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Abstract 
In this paper, we consider the following second-order nonlinear differential equa-

tions’ problem: ( )( )( ) ( ) ( )( ) ( )( ), ,u t f t u t u t u t′′ ′− Φ = +Ξ  a.e on [ ]0,TΩ =  

with a discontinuous perturbation and multivalued boundary conditions. By 
combining lower and upper solutions method, theory of monotone operators 
and theory of topological degree, we show the existence of solutions of the 
investigated problem in two cases. At first, α  and β  are assumed respec-
tively an ordered pair of lower and upper solutions of the problem, secondly 
α  and β  are assumed respectively non ordered pair of lower and upper 
solutions of the problem. Moreover, we show multiplicity results when the 
problem admits a pair of lower and strict lower solutions and a pair of upper 
and strict upper solutions. We also show that our method of proof stays true 
for a periodic problem. 
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1. Introduction 

This paper is devoted to the study of the following problem:  

( )( )( ) ( ) ( )( ) ( )( ) [ ]
( ) ( )( ) ( ) ( )( )1 2

, , a.e on 0,

0 0 ,

u t f t u t u t u t T

u B u u T B u T

 ′′ ′− Φ = +Ξ Ω =

 ′ ′∈ − ∈

     (1) 

where 1B  and 2B  are maximal monotone graphs in 2  and are some mul-
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tifunctions which describe the boundary conditions, 2:f Ω× →   is a Ca-
ratheodory function and Φ  is an increasing homeomorphism such that 
( )0 0Φ = . 
The tool of investigation for this problem is lower and upper solution’s me-

thod. This method provides a precious tool to get existence results for first and 
second order initial and boundary value problems. The method allows to 
generate monotone iterative techniques which provide constructive methods 
(amenable numerical treatment), to obtain solutions. The method was first in-
troduced by Perron [1]. Later Nagumo [2] used upper and lower solutions to 
study second-order differential equations with Dirichlet boundary conditions. 
Since then many authors have used that method primarily in the context of sin-
gle-valued differential equations with linear boundary conditions (Dirichlet, 
Neumann, Sturm-Liouville or periodic). Very recently, in 2017, combining lower 
and upper solutions method and theory of topological degree, Goli-Adjé [3] es-
tablished existence and multiplicity results for the considered problem under 
Neumann-Steklov boundary value conditions. Shortly before, in 2013, Khatta-
bi-Frigon-Ayyadi [4], by lower and upper solutions method and the fixed point 
index theory, obtained existence and multiplicity results for the problem under 
various boundary value conditions (Dirichlet, periodic or Neumann). Other au-
thors have investigated the second-order differential equation with multivalued 
boundary conditions driven by maximal monotone operators, in this direction, 
see [5] [6] [7] [8] [9] and references therein. In [6] [7], the problems unify clas-
sical problems of Dirichlet, periodic and Neumann and in [5] [8] [9] the prob-
lems unify classical problems of Dirichlet, Neumann and Sturm-Louiville. To 
our knowledge, the lower and upper solutions method for differential inclusions 
formulation of problems of type (1) was initiated by Bader-Papageorgiou [5] in 
2002. Soon after, in 2006, Staicub and Papageorgiou [9] extended the study of 
that problem to gradient systems with a discontinuous nonlinearity. In 2007, 
Kyritsi and Papageorgiou [8], in their book (see [8] the problem (5.111), p. 390) 
investigated the following single-valued version of the problem in Stai-
cub-Papageorgiou [9]: 

( )( ) ( )( )( ) ( ) ( )( ) ( )( ) [ ]
( ) ( )( ) ( ) ( )( )1 2

, , a.e on 0,

0 0 ,

pa u t u t f t u t u t u t T

u B u u T B u T

 ′ ′ ′− Φ = +Ξ Ω =

′ ′∈ − ∈

 

where 1 2, ,B B Ξ  and f are defined as in problem (1) and for all z∈ , 
( ) 1a z = . So, in [5] [8] [9], the authors deal with the homogeneous operator dif-

ferential p-laplacian ( ) 2p
p z z z−Φ =  for all z∈ . But they do not establish 

multiplicity results. 
The goal of this paper is to extend the work of Kyritsi-Papageorgiou [8] to a 

large class of problems. Indeed, we deal with a non-homogeneous operator Φ
-laplacian which contains, for example, some versions of Φ -Laplacian operators 
like the case when, for all z∈ , ( ) ( ) ( )pz a z zΦ = Φ  with ] [: 0,a → +∞  is 
a continuous map. Moreover, to obtain multiplicity results, we combine lower 
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and upper method used in [5] [8] [9] and the one of Goli-Adjé [3]. So, our aim 
in this paper is to study existence and multiplicity results concerning solutions 
of problem (1). 

After introducing notations, preliminary results and auxiliary results in Sec-
tion 2 and Section 3, in Section 4, α  and β  are assumed respectively an or-
dered pair of lower and upper solutions of the problem. By combining lower and 
upper solutions method and theory of topological degree we obtain existence 
results. 

In Section 5, α  and β  are assumed respectively non-ordered pair of lower 
and upper solutions of the problem. Also, by combining lower and upper solu-
tions method and topological degree theory, we obtain existence results.  

In Section 6, using the aforementioned method in Section 4 and 5, we show 
multiplicity results at first when the problem admits a pair of lower and strict 
lower solutions and a pair of upper and strict upper solutions, secondly when the 
problem admits two lower solutions and a strict upper solution or when the 
problem admits a strict lower solution and two upper solutions.  

In Section 7, we give an example of application and we show also, as in [8], 
that our method stays true for the periodic problem. 

In Section 8, we give a conclusion.  

2. Preliminaries 

In this section, we introduce our terminology and notations. We also recall some 
basic definitions and facts from multivalued analysis that we will need in the se-
quel. Our main sources are the books of Hu-Papageorgiou [10] and Zeidler [11]. 

The Sobolev spaces ( )1, pW Ω  and ( )pL Ω  are respectively equipped with 
the norms: 

( ) ( )( )
1

0

T p p py y t y t′= +∫  and ( )( )
1

0
d

T p p
pu u t t= ∫ . 

The space of continuous function ( )C Ω  is endowed with the norm: 

( ){ }= max :u u t t
∞

∈Ω .  

We denote:  : the weak convergence; → : the strong convergence; x : 
absolute value of x; { }max ,0s s+ = ; ( )R A : image of operator A; LSd : Le-
ray-Schauder’s degree; { }\ 0 ∗

+ +=  ; ( )*P X : the family of subsets of space 
*X . 
Let X be a reflexive Banach space and *X  the topological dual of X. A map 

( ) ( )*:A D A X P X⊆ →  is said to be monotone, if for all ( ),x y D A∈  and for 
all ( ) ( )* *,x A x y A y∈ ∈ , we have * * , 0x y x y− − ≥  by .  we denote the 
duality brackets for the pair ( )*,X X . If additionally, the fact that 

* * , 0x y x y− − =  implies that x y= , then we say that A is strictly monotone. 
The map A is said to be maximal monotone, if it is monotone and for all 

( )x D A∈ , ( )*x A x∈ , the fact that * * , 0x y x y− − ≥  implies that ( )y D A∈  
and ( )*y A y∈ . It is clear from this definition that A is maximal monotone if 
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and only if its graph ( ) ( ){ }* * *Gr , :A x x X X x A x= ∈ × ∈  is maximal with re-
spect to inclusion among the graphs of monotone maps. If A is maximal mono-
tone, for any ( )x D A∈ , the set ( )A x  is non-empty, closed and convex. 
Moreover, GrA  is demi-closed, i.e., if ( )*, Gr , 1n nx x A n∈ ≥ , either nx x→  in 
X and * *

nx x  in *X , or nx x  in X and * *
nx x→  in *X , then 

( )*, Grx x A∈ . If *:A X X→  is everywhere defined and single-valued, we say 
that A is demi-continuous, if for every sequence ( ) 1n n

x
≥

 such that nx x→  in 
X, we have that ( ) ( )nA x A x  in *X . If map ( ) *:A X D A X⊇ →  is mo-
notone and demi-continuous, then it is also maximal monotone. A map 

( ) ( )*:A X D A P X⊇ →  is said to be coercive, if ( )D A X⊆  is bounded or if 
( )D A  is unbounded and we have that  

( ){ }
( )

* *inf , :
as , .X

X
X

x x x A x
x x D A

x

∈
→ +∞ → +∞ ∈  

A maximal monotone and coercive map is surjective. Let ,Y Z  be Banach 
spaces and :L Y Z→ . We say:  

a) L is “completely continuous”, if ny y  in Y implies ( ) ( )nL y L y→  in 
Z and  

b) L is “compact”, if it is continuous and maps bounded sets into relatively 
compact sets. 

In general, these two notions are distinct. However, if Y is reflexive, then 
complete continuity implies compactness. Moreover, if Y is reflexive and L is li-
near, then the two notions are equivalent. 

3. Auxiliary Results 

Let *,p q∈  such that 1 1 1, 2p
p q
+ = ≥ . First, let us define what we mean by 

solution of problem (1).  
Definition 1. A function ( )1u C∈ Ω  such that ( )( ) ( )( )1,. 0,qu W T′Φ ∈  is 

said to be a solution of the problem (1), if it verifies (1).  
Next, we introduce the notions of upper and lower solutions of problem (1).  
Definition 2.   
a) A function ( )1Cβ ∈ Ω  such that ( )( ) ( )( )1,. 0,qW Tβ ′Φ ∈  is said to be an 

upper solution of the problem (1), if:  

( )( )( ) ( ) ( )( ) ( )( ) [ ]
( ) ( )( ) ( ) ( )( )1 2

, , a.e on 0,

0 0 , .

t f t t t t T

B T B T

β β β β

β β β β+ +

 ′ ′− Φ ≥ +Ξ Ω =


′ ′∈ − − ∈ −  
 

b) A function ( )1Cα ∈ Ω  such that ( )( ) ( )( )1,. 0,qW Tα′Φ ∈  is said to be a 
lower solution of problem (1), if:  

( )( )( ) ( ) ( )( ) ( )( ) [ ]
( ) ( )( ) ( ) ( )( )1 2

, , a.e on 0,

0 0 , .

t f t t t t T

B T B T

α α α α

α α α α+ +

 ′ ′− Φ ≤ +Ξ Ω =


′ ′∈ + − ∈ +  
 

Now, let us specify what we mean by strict lower and strict upper solutions of 
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problem (1). 
Definition 3. A lower solution α  of (1) is said to be strict if all solution u of 

(1) with ( ) ( ) [ ], 0,u t t t Tα≥ ∀ ∈  is such that ( ) ( ) [ ], 0,u t t t Tα> ∀ ∈ .  
Definition 4. An upper solution β  of (1) is said to be strict if all solution u 

of (1) with ( ) ( ) [ ], 0,u t t t Tβ≤ ∀ ∈  is such that ( ) ( ) [ ], 0,u t t t Tβ< ∀ ∈ .  
Proposition 5. Let α  be a lower solution of (1) such that:  
i) For all ] [0 0,t T∈ , there exists 0 0ε >  and 0Ω  is an open interval such 

that 0 0t ∈Ω  and: 

( )( )( ) ( ) ( ) 0, , a.e ,t f t x y x tα′− Φ ≤ +Ξ ∈Ω  

for all ( ) ( ) ( ) ( ) ( )0 0 0, , ,x y t t t tα α ε α ε α ε′ ′∈ + × − +       ; 

ii) ( ) ( )( )10 0Bα α ∗
+′ ∈ + ;  

iii) ( ) ( )( )2T B Tα α ∗
+′− ∈ + ; 

then α  is a strict lower solution of (1).  
Proof. Let u be a solution of problem (1) such that ( ) ( )t u tα ≤  for all t∈Ω . 
Let us assume that u is not strict, then there exists [ ]0,t T∈  such that 
( ) ( )t u tα = . Whence  

[ ] ( ) ( ){ }0, :A t T t u tα= ∈ = ≠ ∅  

A is closed and bounded. Let 0 mint A= . Then  

[ ]
( ) ( ) ( ) ( )0 00,

min
T

u t t t u tα α− = −    

a) If ] [0 0,t T∈ , then ( ) ( )0 0 0u t tα′ ′− =  and there exist 0Ω  and 0 0>  
according to (i). We can choose 1 0t ∈Ω  such that 1 0t t< , ( ) ( )1 1u t tα′ ′< , and  

[ ] ( ) ( )( ) ( ) ( ) ( ) ( )1 0 0 0 0, , , , , .t t t u t u t t t t tα α α α′ ′ ′∀ ∈ ∈ + × − +          

Therefore, for almost [ ]1 0,t t t∈ ,  

( )( )( ) ( ) ( )( ) ( )( ), , 0.t f t u t u t u tα ′′ ′− Φ − −Ξ ≤  

Since Φ  is an increasing homeomorphism, we have  

( )( ) ( )( )0 0 0u t tα′ ′Φ −Φ =  

and  

( )( ) ( )( )1 1u t tα′ ′Φ < Φ                       (2) 

Also we have: 

( )( ) ( )( )

( )( )( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( )( )

0

1

0

1

1 1

d

, , d 0

t

t

t

t

u t t

u s s s

f s u s u s u s s s

α

α

α

′ ′Φ −Φ

′ ′′ ′= − Φ − Φ

′′ ′= − − −Ξ − Φ ≥

∫

∫

 

which contradicts (2).  
b) We suppose that 0 0t = , then ( ) ( )0 0uα′ ′=  and it follows that: 
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( )( ) ( )( )0 0 0.u α′ ′Φ −Φ ≥                        (3) 

Since ( ) ( )( )1 0 00 0 , 0B e eα α′ ∈ + > , because of the monotonicity of 1B , if 
( ) ( )0 0uα ≥ , we have: 

( ) ( )0 0 .uα′ ′>  Then, ( )( ) ( )( )0 0uα′ ′Φ > Φ  

So ( )( ) ( )( )0 0 0u α′ ′Φ −Φ <  

which contradicts (3).  
c) We suppose that 0t T= , then ( ) ( )u T Tα′ ′= . It follows that:  

( )( ) ( )( ) 0.u T Tα′ ′Φ −Φ ≤                    (4) 

Since ( ) ( )( )2 0 0, 0T B T e eα α′− ∈ + > , because of the monotonicity of 1B , if 
( ) ( )T u Tα ≥ , we have: 

( ) ( ).T u Tα′ ′<  Then, ( )( ) ( )( )T u Tα′ ′Φ < Φ . 

So ( )( ) ( )( ) 0u T Tα′ ′Φ −Φ >  

which contradicts 4. Then, 0t  does not exist. So, A = ∅ .                  
Proposition 6. Let β  be an upper solution of (1) such that:  
i) For all ] [0 0,t T∈ , there exist 0 0ε >  and 0Ω  is an open interval such 

that 0 0t ∈Ω  and: 

( )( )( ) ( ) ( ) 0, , a.e ,t f t x y x tβ ′− Φ ≥ +Ξ ∈Ω  

for all ( ) ( ) ( ) ( ) ( )0 0 0, , ,x y t t t tβ ε β β ε β ε′ ′∈ − × − +       ; 

ii) ( ) ( )( )10 0Bβ β ∗
+′ ∈ − ;  

iii) ( ) ( )( )2T B Tβ β ∗
+′− ∈ − ;  

then β  is a strict upper solution of (1).  
Proof. Let u be a solution of problem (1) such that ( ) ( )u t tβ≤  for all t∈Ω . 
Let us assume that u is not strict, then there exists [ ]0,t T∈  such that 
( ) ( )t u tβ = . Whence  

[ ] ( ) ( ){ }0, :E t T u t tβ= ∈ = ≠ ∅  

E is closed and bounded. Let 0 mint E= . Then  

( ) ( )0 0 0u t tβ′ ′− =  

a) If ] [0 0,t T∈  there exist 0Ω  and 0 0>  according to (i). We can choose 

1 0t ∈Ω  such that 1 0t t< , ( ) ( )1 1u t tβ′ ′>  and  

[ ] ( ) ( )( ) ( ) ( ) ( ) ( )1 0 0 0 0, , , , , .t t t u t u t t t t tβ β β β′ ′ ′∀ ∈ ∈ − × − +          

Therefore, for almost [ ]1 0,t t t∈ ,  

( )( )( ) ( ) ( )( ) ( )( ), , 0.t f t u t u t u tβ ′′ ′− Φ − −Ξ ≥  

Since Φ  is an increasing homeomorphism, we have  

( )( ) ( )( )0 0 0t u tβ ′ ′Φ −Φ =  

and  
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( )( ) ( )( )1 1u t tβ′ ′Φ > Φ                        (5) 

Also we have: 

( )( ) ( )( )

( )( )( ) ( )( )( )

( )( )( ) ( ) ( )( ) ( )( )

0

1

0

1

1 1

d

, , d 0

t

t

t

t

u t t

u s s s

s f s u s u s u s s

β

β

β

′ ′Φ −Φ

′ ′′ ′= − Φ − Φ

′′ ′= − −Φ − −Ξ ≤

∫

∫

 

which contradicts (5).  
b) We suppose that 0 0t = , then ( ) ( )0 0uβ ′ ′=  and it follows that: 

( )( ) ( )( )0 0 0.u β′ ′Φ −Φ ≤                     (6) 

Since ( ) ( )( )1 0 00 0 , 0B e eβ β′ ∈ − > , because of the monotonicity of 1B , if 
( ) ( )0 0uβ ≤ , we have: 

( ) ( )0 0 .uβ ′ ′<  Then ( )( ) ( )( )0 0uβ ′ ′Φ < Φ  

So ( )( ) ( )( )0 0 0u β′ ′Φ −Φ >  

which contradicts (6).  
c) We suppose that 0t T= , then ( ) ( )u T Tβ′ ′= . It follows that:  

( )( ) ( )( ) 0.u T Tβ′ ′Φ −Φ ≥                     (7) 

Since ( ) ( )( )2 0 0, 0T B T e eβ β′− ∈ − > , because of the monotonicity of 1B , if 
( ) ( )T u Tβ ≤ , we have: 

( ) ( )T u Tβ ′ ′> . Then ( )( ) ( )( )T u Tβ ′ ′Φ > Φ . 

So ( )( ) ( )( ) 0u T Tβ′ ′Φ −Φ <  

which contradicts (7). Then, 0t  does not exist. So, E = ∅ .                
Remark 7. In general, for a given problem, there is not a methodology (single 

valued and multivalued alike) which allows generating a lower and upper solu-
tions. But, one should try simple functions such as constants, linear, quadratic, 
exponentials, eigenfunctions of simple operator, etc.  

We make the following hypotheses on the data of (1):  
( )0H : There exists a lower solution ( )1Cα ∈ Ω  and an upper solution 

( )1Cβ ∈ Ω .  
( )HΦ  :Φ →   is an increasing continuous map such that:  
a) ( )0 0Φ = ;  
b) there exists 1 0d >  such that: ( ) 1

px x d xΦ ≥  for all x∈ ;  
c) there exist 2 3, 0d d >  such that for a.e t∈Ω  and for all x∈ :  

( ) 1
2 3 .px d d x −Φ ≤ +  

Remark 8. Suppose that ( ) ( ) 2 , 2p
pz z z z p−Φ = Φ = ≥ . Then this function 

satisfies hypothesis ( )HΦ . This function corresponds to the one-dimensional 
operator p-Laplacian. Another interesting case which satisfies hypothesis ( )HΦ  
is when Φ  is defined by ( ) ( ) 2pz z z zϕ −Φ =  with :ϕ + +→   continuous, 
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( ) 0y kϕ ≥ >  for all 0y ≥  and ( ) 1py y yϕ −
  is strictly increasing on +  

and ( ) 1 1
2 3

p py y d d yϕ − −≤ + . For example, we can have 

( )
( )

( )
21

1 1

1 1 1or 1 .
1 1

p

p p

y
y y

y y
ϕ ϕ

−

− −

+ +
= = +

+ +
 

It is well-known that under the monotonicity condition and the hypotheses (a) 
and (b), Φ  is an increasing homeomorphism from   onto  . And 1−Φ  is 
strictly monotone and ( )1 y−Φ → +∞  as y → +∞  (See Deimling [12] chap. 
3). Our operator Φ  is a slightly more restrictive version of the scalar case of 
the operator used by Sophia Kirytsi-N. Matzakos [13] and Manasevich-Mawhin 
[14] where growth condition ( ) 1

2 3
px d d x −Φ ≤ +  is not assumed. Neverthe-

less, it incorporates the operator p-laplacian and many other classes of operators.  
( )fH  :f Ω× × →    is a fonction such that:  
i) for all ,x y∈ , ( ), ,t f t x y  is measurable;  
ii) for a.e t∈Ω , ( ) ( ), , ,x y f t x y  is continuous;  
iii) for a.e t∈Ω , ( ) ( ),x t tα β∈     and all y∈ , we have: 

( ) ( )( ) ( )( ), ,f t x y y t c yη ψ< Φ +  

where ( )1 , 0L cψ
+

∈ Ω >  and { }: \ 0η + +→   a Borel measurable 
non-decreasing functions such that:  

( ) ( ) ( )

( ) ( ) { }{ }

1

d max min

sup : max ,

s c
s

T z z

ζ
ψ β α

η

α β
η ζ

+∞

Φ ΩΩ

∞ ∞

> + −

+ Ξ ≤

∫
 

with 
( ) ( ) ( ) ( ){ }max 0 , 0T T

T

α β α β
ζ

− −
= ;  

iv) for every 0r > , there exists ( )q
r Lγ ∈ Ω  such that for a.e t∈Ω  and for 

all ,x y∈  with ,x y r≤  we have: ( ) ( ), , rf t x y tγ≤ . 
Remark 9. Hypothesis ( )fH  (iii) is known as a Bernstein-Nagumo-Wintner 

growth condition and produces a uniform a priori bound of the derivatives of 
the solutions of problem (1). And the hypotheses ( )fH  (i), (ii) and (iv) are well 
known as pL -Carathéodory conditions. 

( )BH : 1B  and 2B : ( )P→   are maximal monotone maps such that 
( ) ( )1 20 0 0B B∈  .  

Remark 10. There exist functions { }1 2, :E E → +∞   proper, convex 
and lower semi-continuous which are not identically equal to +∞  such that 

1 1 2 2,B E B E= ∂ = ∂ . More exactly, there exists some increasing positives functions 

1p  and 2p  such that ( ) ( )( )Proj 0;i ip s B s=  (the minimum absolute value ele-
ment in the closed, convex set ( )iB s ). Then ( ) ( )

0
d

s
i iE s p t t= ∫ , 1,2i = . We 

have ( ) ( ) ( );i i iB s p s p s= − +    for all s∈ , where  

( ) ( )0
limi ip s p s

ε
ε+→

− = −  and ( ) ( )0
limi ip s p s

ε
ε+→

+ = + , 1,2i = .  

( )HΞ : :Ξ →   is a function that maps bounded sets to bounded sets and 
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there exists 0M >  such that ( )x x Mx→Ξ +  is increasing.  
Remark 11. We emphasize that Ξ  need not be continuous.  
Lemma 1. If ( )1u C∈ Ω  and hypotheses ( )HΦ  and ( )fH  (iii) hold,  

( )( )( ) ( ) ( )( ) ( )( ) [ ], , a.e on 0,u t f t u t u t u t T′′ ′− Φ = +Ξ Ω =  

and if  

( ) ( ) ( )t u t tα β≤ ≤  for all t∈Ω  

then, there exists 1 0M >  (depending only on , , , , ,cα β η ψ Ξ ) such that: 
( ) 1u t M′ ≤  for all t∈Ω .  

Proof. Set 
( ) ( ) { }{ }1 sup : max ,z zµ α β

η ζ ∞ ∞

 
= Ξ ≤  
 

 (See hypothesis 

HΞ ). By hypothesis ( )fH  (iii), we can find 1M ζ>  such that  

( )
( )

( ) ( )1

1

d max min .
M s c T

sζ
ψ β α µ

η
Φ

Φ ΩΩ
> + − +∫  

We claim that ( ) 1u t M′ ≤  for all t∈Ω . Let’s suppose that it is not the case. 
Then, we can find 1t ∈Ω  such that 

( )1 1.u t M′ >  

By the mean value theorem, there exists ( )2 0,t T∈  such that  
( ) ( ) ( )20u T u u t T′− = . Without any loss of generality, we assume that 2 1t t≤ . 

We obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2
1 10 max 0 , 0u t u T u T T
T T

α β β α′ = − ≤ − −  ( )2 1u t Mζ′⇒ ≤ < .  

Since ( )1u C∈ Ω , by the intermediate value theorem, there exists 3t  and 
[ )4 2 1,t t t∈  with 3 4t t<  such that ( )3u t ζ′ =  and ( )4 1u t M′ = . We have: 

( )( )( ) ( ) ( )( ) ( )( ) [ ]

( )( ) ( )( )( ) ( ) ( )( ) ( )( )

( )( )( ) ( ) ( )( ) ( )( )

, , a.e on 0,

, ,

a.e on .

u t f t u t u t u t T

u t u t f t u t u t u t

u t t c u t u tη ψ

′′ ′− Φ = +Ξ Ω =

′′′ ′ ′⇒ Φ ≤ Φ ≤ + Ξ

′ ′≤ Φ + + Ξ Ω

 

Thus:  

( )( )
( )( )( ) ( ) ( )

( )( )
( )( )( ) [ ]3 4a.e on ,

u t u t
t c u t t t

u t u t
ψ

η η

′′Φ Ξ
′≤ + +

′ ′Φ Φ
 

and then  

( )( )
( )( )( ) ( )4

3 1d max min .
t

t

u t
t c T

u t
ψ β α µ

η ΩΩ

′′Φ
≤ + − +

′Φ
∫  

Setting ( )( )s u t′= Φ , we have: 

( )
( )

( ) ( )1

1

d max min
M s c T

sζ
ψ β α µ

η
Φ

Φ ΩΩ
≤ + − +∫  

https://doi.org/10.4236/jamp.2019.76091


D. A. Behi, A. Adje 
 

 

DOI: 10.4236/jamp.2019.76091 1349 Journal of Applied Mathematics and Physics 
 

which contradicts the choice of 1 0M > .                                
Now, we introduce the truncation map: 2:Ω× × →    defined by 

( )

( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0 0

0 0

0

, if

, if
, , , if ,

, if ,
, if ,

t t x t

t t x t
t x y x M t x t y M

x M t x t y M
x y t x t y M

α α α

β β β
ρ α β

α β
α β

 ′ <


′ >
=  ≤ ≤ >
 − ≤ ≤ < −
 ≤ ≤ ≤

      (8) 

where { }0 1max , ,M M α β
∞ ∞
′ ′>  and the penalty function :Λ Ω× →   

defined by:     

( )
( )( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )

if

, 0 if
if

p p

p p

t x x t

t x t x t
t x x t

α α

α β
β β

Φ −Φ <
Λ = ≤ ≤
Φ −Φ >

         (9) 

We set ( ) ( )( )1 , , , , ,f t x y f t t x y=  . Note that for ae ( ) ( ),x t tα β∈     and all 

0y M< , we have ( ) ( )1 , , , ,f t x y f t x y= . Moreover, for almost all t∈Ω  and 
all ,x y∈ , we have: ( ) ( )1 , , rf t x y tγ≤  with { }0max , ,r M α β

∞ ∞
= . For 

every ( )( )1, 0,pu W T∈ , set  

( )( ) ( ) ( )( )1 1. ., . , .N u f u u′=  

and 

( )( ) ( )( )ˆ . ., .u uΛ = Λ  

the Nemitsky operators corresponding to 1f  and Λ  respectively. We set 
( ) ( ) ( )1

ˆG u N u u= + Λ  for every ( )( )1, 0,pu W T∈ . 
Proposition 12. If hypothesis ( )H f  (ii) holds, then:  

( )( ) ( )1,: 0,p qG W T L→ Ω  is continuous.  
Proof. Since 1N  and Λ̂  are Nemitsky operators, it is standard to show that 

they are continuous. It follows that G is continuous.                       
We introduce the set  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ){ }1 1,
1 2: 0, , 0 0 andqD u C u W T u B u u T B u T′ ′ ′= ∈ Ω Φ ∈ ∈ − ∈  

and then we define the non-linear operator: ( ) ( ): p qD L Lϑ ⊆ Ω → Ω  by  

( )( ) ( )( )( ). . for all .u u u Dϑ ′′= − Φ ∈  

Proposition 13. If the hypotheses ( )BH  and ( )HΦ  hold, then ϑ  is maximal 
monotone.  

Proof. Given ( )qh L∈ Ω , we consider the following nonlinear boundary value 
problem: 

( )( )( ) ( )( ) ( ) [ ]
( ) ( )( ) ( ) ( )( )1 2

a.e on 0,

0 0 , .

pu t u t h t T

u B u u T B u T

 ′′− Φ +Φ = Ω =

 ′ ′∈ − ∈

      (10) 

We show that problem (10) has a unique solution ( )1u C∈ Ω . To this end, 
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given ,v w∈ , we consider the following two-point boundary value problem:  

( )( )( ) ( )( ) ( ) [ ]
( ) ( )

a.e on 0,

0 ,
pu t u t h t T

u v u T w

 ′′− Φ +Φ = Ω =

 = =

      (11) 

We set ( ) 1 t tt v w
T T

γ  = − + 
 

. Then ( )0 vγ =  and ( )T wγ = . We consider 

the function y defined by ( ) ( ) ( )y t u t tγ= −  and rewrite (11) in the terms of 
this function.  

( ) ( )( )( ) ( ) ( )( ) ( ) [ ]
( ) ( )

a.e on 0,

0 0.
py t t y t t h t T

y y T

γ γ ′′ ′− Φ + +Φ + = Ω =

 = =

 (12) 

This is a homogeneous Dirichlet problem for (11). To solve (12), let 1V  be 
the non-linear operator defined by: ( ) ( )1, 1,

1 0: p qV W W −Ω → Ω   

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )
1 0 0

1,
00

, d

d , ,

T

T p
p

V y z y t t z t t

y t t z t t y z W

γ

γ

′ ′ ′= Φ +

+ Φ + ∀ ∈ Ω

∫

∫
 

where 
0

 denote the duality brackets for the pair ( ) ( )( )1, 1,
0,q pW W− Ω Ω . 

Let us show that 1V  is strictly monotone. 
Let ( )1,

0, py z W∈ Ω . We have  

( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 0

1 10 0

0 0

0 0

,

, ,

d d

d d .

T T
p

T T
p

V y V z y z

V y y z V z y z

y t t y t z t t y t t y t z t t

z t t y t z t t z t t y t z t t

γ γ

γ γ

− −

= − − −

′ ′ ′ ′= Φ + − + Φ + −

′ ′ ′ ′− Φ + − − Φ + −

∫ ∫

∫ ∫

 

Then  

( ) ( )

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( )

1 1 0

0

0

,

d

d .

T

T
p p

V y V z y z

y t t z t t y t t z t t t

y t t z t t y t t z t t t

γ γ γ γ

γ γ γ γ

− −

′ ′ ′ ′ ′ ′ ′ ′= Φ + −Φ + + − +

+ Φ + −Φ + + − +

∫

∫

 

We know that Φ  is monotone. Moreover, it is easy to show that pΦ  is strictly 
monotone. Whence  

( ) ( )1 1 0
, 0.V y V z y z− − >  

Therefore, 1V  is strictly monotone.  
• Let us show that 1V  is demicontinuous. 

Using the extended dominated convergence theorem (see for example 
Hu-Papageorgiou 10, Theorem A.2.54, p. 907), it follows easily that 1V  is 
demicontinuous. 

Recall that an operator monotone and demicontinuous is maximal monotone. 
So 1V  is maximal monotone.  

Let us show that 1V  is coercive. 
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For ( )1,
0

py W∈ Ω  we have:  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

1 0 0 0

0 0

0 0

0 0

0 0

, d d

d d

d d

d d

d d .

T T
p

T T

T T
p p

T T

T T
p p

V y y y t t y t t y t t y t t

y t t y t t t y t t t t

y t t y t t t y t t t t

y t t y t t t y t t t t

y t t y t t t y t t t t

γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

′ ′ ′= Φ + + Φ +

′ ′ ′ ′ ′ ′ ′= Φ + + − Φ +

+ Φ + + − Φ +

′ ′ ′ ′ ′ ′ ′≥ Φ + + − Φ +

+ Φ + + − Φ +

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

Hence, using the hypotheses (b) and (c) on Φ , we obtain: 

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( )

1 10 0

1 1

1 2 30

, d

d

p pT

p pT

V y y y t t d y t t t

c d y t t d y t t t

γ γ

γ γ
− −

′ ′≥ + + +

′ ′− + + + +

∫

∫
 

with 1 max ,
v w

c v w
T

 −  = + 
  

. 

whence:  

( ) 1
1 1 2 30

, p pV y y y yη γ η γ η−≥ + − + − , for some 1 2 3, , 0η η η > . 

Therefore, 1V  is coercive. 
Recall that an operator maximal monotone which is coercive is surjective. 
Moreover, since 1V  is strictly monotone, we infer that there exists a unique 

( )( )1,
0 0,py W T∈  such that ( )1V y h= . It follows easily that ( )1y C∈ Ω  and it 

solves the problem (12). Then ( )1u y Cγ= + ∈ Ω  and it is the solution of the 
problem (11). We can define the solution map ( )1: Cσ × → Ω   which to 
each pair ( ),v w  assigns the unique solution of the problem (11). Let 

:∆ × → ×     be defined by:  

( ) ( ) ( )( ) ( ) ( )( ), , 0 , , .v w v w v w Tσ σ ′ ′∆ = −Φ Φ 
 

 

We claim that ∆  is monotone. 
Indeed, for ( ) ( ) 2

1 1 2 2, , ,v w v w ∈ , we have: 

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )( ) ( ) ( )( )
( )( ) ( )( )( ) ( ) ( )( )

1 1 2 2 1 1 2 2 2

1 2 1 2

1 2 1 2 2

2 1 1 2

1 2 1 2

, , , , ,

0 0 , ,

0 0 ,

0 0 0 0

v w v w v w v w

u u u T u T

u u u T u T

u u u u

u T u T u T u T

∆ −∆ −

′ ′ ′ ′= − Φ −Φ Φ −Φ

− −

′ ′= Φ −Φ −

′ ′+ Φ −Φ −

 

( )( )( ) ( )( )( ) ( ) ( )( )
( )( ) ( )( )( ) ( ) ( )( )

1 2 1 20

1 2 1 20

d

d

T

T

u t u t u t u t t

u t u t u t u t t

′ ′′ ′= Φ − Φ −

′ ′ ′ ′+ Φ −Φ −

∫

∫
 

where 2  is the scalar product in 2 . 
From (11), we have ( )( )( ) ( )( )( ) ( )( ) ( )( )1 2 1 2p pu t u t u t u t′ ′′ ′Φ − Φ = Φ −Φ . Be-

cause of monotonicity of the operators Φ  and pΦ , we have the monotonicity of 
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∆ . 
We claim that ∆  is continuous. 
Indeed, let ( ) 1n n

b
≥

 and ( ) 1n n
e

≥
 be real sequences converging respectively to 

b and e. 
Let us set that 

( ) ( ) ( )

( )

, , , , 1 ,

1 and , for all 1.

n n n n n n

n n n

t tu b e u b e t b e
T T

t tt b e y u n
T T

σ σ γ

γ γ

 = = = − + 
 

 = − + = − ≥ 
 

 

Now, we consider the following sequence of problems: 

( ) ( )( )( ) ( ) ( )( ) ( ) [ ]
( ) ( )

a.e on 0,

0 0.
n n p n n

n n

y t t y t t h t T

y y T

γ γ ′′ ′− Φ + +Φ + = Ω =

 = =

 (13) 

We claim that { } ( )1,
1

p
n n n n

u y Wγ
≥

= + ⊆ Ω  is bounded. 
Let us multiply (13) by ny  and integrate on Ω , we obtain: 

( ) ( )( )( ) ( ) ( ) ( )( )( ) ( )

( ) ( )
0 0

0

d d

d .

T T
n n n p n n n

T
n

y t t y t t y t t y t t

h t y t t

γ γ′′ ′− Φ + + Φ +

=

∫ ∫

∫
 

By using green’s formula, we obtain: 

( ) ( )( )( ) ( ) ( ) ( )( )( ) ( )

( ) ( )
0 0

0

d d

d

T T
n n n p n n n

T
n

y t t y t t y t t y t t

h t y t t

γ γ′′ ′ ′Φ + + Φ +

=

∫ ∫

∫
 

( ) ( )( )( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

( ) ( )

0

0

0

0

0

d

d

d

d

d

T
n n n n

T
p n n n n

T
n n n

T
p n n n

T
n

y t t y t t t

y t t y t t t

y t t t t

y t t t t

h t y t t

γ γ

γ γ

γ γ

γ γ

′ ′ ′ ′Φ + +

+ Φ + +

′ ′ ′− Φ +

− Φ +

=

∫

∫

∫

∫

∫

 

( ) ( )( )( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

0

0

0

0

d

d

d

d

T
n n n n

T
p n n n n

T
n n n

T
p n n n

y t t y t t t

y t t y t t t

y t t t t

y t t t t

γ γ

γ γ

γ γ

γ γ

′′ ′ ′ ′≥ Φ + +

+ Φ + +

′′ ′ ′− Φ +

− Φ +

∫

∫

∫

∫

 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )( )

10

1 1

2 2 30

d

d

p pT
n n n n

p pT
n n n n

y t t d y t t t

c d y t t d y t t t

γ γ

γ γ
− −

′ ′≥ + + +

′ ′− + + + +

∫

∫
 

with 2 1
max , n n

n nn

v w
c v w

T≥

 − = + 
  

. 
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whence: 

( ) ( ) 1
1 2 30

d
T P p

n n n n nh t y t t y yη γ η γ η−′ ′ ′≥ + − + −∫  for some 1 2 3, , 0η η η′ ′ ′ > . 

Furthermore, using the Cauchy-Schwartz inequality and then the triangular 
inequality, we obtain the following inequalities: 

( ) ( ) ( )
( )

0
d

.

T
n n n n nq qp p p

n n nq p

h t y t t h y h y

h y

γ γ

γ γ

≤ ≤ + +

≤ + +

∫
 

Then: 
1

1 3.p p
n n n n n n nq q py y h y hη γ η γ γ γ η−′ ′ ′+ ≤ + + + + +  

So 
1

4 5 6 7
p p

n n n n n n py y yη γ η γ η γ η−+ ≤ + + + +  for some 4 5 6 7, , , 0η η η η > . 

Therefore, the sequence { } ( )1,
1

p
n n n n

u y Wγ
≥

= + ⊆ Ω  is bounded. It follows 

immediately that the sequences ( ){ } ( )
1

q
p n n

u L
≥

Φ ⊆ Ω  is bounded. So directly 

from the problem (11), we get that the sequence ( )( ){ } ( )
1

q
n

n
u L

≥

′′Φ ⊆ Ω  is 

bounded. By integration, we obtain ( ){ } ( )
1

q
n n

u L
≥

′Φ ⊆ Ω . So the sequence 

( ){ } ( )( )1,
1

0,q
n n

u W T
≥

′Φ ⊆  is bounded. Then we have respectively  

( ) ( ) ( ) ( ) ( )( )1, 1,in , in 0, and in 0,p q q
n p n nu u W u v L T u w W T′Ω Φ Φ    

Due to the compact embedding of ( )( )1, 0,pW T  in ( )C Ω , we have: 

( ) ( ) ( )in and in .n nu u C u w C′→ Ω Φ → Ω  

Since Φ  is an increasing homeomorphism, 1−Φ  exists and is continuous. 
So, we have: ( )1

nu w−′ → Φ  in ( )C Ω . Whence ( )1u w−′ = Φ  (i.e. ( )u w′Φ = ). 
Therefore passing to the limit as n → +∞ , we have: 

( )( )( ) ( )( ) ( ) [ ]
( ) ( )

a.e on 0,

0 ,
pu t u t h t T

u b u T e

 ′′− Φ +Φ = Ω =

 = =

 

( ),u a eσ⇒ =  (i.e. ( )1: Cσ × → Ω   is continuous). So, ∆  is continuous. 
We claim that ∆  is coercive. 
For ( ) 2,v w ∈ , we have: 

( ) ( )
( )

( )( ) ( ) ( )( ) ( )
( )

( )( )( ) ( ) ( )( ) ( )
( )

2 2

2

2

0 0

, , , 0 0
, ,

d d

,

T T

v w v w u T u T u u
v w v w

u t u t t u t u t t

v w

′ ′∆ Φ −Φ
=

′′ ′ ′Φ + Φ
= ∫ ∫

 



 

( )( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( ) ( ) ( )( ) ( )
( )

2

2

0 0

0 0 0

d d

,

d d d

,

T T

T T T
p

u t u t t u t u t t

v w

u t u t t h t u t t u t u t t

v w

′ ′ ′Φ + Φ

′ ′Φ − + Φ
=

∫ ∫

∫ ∫ ∫
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( ) ( )( ) ( )( ) ( )( )
( )

( )
( )

2

2

1 1

10 0 0

4

d

,

.
,

T T Tp p q pq p

p p
p p q p

u t d u t t h t u t

v w

d u u h u

v w

′+ −
≥

′+ −
≥

∫ ∫ ∫




 

Then  

( ) ( )
( )

( )
( )

{ }
2 2

42
4 1

, , ,
with min 1,

, ,

p p
p p q pd u u h uv w v w

d d
v w v w

′+ −∆
≥ =

 

 

where 2  denote the euclidean norm in 2 . 
Since ( )1, pu W∈ Ω , by mean value theorem, there exists ( )0 0,t T∈  such 

that ( ) ( )0 0
d

T
u t T u t t= ∫ . 

As ( ) ( ) ( )
0

0 d
t

t
u t u t u s s′− = ∫ , we have: 

( ) ( ) ( )
1

1 1

0 10

1d
qT q q

P P p

Tu t u t u s s u T u u T u
T T

′ ′ ′≤ + ≤ + ≤ +∫   

for all t∈Ω . In particular, we have: 

( ) ( ) ( )

( )

2

1
1

2 2

1
1

, 0 2

2 max , .

q
q

p P

q
q

P P

Tv w u u T u T u
T

T T u u
T

 
 ′= + ≤ + 
 
 

 
  ′≤ + 
 
 



 

Hence  

( ) ( )
( )

( )
( )2

1
1

42
, , ,

with 2 max , .
,

p p
q

p p q p q

p p

d u u h uv w v w T T
Tv w u u

ς
ς

 ′+ −∆  ≥ =  
′+  

 

 

Therefore ∆  is coercive. 
We infer that ∆  is maximal monotone (being continuous, monotone) and coer-

cive. Thus ∆  is surjective. Now, we consider ( ):B Pθ = ∆ + × → ×     
with operator B defined by ( ) ( ) ( )( )1 2, ,B b e B b B e= Φ Φ   for all 
( ),b e ∈ ×  . Since ∆  is coercive and B is maximal monotone, we deduce 
that θ  is coercive. Also, θ  is maximal monotone (see Brezis [15] Corollary 2.7, 
p. 36 or Zeidler [14] Theorem 32.I, p. 897). So θ  is surjective. We infer that we 
can find ( ),b e ∈ ×   such that ( ) ( )0,0 ,b eθ∈ . Since ( ) ( )0,0 ,b eθ∈ , we can 
find ,t s∈  such that ( )1t B b∈Φ   and ( )2s B e∈Φ   and 

( )( )0 0u t′= −Φ +  and ( )( )0 u T s′= Φ + . So ( )( ) ( )10u B bΦ ∈Φ   and 
( )( ) ( )2u T B e−Φ ∈Φ  . It follows that ( ) ( )( ) ( ) ( )( )1 20 , ,u u T B b B e′ ′− ∈ . 

Therefore ( )0 = ,x b eσ  is the solution of the problem (10). 
Let ( ) ( ): p qH L LΩ → Ω  be the operator defined by:  
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( )( ) ( )( ). . .pH u u= Φ  

Since pΦ  is continuous and monotone, then H is continuous and monotone. 
Therefore H is maximal monotone. Moreover it is evident to see that H is strictly 
monotone. 

Since in (10) the choice of h is arbitrary, then by the previous arguments, we 
have: 

( ) ( ) ( )ie is surjective .qR H L Hϑ ϑ+ = Ω +         (14) 

We denote by .,. p
 the duality brackets between the pair ( ) ( )( ),p qL LΩ Ω . 

Let us show that Hϑ +  surjective implies ϑ  is maximal monotone 
For this purpose, we suppose that, for some ( )py L∈ Ω  and some ( )qv L∈ Ω :  

( ) , 0 for all .
p

u v u y u Dϑ − − ≥ ∈               (15) 

Because of (14), we can find 1u D∈  such that:  

( ) ( ) ( )1 1 .u H u v H yϑ + = +  

We use this in (16) with 1u u= , we obtain:  

( ) ( ) ( ) ( )1 1 1 1, 0
p

u u H u H y u yϑ ϑ− − + − ≥  

( ) ( )1 1, 0
p

H y H u u y⇒ − − ≥                 (16) 

Because H is strictly monotone, from (16), we conclude that 1y u D= ∈  and 
( )1v uϑ= . So ϑ  is maximal monotone. In addition, since ϑ  is monotone, we 

have ( ) ( ) ( )
2

, , p

p
u H u u H u u uϑ + ≥ = . Whence the operator  

( ) ( ): p qH D L Lϑ + ⊆ Ω → Ω  is maximal monotone, strictly monotone and 
coercive. Therefore ( ) ( ) ( )( )1 1,: 0,q pH L D W Tϑ −Ψ = + Ω → ⊆  is well defined, 
single valued, and maximal monotone (From ( )qL Ω  into ( )pL Ω ).         

Proposition 14. If hypothesis ( )BH  holds, then  
( ) ( )( )1,: 0,q pL L D W TΩ → ⊆  is completly continuous.  

Proof. Suppose that nv v  in ( )qL Ω . We have to show that ( ) ( )nL v L v→  
in ( )1, pW Ω . let us set ( )n nu L v=  for all 1n ≥ . We have  

( ) ( )and .n n n nu D u H u vϑ∈ + =  

( ) ( ), , , .n n n n n n pp p
u u H u u v uϑ⇒ + =             (17) 

By integration by part, we obtain: 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )
0

0

0 0 d

d , .

′ ′ ′ ′−Φ +Φ + Φ

+ Φ =

∫

∫

T
n n n n n n

T
p n n n n p

u T u T u u u t u t t

u t u t t v u
    (18) 

Since nu D∈ , we have ( ) ( )( )10 0n nu B u′ ∈  and ( ) ( )( )1n nu T B u T′− ∈  for all 
1n ≥ . We recall that ( ) ( )0,0 , 1,2iGr B i∈ = , then:  

( ) ( ) ( ) ( )0 0 0 and 0.n n n nu u u T u T′ ′≥ ≤               (19) 

Moreover, the map Φ  being monotone, we have: 

( )( ) ( ) ( )( ) ( )0 0 0 and 0.n n n nu u u T u T′ ′ ′Φ ≥ Φ ≥          (20) 
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From (19) and (20), we obtain: 

( )( ) ( ) ( )( ) ( )0 0 0 and 0.n n n nu u u T u T′ ′Φ ≥ Φ ≤          (21) 

From (21) and (18), we infer that: 

( )( ) ( ) ( )( ) ( )
0 0

, d .
T T

n n n n p n npv u u t u t t u t u t′ ′≥ Φ + Φ∫ ∫         (22) 

By hypothesis b) on Φ , we have: 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )10 0 0
d d .′ ′ ′Φ + Φ ≥ +∫ ∫ ∫

T T T p p
n n p n n n nu t u t t u t u t u t d u t t  (23) 

It follows from (22) and (23) that: 

( ) ( )( )10
, d .

T p p
n n n npv u u t d u t t′≥ +∫  

whence:  
1

7
p

nu η− ≤  for some 7 0η > . 

Therefore the sequence { } ( )( )1,
1

0,p
n n

u W T
≥
⊆  is bounded. Then we can find a 

convergente subsequence of { } 1n n
u

≥
. So nu u  in ( )( )1, 0,pW T . Due to the 

compact embedding of ( )( )1, 0,pW T  in ( )C Ω , we have nu u→  in ( )C Ω . 
Since { } ( )( )1,

1
0,p

n n
u W T

≥
⊆  is bounded, we have { } ( )1

p
n n

u L
≥

′ ⊆ Ω  and  
{ } ( )1

p
n n

u L
≥
⊆ Ω  are bounded. It follows immediatly that: ( ){ } ( )

1
q

p n n
u L

≥
Φ ⊆ Ω  

is bounded. Then ( ) ( )n n nu H u vϑ + =  imply that ( )( ){ } ( )
1

q
n

n
u L

≥

′′Φ ⊆ Ω  is 

bounded. Whence, by integration, ( ){ } ( )( )1,
1

0,q
n n

u W T
≥

′Φ ⊆  is bounded. So  

we can suppose that ( )nu h′Φ   in ( )( )1, 0,qW T . Due to the compact embed-
ding of ( )1, 0,qW T  in ( )C Ω , we obtain ( )nu h′Φ →  in ( )C Ω . Since Φ  is 
an increasing homeomorphism, 1−Φ  exists and is continuous. So, we have 

( )( )( ) ( )( )1 1
nu t h t− −′Φ Φ →Φ  for all t∈Ω . Then ( ) ( )( )1

nu t h t−′ → Φ  for all 
t∈Ω . It follows that ( ) ( )( )1. .nu h−′ → Φ  in ( )PL Ω  (By Lebesgue dominated 
convergence theorem). We infer that: ( )( )1 .u h−′ = Φ . It follows ( )h u′= Φ   

( ) ( ) ( )
( )
in

in .
n

p
n

u u C

u u L

′ ′Φ →Φ Ω

′ ′⇒ → Ω
 

But recall that nu u→  in ( )pL Ω . Thus nu u→  in ( )( )1, 0,pW T . This prove 
that the operator L is completly continuous.                              

Proposition 15. If the conditions in lemma 1 hold, then a function 
( )1u C∈ Ω  is solution of (1) if and only if u D∈  and u is a fixed point of 
( ) ( )1 1:K C D CΩ → ⊆ Ω  defined by: 

( ) ( )K u L Q u=   with the operator Q defined by:  

( ) ( ) ( ) ( )ˆQ u N u u H u= +Ξ + . 

Moreover, for all ( )1u C∈ Ω , ( )( ) 0K u M
∞

′ <  and K is continuous and 

completly continuous. 
Proof. If u is a solution of (1), then ( )( ) ( )qu L′′Φ ∈ Ω  because of hypothesis 
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( )fH  (iii). It follows that ( ) ( )qu L′Φ ∈ Ω . So, ( ) ( )1,qu W′Φ ∈ Ω . We have also 
( ) ( )( )10 0u B u′ ∈  and ( ) ( )( )2u T B u T′− ∈ . Hence, u D∈ . 
Furthermore, we have: 

( )( )( ) ( ) ( )( ) ( )( ) [ ]
( )( ) ( )( ) ( )( ) [ ]
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) [ ]
( ) ( )( ) ( )( )

, , a.e on 0,

ˆ a.e on 0,
ˆ a.e on 0,

ϑ

ϑ

′′ ′− Φ = +Ξ

⇔ = +Ξ

⇔ + = +Ξ +

⇔ = =

u t f t u t u t u t T

u t N u t u t T

u t H u t N u t u t H u t T

u t L Q u t K u t

 

Therefore, u is a fixed point of K. 
On the other hand, if u D∈  and u is a fixed point of K, then we have 

( )1u C∈ Ω , ( ) ( )( )10 0u B u′ ∈ , ( ) ( )( )2u T B u T′− ∈  and ( )( ) ( )K u t u t=  a.e 
on [ ]0,T  ( )( )( ) ( ) ( )( ) ( )( ), ,u t f t u t u t u t′′ ′⇔ − Φ = +Ξ  a.e on [ ]0,T . Hence, 
u is solution of (1). 

Finally, by lemma 1, we have: ( )1u C∀ ∈ Ω , ( )( ) 1 0K u M M
∞

′ ≤ < . 

• Let us show that K is continuous. 
Let nu u→  in ( )1C Ω . Then, there exists 0R >  such that ( )1n C

u B R∈  
and ( )1C

u B R∈ . 
We will show that ( ) ( )nK u K u→  in ( )1C Ω . That’s mean ( ) ( )nK u K u→  

in ( )C Ω  and ( )( ) ( )( )nK u K u′ ′→  in ( )C Ω . For 1n ≥ , we have:  

( )( )( ) ( ) ( )( ) ( )( ) [ ]

( ) ( )( ) ( ) ( )( ) ( )( )( ) [ ]

( ) ( )( ) ( ) [ ]

1
0

, , a.e 0,

0 , , d a.e 0,

a.e 0,

−

′′ ′− Φ = +Ξ ∈

′ ′ ′⇔ = Φ Φ − +Ξ ∈

′′⇔ = ∈

∫

n n n n

t
n n n n n

n n

u t f t u t u t u t t T

u t u f s u s u s u s s t T

u t K u t t T

 

Since Φ  and N are continuous respectively in ( )ΩqL  and ( )ΩC , we have: 

( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )

lim . ., . , . in and

lim 0 0 in .
→+∞

→+∞

′= Ω

′ ′Φ = Φ Ω

q
nn

nn

N u f u u L

u u C
 

Also from the monotone convergence theorem, we have:  

( ) ( ) ( )in .Ξ + → Ξ + Ωq
n nu Mu u Mu L  

Since →nMu Mu  in ( )ΩC , it follows that ( ) ( )Ξ → Ξnu u  in ( )ΩqL . Using 
the previous arguments and the dominated convergence theorem, we have:  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
0 0

lim , , d , , d .
→+∞

′ ′+ Ξ = +Ξ∫ ∫
t t

n n nn
f t u s u t u t t f t u s u t u t t  

It follows that 

( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

0

0

lim 0 , , d

0 , , d .

→+∞
′ ′Φ − +Ξ

′ ′= Φ − +Ξ

∫

∫

t
n n n nn

t

u f t u s u t u t t

u f t u s u t u t t
 

Since Φ  is an increasing homeomorphism, 1−Φ  exists and is continuous. Fi-
nally, we have: 
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( )( ) ( ) ( )( ) ( )( )( )
( )( ) ( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )

1
0

1
0

lim 0 , , d

0 , , d

lim .

−

→+∞

−

→+∞

′ ′Φ Φ − +Ξ

′ ′= Φ Φ − +Ξ

′ ′⇔ = ∈ Ω

∫

∫





t
n n n nn

t

nn

u f t u s u t u t t

u f t u s u t u t t

K u K u C

 

By integration, we obtain: ( ) ( )lim →+∞ =n nK u K u  in ( )ΩC . Therefore, K is 
continuous. 
• Let us show that K is completely continuous. 

Let Π  be a bounded set of ( )1 ΩC . We set ( ){ }:∆ = ∈ΠK u u . Since Π  
is bounded, there exist 0>R  such that: 

( ) 0∞
< +K u R M T  

It follows that:  

( ) ( )1 0 1< + +
C

K u R M T  

Therefore, there exist 1 0>R  such that ( ) ( )1 1∈
C

K u B R . 
For ∈∆u  and 1 2, ∈Ωs s .  

( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )( )1

2

1 2

2 1
ˆ ˆd γ

′ ′Φ −Φ

= +Ξ ≤ − + Ξ∫
s

f r qs q

K u s K u s

N u t u t t s s u
 

We infer that for all 0> , there exists 0δ >  such that  

( )( ) ( ) ( )( ) ( )1 2 1 2δ ′ ′− < ⇒ Φ −Φ < s s K u s K u s  

It suffices to take 
( )

2

ˆ
δ

γ

 
 =  + Ξ 
 



r q q
u

. Therefore, Φ  being an increasing 

homeomorphism, for all 0> , it exists 0δ > , such that for all ∈Πu , 

1 2, ∈Ωs s , if 1 2 δ− <s s , then  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1
1 2 1 2 .− −′ ′ ′ ′− = Φ Φ −Φ Φ <  Ku s Ku s Ku s Ku s  

∆  is uniformly equicontinuous and ( )ΠK  is bounded on ( )1 ΩC . By Asco-
li-Arzela’s theorem, ( )ΠK  is relatively compact in ( )1 ΩC . Since K is conti-
nuous and ( )ΠK  is relatively compact in ( )1 ΩC  for every bounded subset 
Π  of ( )1 ΩC , K is completely continuous.                              

4. Existence Results with Ordered Pair of Lower and Upper  
Solutions 

We consider the operator ( ) ( )1 1:τ Ω → ΩC C  defined by: 

( )( ) ( ) ( ) ( ){ }{ }
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

if
max , min , if

if

α α
τ α β α β

β β

<
= = ≤ ≤
 >

t u t t
u t t u t t u t t u t t

t u t t
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Evidently, τ  is bounded (i.e., maps bounded sets to bounded ones) and is con-
tinuous.  

Theorem 16. Suppose that there exists a lower solution α  and an upper so-
lution β  such that [ ]0,∀ ∈t T , ( ) ( )α β≤t t . 

Then the problem (1) admits at least one solution u, such that: 

( ) ( ) ( ) [ ], 0, .α β≤ ≤ ∀ ∈t u t t t T  

Moreover, if ,α β  are strict, then  

( ) ( ) ( ) [ ] 1 ,, 0, and , ,0 1.α βα β  ≤ ≤ ∀ ∈ − Π = LS C
t u t t t T d Id K  

where ( ) [ ] ( ) ( ) ( ){ }1
, 0: 0, , ,α β α β

∞
′Π = ∈ Ω ∀ ∈ ≤ ≤ <u C t T t u t t u M  

K is the operator associated to the problem (1).  
We consider the following auxilary boundary problem: 

( )( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) [ ]

( ) ( )( ) ( ) ( )( )

1

1 2

, , ,

a.e on 0,

0 0 ,

τ ′′ ′− Φ = + Λ +Ξ −
 + Ω =
 ′ ′∈ ∈


u t f t u t u t t u t u t M u t

Mu t T

u B u u T B u T

  (24) 

A solution of problem (24) is a function ( )1∈ Ωu C  such that 0∞
′ <u M  and 

satisfied (24). 
The problem (24) is equivalent to the fixed point problem ∈u D  and =u Ku  

with ( ) ( )1 1: Ω → ⊆ ΩK C D C  defined by: 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )((
( )( ) ( )( ) ( )) )

1
10 0

0 0 , , ,

d dτ

− ′ ′= + Φ Φ − + Λ

+Ξ − +

∫ ∫

t y
Ku t u u f s u s u s s u s

u s M u s Mu s s y
 

We have: 

{ } ( )1 0max , 1α β
∞ ∞

< + +
C

Ku M T  

Lemma 2. All solution u of (24) is such that ( ) ( ) ( )α β≤ ≤t u t t , [ ]0,∀ ∈t T .  
Proof. Since ( )1α ∈ ΩC  is a lower solution of the problem (1), we have: 

( )( )( ) ( ) ( )( ) ( )( ) [ ]
( ) ( )( ) ( ) ( )( )1 2

, , a.e on 0,

0 0 ,

α α α α

α α α α+ +

 ′′ ′− Φ ≤ +Ξ Ω =

 ′ ′∈ + − ∈ +  

t f t t t t T

B T B T
    (25) 

Soustraying (25) from (24), we obtain:  

( )( )( ) ( )( )( )
( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( )( )

1 , , ,

, ,

α

τ

α α α

′ ′′ ′Φ − Φ

′≥ + Λ +Ξ − +

′− −Ξ

t u t

f t u t u t t u t u t M u t Mw t

f t t t t

     (26) 

We multiply (26) by ( ) ( )( )1, 0,α +− ∈ pu W T  and then integrate on Ω . We 
obtain: 

( )( )( ) ( )( )( ) ( ) ( )
0

d
T

t u t u t tα α + ′ ′′ ′Φ − Φ −  ∫  

https://doi.org/10.4236/jamp.2019.76091


D. A. Behi, A. Adje 
 

 

DOI: 10.4236/jamp.2019.76091 1360 Journal of Applied Mathematics and Physics 
 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( )( )( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( ) ( )

10

0

0

, , , , d

, d

d .

T

T

T

f t u t u t f t t t u t t

t u t u t t

u t t Mu t M u t u t t

α α α

α

α τ α

+

+

+

 ′ ′≥ − − 

+ Λ −

 + Ξ −Ξ + − − 

∫

∫

∫

    (27) 

The integration by parts of the left-hand side in inequality, yields: 

( )( )( ) ( )( )( ) ( ) ( )

( )( ) ( )( )( )( ) ( ) ( )( ) ( )( )( )( ) ( )

( )( ) ( )( ) ( ) ( )

0

0

d

0 0 0

d

α α

α α α α

α α

+

+ +

+

 ′ ′′ ′Φ − Φ −  

′ ′ ′ ′= Φ −Φ − − Φ −Φ −

 ′ ′− Φ −Φ − 

∫

∫

T

T

t u t u t t

T u T u T u u

t u t u t t

 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( )( )( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( ) ( )

10

0

0

, , , , d

, d

d .

α α α

α

α τ α

+

+

+

 ′ ′≥ − − 

+ Λ −

 + Ξ −Ξ + − − 

∫

∫

∫

T

T

T

f t u t u t f t t t u t t

t u t u t t

u t t Mu t M u t u t t

         (28) 

We set  

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

if

0 if

α α
α

α
+  − > − =   ≤

t u t t u t
u t

t u t
            (29) 

Also, from the boundary conditions in (24) and (25), we have:  

( ) ( )( ) ( ) ( )( )1 1and with 0.α α′ ′− ∈ − ∈ + ≥T Tu T B u T T B T e e  

If ( ) ( )α ≥T u T , then from the monotony of 2B  (See hypothesis ( )BH ), we 
have:  

( ) ( )α ′ ′≤T u T . Whence ( )( ) ( )( )α ′ ′Φ ≤ ΦT u T . 

So, it follows that  

( )( ) ( )( )( )( )( ) 0.α α′ ′Φ −Φ − ≤T u T u T                (30) 

In a similar way, using the boundary conditions ( ) ( )( )10 0′ ∈u B u  and 
( ) ( )( )1 00 0α α′ ∈ +B e  with 0 0≥e , if ( ) ( )0 0α ≥ u , we have:  

( ) ( )0 0α′ ′≥ u . We infer that ( )( ) ( )( )0 0α′ ′Φ ≥ Φ u . 

It follows that  

( )( ) ( )( )( )( )( )0 0 0 0.α α′ ′Φ −Φ − ≥u u                (31) 

Also, since Φ  is an increasing homeomorphism, we have:  

( )( ) ( )( )( )( ) ( )

( )( ) ( )( )( )( )( )
0

d

d 0
α

α α

α α

+

>

′ ′Φ −Φ −

′ ′= Φ −Φ − ≥

∫
∫

T

u

t u t u t t

t u t u t t
           (32) 

where { } [ ] ( ) ( ){ }0, :α α> = ∈ >u t T t u t .  
Using the inequalities (30), (31) and (32) in the first member of (27), we obtain: 

( )( )( ) ( )( )( ) ( ) ( )
0

d 0.α α + ′ ′′ ′Φ − Φ − ≤  ∫
T

u t t u t t          (33) 
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Furthermore: 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) { }

( ) ( )( ) ( ) ( )( )( )( ) ( )

1

10

, , , ,

, , , , 0 a.e on

, , , , d 0.

α α

α α α α α

α α α +

′ ′−

′ ′= − = >

′ ′⇒ − − =∫
T

f t u t u t f t t t

f t t t f t t t u

f t u t u t f t t t u t t

     (34) 

Also from the definiton of the penalty map Λ , if { } 0α > >u  (By . , we 
denote the Lebesgue mesure in  ), then: 

( )( )( ) ( ) ( )( ) ( )( )( )( ) ( )
0

, d d 0.
α

α α α+ +

>
Λ − = Φ −Φ − >∫ ∫

T

u
t u t u t t t u t u t t  (35) 

Finally, by virtue of hypothesis ( )ΞH  and since ∈w U , we see that: 

( )( ) ( )( ) ( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( )
0

d

d 0.
α

α τ α

α α α

+

+

>

 Ξ −Ξ − − − 

 = Ξ −Ξ − + − ≥ 

∫
∫

T

u

u t t M u t Mu t u t t

u t t M t Mu t u t t
    (36) 

Using the inequalities, (34), (35) and (36) in the second member of (27), we infer 
that: 

( ) ( )( ) ( ) ( )( ) ( )

( )( )( ) ( )

( )( ) ( )( ) ( )( ) ( ) ( ) ( )

10

0

0

, , , , d

, d

d 0.

α α α

α

α τ α

+

+

+

 ′ ′− − 

+ Λ −

 + Ξ −Ξ − + − > 

∫

∫

∫

T

T

T

f t u t u t f t t t u t

t u t u t t

u t t M u t Mu t u t t

   (37) 

We consider (27) and using (33) and (34), we have a contradiction when 
{ } 0α > >u . Therefore, for all ∈Ωt , ( ) ( )α ≤t u t . In a similar fashion we 

show that ( ) ( )β≤u t t  for all ∈Ωt . Thus ∈u U .                       
Proof. theorem 16: As in the proof of the proposition 15, we can show the 

complete continuity of the operator K . Moreover, ( ) ( )1
1 ⊂

C
K C B R  for all 

{ } ( )0max , 1α β
∞ ∞

> + +R M T . Therefore, by Leray-Schauder’s theorem, we 
can say that the operator K  has a fixed point u in the open ball ( )1C

B R  
which is solution of problem (24). It follows, by the lemma 2, that u is also 
solution of problem (1). 

We assume that α  is a strict lower solution and β  is a strict upper solu-
tion of (1). Let 

{ } ( )0max , 1α β
∞ ∞

> + +R M T  

be quite a few such that  

≠Ku u  for some ( )1∈∂
C

u B R . 

Because K  is completely continuous, we can compute the degree of 1 −C
Id K . 

The function H defined by ( ) ( ), =H t u tK u  is compact on [ ] ( )10,1 ×
C

B R . We 

assume that there exist [ ]0,1∈t  and ( )1∈∂
C

v B R  such that ( ) 0− =v H v , then 

( )=v tK v . But 1 =Cv R , so ( ) 1 =C
t K v R  which contradict the fact that 

( ) 1 <C
K v R . We can apply the homotopic invariance degre property of Le-

ray-Schauder to obtain: 

( ) ( )1 1 1 1, ,0 , ,0 1.   − = − =   LS LSC C C C
d Id K B R d Id K B R  

https://doi.org/10.4236/jamp.2019.76091


D. A. Behi, A. Adje 
 

 

DOI: 10.4236/jamp.2019.76091 1362 Journal of Applied Mathematics and Physics 
 

Indeed, let us recall the following set: 

[ ] ( ) ( ) ( ){ }1
, 0: 0, , , .α β α β

∞
′Π = ∈ ∀ ∈ ≤ ≤ <u C t T t u t t u M  

By definitions of strict lower and strict upper solutions, α  and β  cannot be 
solution of problem (24). Therefore, (24) has not solution on the boundary of 

,α βΠ . By using the additivity and excision properties of Leray-Schauder degree, 
we obtain: 

( )1 1 1,, ,0 , ,0 1.α β   − Π = − =   LS LSC C C
d Id K d Id K B R  

Furthermore, since K is completely continuous operator associate to (1). That 
equates to K  on ,α βΠ , we have  

( )1 1, ,0 1. − = LS C C
d Id K B R                       

5. Existence Results with Non Ordered Lower and Upper  
Solutions  

Theorem 17. We assume that there exists a lower solution α  and an upper 
solution β  of (1) such that  

[ ]0,∃ ∈t T  such that ( ) ( )α β>t t .              (38) 

Then the problem (1) admits at least one solution u, such that: 

{ } ( ) { }min , max ,α β α β≤ ≤u u u u uu t  for some [ ]0,∈ut T     (39) 

and  

{ } 0max , .α β
∞ ∞ ∞
≤ +u M T                  (40) 

Proof. We set { } 0max ,λ α β
∞ ∞

= + M T . 
We consider the functions [ ]* 2: 0, × → f T , * :Ξ →  , and for 1,2=i , 

the multifunctions ( )* : → iB P  are defined respectively by: 

( )
( ) ( ) ( )

( ) ( ) ( )

*

2 if 1
1 , , 2 if 1

, , ( , , ) if
1 , , 2 if 1
2 if 1

λ
λ λ λ λ

λ λ
λ λ λ λ

λ

> +
 + − + − < ≤ += − ≤ ≤
 + + + + − − ≤ < −
− < − −

u
u f t u v u u

f t u v f t u v u
u f t u v u u

u

 

( )
( ) ( ) ( )
( )

( ) ( ) ( )

*

1 if 1
1 if 1

if
1 if 1
1 if 1

λ
λ λ λ λ

λ λ
λ λ λ λ

λ

> +
 + − Ξ + − < ≤ +Ξ = Ξ − ≤ ≤
 + + Ξ + + − − ≤ < −
− < − −

u
u u u u

u u u
u u u u

u

 

( )

( )
( ) ( )
( )
( ) ( )
( )

1

1
*
1 1

1

1

3 if 1
3 if 1

if
3 if 1
3 if 1

λ
λ λ λ

λ λ
λ λ λ

λ

 + + > +
 + + − < ≤ += − ≤ ≤
 − + + − − ≤ < −

− − < − −

p u
p u u

B u B u u
p u u
p u
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( )

( )
( ) ( )
( )
( ) ( )
( )

2

2
*
2 2

2

2

3 if 1
3 if 1

if
3 if 1
3 if 1

λ
λ λ λ

λ λ
λ λ λ

λ

 − − > +
 − − − < ≤ += − ≤ ≤
 + − + − − ≤ < −

+ + < − −

p u
p u u

B u B u u
p u u
p u

 

where, for 1, 2=i , ( )+ip  and ( )−ip  are defined as in remark 10, *f  is 
pL -Caratheodory and *

1B  and *
2B  are maximal monotone operators. We con-

sider the following modified problem: 

( )( )( ) ( ) ( )( ) ( )( ) [ ]
( ) ( )( ) ( ) ( )( )

* *

* *
1 2

, , a.e on 0,

0 0 , .

 ′′ ′− Φ = +Ξ

 ′ ′∈ − ∈

u t f t u t u t u t T

u B u u T B u T
      (41) 

We can verify that α  is a lower solution and β  is upper solution of the problem 
(41). Let :β →    be defined by ( ) 2,β λ= + ∀ ∈

t t . We have: 

( )( )( ) ( ) ( )( ) ( )( ) [ ]* *0 3 , , a.e on 0, ,β ′′ ′Φ = < = +Ξ t f t u t u t u t T  

( ) ( ) ( ) ( )1 20 0 3 and 0 3.β β′ ′= < + + − = < + + p T p  

So we can find 0 , 0≥Te e  such that  

( ) ( )( )*
2 00 0β β′ ∈ − B e  and ( ) ( )( )*

2β β′ ′− ∈ − 

TT B T e  

Therefore, β  is an upper solution of (41). 
The function :α →    defined by ( ) 2,α λ= − − ∀ ∈

t t , verifies: 

( )( )( ) ( ) ( )( ) ( )( ) [ ]* *0 3 , , a.e on 0, ,α′ ′Φ = > − = +Ξ t f t u t u t u t T  

( ) ( ) ( ) ( )1 20 0 3, 0 3.α α′ ′= > − − − = > − − − p T p  

So we can find 0 , 0≥Tl l  such that  

( ) ( )( )*
2 00 0α α′ ∈ + B l  and ( ) ( )( )*

2α α′− ∈ +  TT B T l  

Therefore, α  is a lower solution of (41). Furthermore,  

[ ] { } { }0, , min , max , .α α β α β β∀ ∈ ≤ ≤ ≤ t T  

Let us introduce the sets 

[ ] ( ) ( ) ( ){ }1
, 0: 0, , , ,α β α β

∞
′Π = ∈ ∀ ∈ < < <



u C t T t u t t u M  

[ ] ( ) ( ) ( ){ }1
0, : 0, , , ,α β α β

∞
′Π = ∈ ∀ ∈ < < <



u C t T t u t t u M  

and  

[ ] ( ) ( ) ( ){ }1
0, : 0, , , .α β α β

∞
′Π = ∈ ∀ ∈ < < <







u C t T t u t t u M  

By using the definition (39), we obtain: 

, , .α β α βΠ Π = ∅




  

Also we have: 

, , , .α β α β α βΠ Π ⊂ Π
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Let us consider: 

( ),, ,\ .α βα β α βΠ = Π Π Π
 






 

Then  

( ) [ ] ( ) ( ) ( ) ( ){ }2
1 2 1 1 2 2, : , 0, such that ( andα β αΠ = ∈Π ∃ ∈ < <





u t t T t u t u t t  

and 

, , , .α β α β α β∂Π = ∂Π ∂Π ∂Π
  



   

Since all constant function between ( )β t  and ( )α t  is into Π , Π  is non-
empty. 

Let *K  be the fixed point operator associated to problem (41) given in the 
proposition 15. We consider ∈Πu  such that ( )* =K u u  and 2λ

∞
= +u . 

There exists [ ]0 0,∈t T  such that  

( ) [ ]0 0,max 2λ= = +Tu t u  or ( ) [ ]0 0,min 2λ= = − −Tu t u . 

Let us consider the case ( ) [ ]0 0,max 2λ= = +Tu t u . 
If [ ]0 0,∈t T , then ( )0 0′ =u t  and there exists 0>  such that ( ) 1λ> +u t  

for all [ ]0 0,∈ + t t t . Moreover ( )( )( ) 3′′Φ =u t . Whence,  

( )( ) ( )( )( )
0

d 0′′ ′Φ = Φ >∫
t

t
u t u t t ,  

for all [ ]0 0,∈ + t t t . It follows that u is increasing on [ ]0 0, + t t . That contra-
dicts the existence of 0t . 

If ( )0, 0 0′= =t u  and we obtain the contradiction ( )10 3= + +p . 
If ( )0 , 0′= =t T u T  and we obtain the contradiction ( )20 3= − −p . 
In the similar fashion, we obtain contradiction with the case  
( ) [ ]0 0,min 2λ= = − −Tu t u . Therefore  

( )*, 2.λ
∞

 ∈∂Π = ⇒ < + u K u u u               (42) 

Let ∈∂Πu  such that * =K u u . It becomes from (42) that 2λ
∞
< +u , 

0∞
′ <u M , and , ,α β α β∈∂Π ∂Π




u . It follows, there exists [ ]0 0,∈t T  such 
that ( ) ( )0 0α=u t t  and ( ) ( )0 0β=u t t , that implies 

( ) { }0 max ,α β
∞ ∞

<u t  

Then, 

( ) ( ) ( ) [ ]0 0
d , 0,λ′≤ + < ∀ ∈∫

T
u t u t u t t t T  

So, 

( )*, λ
∞

 ∈∂Π = ⇒ < u K u u u                (43) 

We have two cases:  
• 1rst case: We assume that there exists ∈∂Πu  such that ( )* =K u u . From 

(43), we infer that λ
∞
<u , that implies that u is a solution of (1), and (39) 

and (40) are satisfied. Then, there exists [ ]0,ς ∈ T  such that ( ) ( )ς α ς=u  
or ( ) ( )ς β ς=u ,  
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• 2nd case: We assume that ( )* ≠K u u  for all ∈∂Πu . Then, as in the proof 
of theorem 16, we have: 

( )
( ) ( )

1

1 1

*
,

* *
, ,

, ,0

, ,0 , ,0 1

α β

α β α β

− Π

= − Π = − Π =








LS C

LS LSC C

d Id K

d Id K d Id K
         

Theorem 18. If there exists a lower solution α  and an upper solution β  
of the problem (1), then the problem (1) admits at least one solution u such that: 

{ } 0max , .α β
∞ ∞ ∞
≤ +u M T                  (44) 

Proof. If [ ] ( ) ( )0, ,α β∀ ∈ ≤t T t t , by theorem 16, the problem (1) admits at 
least one solution such that: 

( ) ( ) ( ) [ ], 0,α β≤ ≤ ∀ ∈t u t t t T  

Moreover, (44) holds.  
If  

[ ]0,∃ ∈t T  such that ( ) ( )α β> t t              (45) 

By the theorem 17, the problem (1) admits at least one solution, such that: 

{ } 0max , .α β
∞ ∞ ∞
≤ +u M T                    

6. Multiplicity Results 

Theorem 19. We assume that there exists α  a lower solution and α  a strict 
lower solution of problem (1), β  an upper solution and β  a strict upper so-
lution of problem (1) such that: 

[ ] ( ) ( ) ( ) ( )0, , .α β α β∀ ∈ ≤ ≤ ≤ t T t t t t  

Then the problem (1) admits at least three solutions u, v and w such that: 

( ) ( ) ( ) [ ] ( ) ( ) ( ) [ ], 0, ; , 0, ;α β α β≤ ≤ ∈ ≤ ≤ ∈

t u t t t T t v t t t T  

( ) ( ) ( )β α≤ ≤ w w wt u t t  for some [ ]0,∈wt T . 

Proof. By using the theorem 16 and the fact that β  and β  are strict, we 
can say that the problem (1) admits at least one solution u, such that: 

( ) ( ) ( )β β≤ ≤ t u t t                         (46) 

By using the theorem 16, the problem (1) admits at least one solution w such 
that: 

( ) ( ){ } ( ) ( ){ }
( ) [ ]

min , max ,

for so 0, .me

β α β α β

α

= ≤ ≤

= ∈

 



w w w w

w

t t w t t

t t T
          (47) 

(46) and (47) yield ≠u w  and ≠w v .                                  
In the following theorem, we show existence of at least two solutions of the 

problem (1).  
Theorem 20. We assume that there exists α  and α  are two lower solu-

tions of the problem (1), β  is a strict upper solution of problem (1) such that: 
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[ ] ( ) ( ) ( )0, , .α β β∀ ∈ ≤ ≤ t T t t t  

Then the problem (1) admits at least two solutions u and w such that: 

( ) ( ) ( ) [ ], 0,α β≤ ≤ ∈t u t t t T  

and 

[ ]0,∃ ∈t T  such that ( ) ( ) ( )β α≤ ≤ w w wt u t t .        (48) 

Proof. By using the theorem 16 and the fact that β  is strict, we can say that 
the problem (1) admits at least one solution u, such that: 

( ) ( ) ( ).α β≤ ≤t u t t                        (49) 

By using the theorem 17, the problem (1) admits at least one solution w such 
that: 

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) [ ]

min max ,

for some 0, .

β α β α β

β

= ≤ ≤

= ∈

 



w w w w w w

w

t t t w t t t

t t T
      (50) 

(49) and (50) yield ≠u w .                                            
Theorem 21. We assume that there exists α  a strict lower solutions of the 

problem (1) and two upper solutions β  and β  of the problem (1) such that: 

[ ] ( ) ( )0, , .β β∀ ∈ ≤ t T t t  

Then the problem (1) admits at least two solutions u and w such that: 

( ) ( ) ( ) [ ], 0,α α≤ ≤ ∈t u t t t T  

and 

[ ]0,∃ ∈wt T  such that ( ) ( ) ( )β α≤ ≤w w wt u t t .         (51) 

Proof. The proof is similar to those of theorem 18.                       

7. Example and Periodic Problem 
7.1. Example 

Let us consider the following problem:  

( )( )
( )

( ) ( ) ( ) ( )( ) ( )( ) [ ]

( ) ( )( ) ( ) ( )( )

21

2

1

1 2

1 1
, , a.e on 0,

1

0 0 ,

−

−

−

  
′+ +  

  ′ ′ ′− = + Ξ Ω =  ′+    

′ ′∈ − ∈

p

p

p

u t
u t u t f t u t u t u t T

u t

u B u u T B u T

(52) 

where 1, ,Ξf B  and 2B  are defined as in problem (1). Here,  

( )
( )21

2
1

1 1

1

−

−

−

+ +
Φ =

+

p

p
p

z
z z z

z
,  

for all ∈z  and by the remark 8, it satisfies hypothesis ( )ΦH . Therefore, 
theorem 16 and theorem 17 are true for the problem (52). Moreover, by [8] (see 
example 5.2.25 page 404), this problem unifies classical problems of Dirichlet, 
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Neumann and Sturm-Liouville and go beyong them.  

7.2. Periodic Problem 

Let us consider the following periodic problem:  

( )( )( ) ( ) ( )( ) ( )( ) [ ]
( ) ( ) ( ) ( )

, , a.e on 0,

0 , 0 .

 ′′ ′− Φ = +Ξ Ω =

 ′ ′= =

u t f t u t u t u t T

u u T u u T
   (53) 

Remark 22. The theorems 16 and 17 stay true for this problem (see 8 remark 
5.2.26 page 404 and also [5] section 6 page 23). 

8. Conclusion 

In this article, by combining lower and upper solutions method, theory of max-
imal monotone operators and theory of topological degree, we establish exis-
tence and multiplicity results for second-order problems with multivalued 
boundary conditions. We give an example but more examples and applications 
can be given. In perspective, we will study the same problems under general 
multivalued boundary conditions. Also, the same problem can be considered for 
a singular Φ -Laplacian operator. 
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