( )u x  and approximate solution using 

LDADM based on SM in EX. 3.1. 

x Exact LDADM Absolute Error 

0 0 0 0 

0.10 0.01000000 0.01000000 2.22221713e−12 

0.20 0.04000000 0.04000000 1.42214800e−10 

0.30 0.09000000 0.09000000 1.61901986e−09 

0.40 0.16000000 0.15999999 9.05840967e−09 

0.50 0.25000000 0.24999997 3.37952007e−08 

 

 

Figure 2. Curves of the exact solution ( )u x  and approximate solution using LDADM 

based on SM in EX. 3.1. 
 

( ) ( ) ( ) ( )1 2 2
0

1 1e e d , 0 0 1,
2 2

x x tu x u t t u u−′ ⋅′ ′= + = =∫  

with the exact solution is ( ) exu x = .  
Taking the Laplace transform of both sides of the given equation gives 

( ){ } ( )( )1 2 2
0

1 1e e d .
2 2

x x tu x u t t− ′′ = +
 

⋅ ∫    

So that 

( ){ } ( ) ( ) ( ) ( )( )12 2 2
0

1 10 0 e d ,
2 1 2

x ts u x su u u t t
s

−′− − = + ⋅
− ∫   

or equivalently 

( ){ } ( )
( )( )1 2 2

2 2 2 0

1 1 1 1 e d .
2 1 2

x tu x u t t
s s s s s

− ⋅= + + +
− ∫   

1) Trapezoidal Method (TM) 
Let 0.2, 5h n= = , the recursive relation is given by 

( ){ } ( )

( ){ } ( ) ( )

( )

0

5

0 2 2

4
2 2

1 02
1

2
5

1 1 1 ,
2 1

0.2 e 2 e
4

e , 0.

ix t x t
k k k i

i

x t
k

u x
s s s s

u x A t A t
s

A t k

− −
+

=

−


= + + −

  = + 


  +

⋅ ⋅

≥
 

⋅

∑
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Taking the inverse Laplace transform of both sides of the first part of recursive 
relation, and using this recursive relation gives 

( )

( )

0

1

1 1 1 e ,
2 2 2
0.44983021 0.44983021 0.44983021e ,

x

x

u x x

u x x

 = + +
 = − − +
 

 

The series solution is obtained by summing the following iterates 

( ) 0 1 2u x u u u= + + + . 

The results produced by the present method with only few components (m = 
5) are in a very good agreement with the exact solution results as shown in Table 
3 and illustrated graphically in Figure 3.  

2) Simpson’s Method (SM) 
Let 0.1, 10h n= = , the recursive relation is given by 

( ){ }

( ){ } ( ) ( )

( ) ( )

0 2 1

2 5

0 2 2

5
2 2

1 0 2 12
1

2
2 2

2 5
1

1 1 1 ,
2 ( 1)

0.1 e 4 e
6

2 e e , 0.

i

i

x t x t
k k k i

i

x t x t
k i k

i

u x
s s s s

u x A t A t
s

A t A t k

−− −
+ −

=

− −

=


= + + −

  = + ⋅ 


  + + ≥

⋅

⋅ ⋅
 

∑

∑



   

 
Table 3. Comparison between the exact solution ( )u x  and Approximate solution using 

LDADM based on RM in EX. 3.2. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.20 1.22140276 1.22140206 7.03000000e−07 

0.40 1.49182470 1.49182168 3.01500000e−06 

0.60 1.82211880 1.82211150 7.29500000e−06 

0.80 2.22554093 2.22552695 1.39750000e−05 

1 2.71828183 2.71825824 2.35900000e−05 

 

 

Figure 3. Curves of the exact solution ( )u x  and approximate solution using LDADM 

based on TM in EX. 3.2. 
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Taking the inverse Laplace transform of both sides of the first part of recursive 
relation, and using this recursive relation gives 

( )

( )

0

1

1 1 1 e ,
2 2 2
0.45035999 0.45035999 0.45035999 ,1e

x

x

u x x

u x x

 = + +
 = − − +
 

 

The series solution is obtained by summing the following iterates 

( ) 0 1 2u x u u u= + + + . 

The results produced by the present method with only few components (m = 
5) are in a very good agreement with the exact solution results as shown in Table 
4 and illustrated graphically in Figure 4. 

Example 3.3 
Consider the system of nonlinear Volterra integro differential equation  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

22 3 9 2 2
0

22 7 2 2
0

2 13 d , 0 1,
3 126

13 d , 0 1,
35

x

x

u x x x x x t u t v t t u

v x x x x t u t v t t v

 ′ = − − + − + =

 ′ = − − + − − =


∫

∫
   (3.2) 

with the exact solution ( ) ( )( ) ( )3 3, 1 ,1u x v x x x= + − .  
In order to use the quadrature rule for Equation (3.2), let t x v= ⋅ , we get 

 
Table 4. Comparison between the exact solution ( )u x  and approximate solution using 

LDADM based on SM in EX. 3.2. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.10 1.10517092 1.10517076 1.58713332e−07 

0.20 1.22140276 1.22140210 6.56924555e−07 

0.30 1.34985881 1.34985728 1.53033898e−06 

0.40 1.49182470 1.49182188 2.81841706e−06 

0.50 1.64872127 1.64871671 4.56476936e−06 

 

 

Figure 4. Curves of the exact solution ( )u x  and approximate solution using LDADM 

based on SM in EX. 3.2. 
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

1 22 3 9 2 2
0

1 22 7 2 2
0

2 13 d , 0 1,
3 126

13 d , 0 1.
35

u x x x x x x x v u x v v x v v u

v x x x x x x v u x v v x v v v

 ′ = − − + − ⋅ ⋅ + ⋅ =

 ′ = − − + − ⋅ ⋅ − ⋅ =


∫

∫
 

Taking the Laplace transform of both sides of the above equation gives 

( ){ } ( ) ( ) ( )( )( )
( ){ } ( ) ( ) ( )( )( )

1 22 3 9 2 2
0

1 22 7 2 2
0

2 11 3 d ,
3 126

11 3 d .
35

s u x x x x x x x v u x v v x v v

s v x x x x x x v u x v v x v v

  − = − − + − ⋅ ⋅ + ⋅   


  − = − − + − ⋅ ⋅ − ⋅   

∫

∫

  

  
 

So that 

( ){ } ( ) ( ) ( )( )( )
( ){ } ( ) ( ) ( )( )( )

1 2 2 2
4 5 11 0

1 2 2 2
4 9 0

1 6 4 2880 1 d ,

1 6 144 1 d .

u x x x x v u x v v x v v
s ss s s

v x x x x v u x v v x v v
s ss s

 = + − − + − ⋅ ⋅ + ⋅

 = − − + − ⋅ ⋅ − ⋅


∫

∫

 

 
  

1) Trapezoidal Method (TM) 
We divide the interval (0, 1) into subinterval of equal lengths 0.2, 5h n= =  

and denote ,0 5iv a ih i= + ≤ ≤ . The recursive relations as  

( ){ }

( ){ }

0 4 5 11

0 4 9

1 6 4 2880 ,

1 6 144 ,

u x
s s s s

v x
s s s

 = + − −

 = − −





  

( )( ) ( ) ( ) ( )( )( )(
( ) ( ) ( )( )

( ) ( ) ( )( ))
( )( ) ( ) ( ) ( )( )( )(

( ) ( ) ( )( )
( ) ( ) ( )( ))

2
1 0 0 0

24
1

2
5 5 5

2
1 0 0 0

24
1

2
5 5 5

1

2

, 0

1

2

, 0

k k k

i k i k ii

k k

k k k

i k i k ii

k k

u x x x x v A v B v
s

x x v A v B v

x x v A v B v k

v x x x x v A v B v
s

x x v A v B v

x x v A v B v k

+

=

+

=

 = − ⋅ +

 + − ⋅ +

 + − ⋅ + ≥

 = − ⋅ −



+ − ⋅ −


+ − ⋅ − ≥

∑

∑

 

 
  

Taking the inverse Laplace transform of both sides of the first part of recursive 
relation, and using this recursive relation gives 

3 4 10
0

3 8
0

4 8
1

7 8
1

1 11
6 1260
11

280
0.17 0.00039467

0.00950857 0.00039467

u x x x

v x x

u x x

v x x

 = + − −

 = − −

 = −


= −

 

 

The series solutions are 

( )
( )

0 1 2

0 1 2

u x u u u

v x v v v

= + + +


= + + +
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The results produced by the method with only few components (m = 5) are in 
a very good agreement with the exact solution results as shown in Table 5 and 
Table 6 and illustrated graphically given in Figure 5 and Figure 6.  

2) Simpson’s Method (SM) 
We divide the interval (0, 1) into subinterval with equal length 0.1, 10h n= =  

and denote ,0 10ix a ih i= + ≤ ≤ . The recursive relation is given by 

( ){ }

( ){ }

0 4 5 11

0 4 9

1 6 4 2880 ,

1 6 144 ,

u x
s s s s

v x
s s s

 = + − −

 = − −
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Taking the inverse Laplace transform of both sides of the first part of recursive 
relation, and using this recursive relation gives 

3 4 10
0

3 8
0

4 8
1

7 8
1

1 11 ,
6 1260
11 ,

280
0.16666667 0.00039736 ,

0.00952761 0.00039736 ,

u x x x

v x x

u x x

v x x

 = + − −

 = − −

 = −


= −

 

 

 
Table 5. Comparison between the exact solution ( )u x  and approximate solution using 

LDADM based on TM in EX. 3.3. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.20 1.00800000 1.00800533 5.33335213e−06 

0.40 1.06400000 1.06408534 8.53371745e−05 

0.60 1.21600000 1.21643206 4.32061253e−04 

0.80 1.51200000 1.51336546 1.36545876e−03 

1 2.00000000 2.00333032 3.33031586e−03 
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Table 6. Comparison between the exact solution ( )v x  and approximate solution using 

LDADM based on TM. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.20 0.99200000 0.99200011 1.12587007e−07 

0.40 0.93600000 0.93601324 1.32433409e−05 

0.60 0.78400000 0.78420632 2.06317915e−04 

0.80 0.48800000 0.48939610 1.39609894e−03 

1 0.00000000 0.00594422 5.94421577e−03 

 

 

Figure 5. Curves of the exact solution ( )u x  and approximate solution using LDADM 

based on TM in EX. 3.3. 
 

 

Figure 6. Curves of the exact solution ( )v x  and approximate solution using LDADM 

based on TM in EX. 3.3. 
 

The series solutions are 

( )
( )

0 1 2

0 1 2

u x u u u

v x v v v

= + + +


= + + +





 

The results produced by the method with only few components (m = 5) are in 
a very good agreement with the exact solution results as shown in Table 7 and 
Table 8 and illustrated graphically given in Figure 7 and Figure 8. 
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Table 7. Comparison between the exact solution ( )u x  and approximate solution using 

LDADM based on SM in EX. 3.3. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.10 1.00100000 1.00100000 4.16058963e−16 

0.20 1.00800000 1.00800000 4.71714828e−13 

0.30 1.02700000 1.02700000 2.96484081e−11 

0.40 1.06400000 1.06400000 5.65791067e−10 

0.50 1.12500000 1.12500001 5.58673293e−09 

 
Table 8. Comparison between the exact solution ( )v x  and approximate solution using 

LDADM based on SM in EX. 3.3. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.10 0.99900000 0.99900000 9.17047572e−10 

0.20 0.99200000 0.99200011 1.12810573e−07 

0.30 0.97300000 0.97300185 1.84936099e−06 

0.40 0.93600000 0.93601327 1.32693006e−05 

0.50 0.87500000 0.87506048 6.04816460e−05 

 

 

Figure 7. Curves of the exact solution ( )u x  and approximate solution using LDADM 

based on SM in EX. 3.3. 
 

 

Figure 8. Curves of the exact solution ( )v x  and approximate solution using LDADM 

based on SM in EX. 3.3. 
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Example 3.4 
Consider the system of nonlinear Fredholm integro differential equation  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 2
0

1 2 2
0

122 d , 0 1, 0 0,
5
42 d , 0 1, 0 0,
3

u x x x u v t u u

v x x x u v t v v

 ′′ ′= + − + = =

 ′′ ′= − + − − = =


∫

∫
  

with the exact solution ( ) ( )( ) ( )2 2, 1 ,1u x v x x x= + − .  
As usual, on taking the Laplace transform of both sides of the above equation 

gives 
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( ){ } ( )( )
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5
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  − = − + − −   

∫

∫

  

  
  

So that 
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1 2 4 1 d .
3
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s s s s
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s s s s
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 = − + − −


∫

∫

 

 
  

1) Trapezoidal Method (TM) 
We divide the interval (0, 1) into subinterval of equal lengths 0.2, 5h n= =  

and denote ,0 5iv a ih i= + ≤ ≤ . The recursive relations are 

( ){ }

( ){ }
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∑

 

 
  

Taking the inverse Laplace transform of both sides of the first part of recursive 
relation, and using this recursive relation gives 

( )

( )

( )
( )

2 3
0

2 3
0

3
1

3
1

21 ,
5
21 ,
9

0.47488288 ,

0.28306869 ,

u x x x

v x x x

u x x

v x x

 = + +

 = − +


= −


= −

 

 

The series solutions are 
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( )
( )

0 1 2

0 1 2

u x u u u

v x v v v

= + + +


= + + +





 

The results produced by the method with only few components (m = 5) are in 
a very good agreement with the exact solution results as shown in Table 9 and 
Table 10 and illustrated graphically given in Figure 9 and Figure 10. 

2) Simpson’s Method (SM) 
We divide the interval (0, 1) into subinterval of equal lengths 0.1, 10h n= =  

and denote ,0 10ix a ih i= + ≤ ≤ . The recursive relation is given by 
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Taking the inverse Laplace transform of both sides of the first part of recursive 
relation, and using this recursive relation gives 
 
Table 9. Comparison between the exact solution ( )u x  and approximate solution using 

LDADM based on TM in EX. 3.4. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.20 1.04000000 1.03996370 3.62969667e−05 

0.40 1.16000000 1.15970962 2.90375734e−04 

0.60 1.36000000 1.35901998 9.80018101e−04 

0.80 1.64000000 1.63767699 2.32300587e−03 

1 2.00000000 1.99546288 4.53712084e−03 

 
Table 10. Comparison between the exact solution ( )v x  and approximate solution using 

LDADM based on TM in EX. 3.4. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.20 0.96000000 0.95996436 3.56392238e−05 

0.40 0.84000000 0.83971489 2.85113790e−04 

0.60 0.64000000 0.63903774 9.62259042e−04 

0.80 0.36000000 0.35771909 2.28091032e−03 

1 0 −0.00445490 4.45490297e−03 
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Figure 9. Curves of the exact solution ( )u x  and approximate solution using LDADM 

based on TM in EX. 3.4. 
 

 

Figure 10. Curves of the exact solution ( )v x  and approximate solution using LDADM 

based on TM in EX. 3.4. 
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The series solutions are 

( )
( )

0 1 2

0 1 2

u x u u u

v x v v v

= + + +


= + + +





 

The results produced by the method with only few components (m = 5) are in 
a very good agreement with the exact solution results as shown in Table 11 and 
Table 12 and illustrated graphically given in Figure 11 and Figure 12. 
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Table 11. Comparison between the exact solution ( )u x  and approximate solution using 

LDADM based on SM in EX. 3.4. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.10 1.01000000 1.00999945 5.51111213e−07 

0.20 1.04000000 1.03999559 4.40888971e−06 

0.30 1.09000000 1.08998512 1.48800028e−05 

0.40 1.16000000 1.15996473 3.52711177e−05 

0.50 1.25000000 1.24993111 6.88889017e−05 

 
Table 12. Comparison between the exact solution ( )v x  and approximate solution using 

LDADM based on SM in EX. 3.4. 

x Exact DADM Absolute Error 

0 1.00000000 1.00000000 0 

0.10 0.99000000 0.98999967 3.28616130e−07 

0.20 0.96000000 0.95999737 2.62892904e−06 

0.30 0.91000000 0.90999113 8.87263551e−06 

0.40 0.84000000 0.83997897 2.10314323e−05 

0.50 0.75000000 0.74995892 4.10770163e−05 

 

 

Figure 11. Curves of the exact solution ( )u x  and approximate solution using LDADM 

based on SM in EX. 3.4. 
 

 

Figure 12. Curves of the exact solution ( )v x  and approximate solution using LDADM 

based on SM in EX. 3.4. 
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4. Conclusion  

In this paper, a modification of the Laplace Adomian decomposition method 
inspired by property of discretization is proposed. We developed a new Laplace 
Discrete Adomian decomposition method (LDADM) in which has been suc-
cessfully applied to finding efficient numerical solutions of integro-differential 
equations featuring both nonlinear Volterra and Fredholm integrals. The me-
thod was based on the well-known Adomian decomposition method coupled 
with some numerical integration schemes (quadrature rules) alongside utilizing 
the famous and most used Laplace transform. The method gives approximate 
solutions iteratively with less number of computational steps. The results reveal 
that the proposed method is simple to execute and effective. Thus, many highly 
nonlinear integro-differential equations can be solved using the proposed me-
thod.  
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