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Abstract 
In this article, the model of a non-Newtonian fluid (Thixotropic) flow past a 
vertical surface in the presence of exponential space and temperature 
dependent heat source in a thermally stratified medium is studied. It is 
assumed that free convection is induced by buoyancy and exponentially 
decaying internal heat source across the space. The dynamic viscosity is taken 
to be constant and thermal conductivity of this particular fluid model is 
assumed to vary linearly with temperature. Thermal stratification has been 
properly incorporated into the governing equation so that its effect can be 
revealed and properly reported. The governing partial differential equations 
describing the model are transformed and parameterized to a system of 
non-linear ordinary differential equation using similarity transformations. 
Approximate analytic solutions were obtained by adopting Optimal 
Homotopy Analysis Method (OHAM). The results show that for both cases of 
non-Newtonian parameters (Thixotropic) ( 1 2 0K K= =  & 1 2 1.0K K= = ), 
increasing stratification parameters, relate to decreasing in the heat energy 
entering into the fluid region and thus reducing the temperature of the 
Thixotropic fluid as it flows. 
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1. Introduction 

The study of non-Newtonian fluid flow has attracted the attention of researchers 
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over the past years owing to its numerous applications in industry. Some of the 
applications are encountered in paper production, food processing, glass-fibre 
and injection moulding, etc. The major difference between a Newtonian and 
non-Newtonian fluid is that Newtonian fluid, for instance water, does not resist 
much stress that is applied on them and does not exhibit any sign of strain or 
deformation unlike non-Newtonian fluid that will quickly exhibit signs of strain 
when stress is applied. Most of these non-Newtonian fluids are described as 
“time-dependent” due to the fact that after deformation it takes a fixed time to 
return to a more viscous state, and likewise the fluid flow is highly dependent on 
the viscosity. Fluids are referred to as shear thickening when the viscosity in-
creases with the application of the shear stress over time we can categorize 
rheopetic fluids as shear thickening because they become more viscous over time 
when shaken or stressed. Fluids are also referred to as shear thinning when the 
viscosity decreases with the stress over time, thixotropic fluids exhibit this shear 
thinning property in the sense that, they become less viscous over time when 
shaken or stressed. In a more simple way, thixotropic fluids are described as flu-
ids that are very thick (viscous) under their normal conditions, but become thin, 
less viscous and change their flow behavior when pressure is introduced. Many 
gels and colloids are thixotropic materials. Some natural examples of materials 
that may be thixotropic are honey, synovial fluid found in joints between some 
bones, sand, quicksand, clays and drilling muds Hendrickson [1]. In the practic-
al wise, some of implications of the behavior of thixotropic materials are Lique-
faction. Liquefaction is referred to as a phenomenon whereby saturated or par-
tially saturated soil substantially loses strength and stiffness in response to an 
applied stress, usually earthquakes shaking or other sudden changes in stress 
conditions, causing it to behave like a liquid, that is, it temporarily turns firm 
ground into a liquid. Although, the impact of liquefaction has being felt some 
long time ago, but in recent times, a wide destruction made to residential prop-
erties in the eastern suburbs and satellite townships of Christchurch, New Zeal-
and during the 2010 Canterbury earthquakes and also the Christchurch earth-
quakes that occurred in 2011 are caused by Liquefaction Davies et al. [2]. As a 
result of the complexities encountered working with this fluid, there are virtually 
very few published works that concentrate on boundary layer flows of the fluids. 
It was reported in the work of Sadeghy et al. [3] that Harris [4] [5] tried to ad-
dress the boundary layer flow of thixotropic fluids. It was further reported that, 
he relied on a simple thixotropic fluid model (the so-called Harris model) to in-
vestigate the effects of a fluid’s thixotropic behaviour on the characteristics of the 
momentum boundary layer formed above a fixed plate and also, Hayat et al. [6] 
investigated MHD flow of Thixotropic fluid with variable thermal conductivity 
and thermal radiation, it was reported that the non-Newtonian parameters have 
quite opposite effects on the velocity and temperature distributions. 

Convection on the other hand may be classified depending on how the fluid 
motion is initiated. Natural convection which is also termed buoyant or free 
convection is a mechanism of heat transportation in which the fluid motion is 
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not initiated by an external source such as pump, fan, suction device, but only by 
fluid density differences in the fluid occurring due to temperature gradients and 
the driving force for natural convection is buoyancy which is as a result of dif-
ferences in density. During this process of heating, the density changes in the 
boundary layer will cause the fluid to rise and be replaced by cooler fluid. Defi-
nitely, the cooler fluid will also be heated and rise. Recently, Animasaun [7] [8] 
discussed the convection which occurs in fluid flow along a vertical surface with 
a small magnitude of temperature (absolute zero) and an upper horizontal sur-
face of a paraboloid of revolution, modified Boussinesq approximation models 
for both cases were presented. 

Stratification of fluid is a formation of layers and occurs due to temperature 
variations and concentration differences. This natural process creates a transi-
tion zone of a temperature gradient between cold and hot fluid zones and hence 
in case of vertical natural convection it plays an important role in vertical tem-
perature distribution. The dynamics of thermal stratification is essential for solar 
engineering because stratification may predict the possibilities of achieving 
higher energy efficiency. Oreyeni et al. [9] extensively discussed homotopy anal-
ysis of MHD free convective micropolar fluid flow along a vertical surface em-
bedded in non-Darcian thermally-stratified medium. It was reported that strati-
fication leads to decline in the velocity and temperature of the fluid respectively 
and the result is similar to what is observed in the work of Animasaun and Omo-
waye [10] on upper-convected Maxwell fluid flow with variable thermo-physical 
properties over a melting surface situated in hot environment subject to thermal 
stratification and the work of Hayat et al. [11] on thermal and concentration 
stratifications effects in radiative flow of a Jeffery fluid over a stretching sheet. 

Internal energy generation is described as scientific method used in generating 
heat energy within a body by a chemical, electrical or nuclear process. Eldahab 
and Aziz [12] investigated the effect of non-uniform heat source with suc-
tion-blowing. Muthtamilselvan et al. [13] analyzed effect of non-uniform heat 
generation on unsteady MHD non-Darcian flow over a vertical stretching sur-
face with variable properties. Crepeau and Clarksean [14] examined a similarity 
solution for a fluid with an exponentially decaying heat generation term and a 
constant temperature vertical plate under the assumption that the fluid has an 
internal volumetric heat generation. An exponentially form is used to account 
for the internal energy generation term. It was reported that the effect of internal 
heat generation is important in several applications i.e. reactor safety analysis, 
fire and combustion studies. In many situations, there may be appreciable tem-
perature difference between the surface and the ambient fluid. 

Physical changes of thixotropy which referred to the reversible changes from a 
flowable fluid to a solid-like elastic gel has been made to occur by changing the 
temperature. But due to the fact that thixotropic fluid exhibit time-dependent 
shear thinning property, viscosity of the fluid is assumed to be constant and 
thermal conductivity is assumed not to be constant and has been taken as 
function of temperature. A slight increase in the temperature enhances the 

https://doi.org/10.4236/ajcm.2019.92009


T. Oreyeni, E. Omokhuale 
 

 

DOI: 10.4236/ajcm.2019.92009 119 American Journal of Computational Mathematics 
 

transport phenomena by reducing the viscosity across the momentum boundary 
layer, hence the heat transfer rate at the wall is also affected. Sharma and Singh 
[15] presented effects of variable thermal conductivity and heat source/sink on 
mhd flow near a stagnation point on a linearly stretching sheet. Effects of varia-
ble thermal conductivity on heat and mass transfer with Jeffery fluid was inves-
tigated by Uwanta and Omokhuale [16]. Prasad et al. [17] discussed the effects of 
variable fluid properties on the hydromagnetic flow and heat transfer over a 
non-linearly stretching sheet. Omokhuale et al. [18] studied effect of Jeffery fluid 
on heat and mass transfer past a vertical porous plate with soret and variable 
thermal conductivity. Motivated by all the above works and applications, it is of 
interest to contribute to the body of knowledge by investigating the natural con-
vection flow of thixotropic fluid in a thermally stratified medium and consider-
ing cases where the non-Newtonian parameters are properly accounted for. 
Furthermore, this study examines the characteristics behavior of thixotropic 
fluid on boundary layer. 

2. Mathematical Formulation  

A steady and incompressible magnetohydrodynamic (MHD) free convective 
boundary layer flow of thixotropic fluid over a vertical surface in a thermally 
stratified medium with temperature-dependent thermal conductivity is 
considered. The motion of an incompressible non-Newtonian fluid is induced 
by the stretching property of the vertical surface, buoyancy effect which is 
generated by gradients in the temperature field and space dependent internal 
heat generation. The flow is assumed to flow in x-direction which is along 
vertical surface and y-axis is normal to it. The temperature of the surface wT  is 
held uniform and embedded in a thermally stratified medium of variable 
ambient temperature T∞  where ( )wT T∞> . A constant magnetic field of 
strength oB  is applied in the y-direction. Also the magnetic Reynolds number 
is assumed to be small so that the induced magnetic field is negligible in 
comparison to the applied magnetic field. 

The equation of continuity can be written as;  

0,u v
x y
∂ ∂

+ =
∂ ∂

                            (1) 

For any incompressible fluid satisfying the thixotropic model with constant 
viscosity and temperature-dependent thermal conductivity, the momentum and 
energy equations can be simplified using the usual boundary layer theory 
approximations and obtain 
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     (3) 

Subject to boundary conditions  

( ) ( ), , , at 0,w w wu u x ax v v x T T y= = = = =             (4) 

0, , as ,u T T y∞→ → →∞                     (5) 

In order to justify the variation in the thermo-physical property of the 
thixotropic fluid as it flows past a vertical heated surface, classical Boussinesq's 
approximation is adopted such that the temperature at the surface is greater 
than temperature of the fluid at the free stream. It is valid to consider the 
mathematical model of temperature dependent thermal conductivity model of 
Charraudeau [19] as; 

( ) ( )* 1T T Tκ κ δ ∞= + −                        (6) 

*κ  are the constant value of the coefficient thermal conductivity at the free 
stream. Where u and v are components of velocity in x and y directions 
respectively, ( )wu x  is the wall shrinking or stretching velocity, ( 0a > ) for 

stretching, ( 0a < ) for shrinking and ( 0a = ) for static wall, ( )wv x  is the wall 

mass flux velocity, ρ  is the fluid density, µϑ
ρ

=  is the kinematic viscosity, 

σ  is the electrical conductivity, T is the fluid temperature in the boundary 
layer, T∞  is the free stream temperature, β  is the thermal expansion coefficient, 

pC
κα
ρ

=  is the thermal diffusivity, 1R  and 2R  are the non-Newtonian 

material constants, β  is the volumetric coefficient of thermal expansion, A and 
B are the coefficient of exponentially decaying space and temperature dependent 
heat source respectively. 

The momentum and energy equations can be transformed into the 
corresponding ordinary differential equations by the following transformations  

( ) ( ) ( )[ ]
1
2

01 1 1
2 2 2

,
, , w

x ya y f T T T T
xa

ψ
η η θ η

ϑ ϑ
∞= = − = −           (7) 

where η  is the independent dimensionless similarity variable. Thus u and v are 
given by ( )u axf η′= , ( )v a fϑ η= − , substituting variables (7) into equations 
(2)-(5), we obtain the following ordinary differential equations:  

( ) ( )

( ) ( )

( ) ( )
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[ ] ( )
22

2

d d d d d1 e 0
d d d dd r t r r

f fP S P P f A Bηθ θ θθε θ ε θ
η η η ηη

− 
+ − − + + + + = 

 
    (9) 

The corresponding boundary conditions take the form; 

( ) ( ) ( )0 , 0 1, 0 1 , at 0,tf s f Sθ η′= = = − =            (10) 

( ) ( )0, 0, 0 as .f η θ η η′ → → → →∞               (11) 

In the above equations, primes denote differentiation with respect to η . The 
dimensionless velocity and temperature are represented as ( )f η  and ( )θ η , 

rP ϑ
α

=  is the Prandtl number, 
2
oB

M
a

σ
ρ

=  is the magnetic parameter, 

( )
2
w

r

g T T
G

a x
β ∞−

=  is the Modified Thermal Grashof number, A is the space 

dependent heat source parameter, 2

1
t

mS
m

=  is the thermal stratification 

parameter, ( )0wT Tε δ= −  is the temperature-dependent thermal conductivity 
parameter, B is the temperature dependent heat source parameter, 

( )
3 2

1
1 2

6R a xK x
ρϑ

= −  and ( )
4 2

2
2 2

4R a xK x
ρϑ

=  are the non-Newtonian parameters. 

The dimensionless form of the skin friction coefficient is given as; 

( ) ( ) 31 2 10 0 .
6x f
KRe C f f′′ ′′= −                      (12) 

3. Optimal Homotopy Analysis Solutions  

The analytic solutions of Equations (8) and (9) to the boundary conditions (10) 
and (11) have been computed by optimal homotopy analytic method (OHAM). 
Various researchers ([20] [21] [22]) have applied this method to compute flow 
problems. The suitable initial guesses and the linear operators satisfying the 
given boundary conditions (10) and (11) for ( )f η  and ( )θ η  have been 
carefully selected. The initial guesses for this problem are of the form 

( ) ( ) ( ) ( )1 exp , 1 exp ,o o tf S Sη η θ η η= + − − = − ∗ −           (13) 

Linear operators fL  and Lθ  are  

( ) ( ) ( )3

3

; ;
;f

f q f q
L f q

η η
η

ηη
∂ ∂

= −   ∂∂
                (14) 

( ) ( ) ( )
2

2

;
; ;

q
L q qθ

θ η
θ η θ η

η
∂

= −   ∂
                 (15) 

The operators fL  and Lθ  have the following properties  

( ) ( ) ( )1 2 3 4 5exp exp 0, exp 0fL C C C L C Cθη η η+ − + = − + =            (16) 

In which 1C , 2C , 3C , 4C  and 5C  are constants. 

( ) ( ) ( ) ( ) ( ) ( )1 ; ; , ;f o f fq L f q f q H N f q qη η η η θ η− − =              (17) 
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( ) ( ) ( ) ( ) ( ) ( )1 ; ; , ;oq L q q H N f q qθ θ θθ η θ η η η θ η− − =              (18) 

Subject to boundary conditions  

( ) ( ) ( )
0;

0; , 1, 0; 1 t

f q
f q s q S

η
η θ η

η
∂ =

= = = = = −
∂

        (19) 

( ) ( )
;

0, 0
f qη

θ η
η

∂ →∞
→ →∞ →

∂
                (20) 

where q is the embedding parameters, f  and θ  the non-zero auxilliary 
parameters and operators fN  and Nθ  are given by  
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Obviously, when 0q =  and 1q = , zero order of deformation equations 
(17)-(18) leads to  

( ) ( ) ( ) ( );0 , ;1o of f f fη η η η= =                (23) 

( ) ( ) ( ) ( );0 , ;1o oθ η θ η θ η θ η= =                (24) 

Expanding ( );f qη  and ( );qθ η  in Taylor series with respect to the 
embedding parameter q,  

( ) ( ) ( ) ( ) ( )
1 0

;1; where
!

m
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o m m m
m q

f q
f q f f q f

m q
η
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∞
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∂
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∂∑      (26) 

The auxilliary parameters f  and θ  are properly chosen so that the series 
Equations (17)-(18) converge at 1q = . Hence, 

( ) ( ) ( )
1

; m
o m

m
f q f f qη η η

∞

=

= +∑                  (27) 

( ) ( ) ( )
1
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o m
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If we denote the special solutions *
mf  and *

mθ  then the general solutions 

mf  and mθ  are  

( ) ( )*
1 2 3e e ,m mf f C C Cη ηη η −= + + +                (29) 

( ) ( )*
4 5e e .m m C Cη ηθ η θ η −= + +                  (30) 

Following the rule of solution expression, the rule of coefficient ergodicity and 
the rule of solution existence as discussed in [23] and [24] we choose auxiliary 
functions as  

1f pH H Hθ= = =                       (31) 

In order to analyze the salient characteristics of the problem, the results are 
presented in Figure 1(a)-Figure 8(b). The effect of non-Newtonian parameters 

1 2K K=  on velocity and temperature profiles are revealed in Figure 1(a), Figure 
1(b) and Figure 2(a), Figure 2(b) for different cases of stratification 
 

 
Figure 1. (a) Effect of non-Newtonian parameters 1 2K K=  on velocity profile when 0.1tS =  (b) Effect of non-Newtonian 
parameters 1 2K K=  on velocity profile when 0.8tS = . 

 

 
Figure 2. (a) Effect of non-Newtonian parameters 1 2K K=  on temperature profile when 0.1tS =  (b) Effect of non-Newtonian 
parameters 1 2K K=  temperature profile when 0.8tS = . 
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tS , it is observed from Figure 1(a) for the case of very low stratification 
0.1tS = , that an increase in the values of 1 2K K=  from 0 through 0.3, 0.7 to 1.0 

corresponds to a slight increase in the velocity distribution. Under normal 
circumstances, it is noticed that by increasing the values of 1K  and 2K  
velocity and the boundary layer thickness increase. Also, from Figure 1(b) for a 
high value of stratification 0.8tS = , it is noticed that as the values of 1 2K K=  
increases, the velocity profile increases, but at the exact value of 2.65η =  all 
profiles merge and asymptotically tends to 0. From Figure 2(a) and Figure 2(b) 
it is observed that increase in 1 2K K=  leads to decrease in the temperature 
distribution for both cases of 0.1tS =  and 0.8tS = . It is noticed for the first case 
of stratification 0.1tS =  that as 1 2K K=  increases in magnitude, there is a 
notable decrease in the temperature profile for value of 1 2 0K K= =  which 
signifies the Newtonian fluid, and thereafter the profiles decreases slightly as 

1 2K K=  increases. Also, for the cases of 0.8tS =  in Figure 2(b) it is observed 
that the temperature profile substantially decreases as the values of 1 2K K=  
increases. From Figure 3(a), it is seen that an increase in 1 2K K=  when 

0.8tS =  corresponds to increase in the wall shear stress. Also, from Figure 3(b) 
it is noticed that as the tS  increases the wall shear stress decreases for the case 
of the non-Newtonian fluid i.e. 1 2 1.0K K= = . The effect of thermal stratification 
parameter tS  on temperature distributions are presented in Figure 4(a) and 
Figure 4(b) for both cases of 1 2 0K K= =  (Newtonian) and 1 2 1.0K K= =  
(non-Newtonian). It is depicted from the computations that for both cases of 

1 2K K=  the temperature profiles decrease substantially as the magnitude of tS  
is increased from 0.1 through 0.4, 0.7 to 1.0 making each profile to satisfy the 
boundary condition associated with the model that is, ( ( ) 1 tSθ η = − ). 
Apparently, when 0.1,0.4,0.7,0.9tS =  reflecting in the boundary condition 
( ( ) 1 tSθ η = − ) which results in the decrease in the value of temperature  
 

 
Figure 3. (a) Effect of non-Newtonian parameters 1 2K K=  on the wall shear stress when 0.8tS =  (b) Effect of Stratification 
parameter tS  on the wall shear stress when 1 2 1.0K K= = . 
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Figure 4. (a) Effect of Stratification parameter tS  on temperature profile when 1 2 0K K= =  (b) Effect of Stratification 
parameter tS  on temperature profile when 1 2 1.0K K= = . 

 

( ) 0.9,0.6,0.3,0.1θ η =  as revealed in the temperature profiles in Figure 4(a) and 
Figure 4(b). In other words, this can be traced to the fact that as tS  increases, 
the surface temperature within the thermally stratified medium decreases. 
Physically, this decrease in the temperature distribution as the thixotropic fluid 
flows along a vertical surface may account for an increase in the viscosity of the 
fluid, and as a result of decrease in temperature the intermolecular forces 
binding the microstructure of thixotropic fluid becomes stronger and makes it 
possible for the fluid to be more viscous. Figure 5(a), Figure 5(b) and Figure 
6(a), Figure 6(b) illustrate the influence of Magnetic parameter M on velocity 
and temperature distributions respectively for different cases of non-Newtonian 
parameters 1 2 0.1,0.8K K= = . It is revealed that, as M increases at a fixed value of 

1 2 0.1,0.8K K= = , the velocity profiles decrease and the temperature profiles 
increase. Physically, this observation is due to the fact that, application of 
transverse magnetic field normal to the direction of the flow brings about a 
resistive force which has tendency to reduce the velocity of the fluid and hence 
makes the temperature of the fluid to rise. In order to further unravel the 
behaviour of the fluid, the effect of temperature-dependent thermal conductivity 
parameter ε  on temperature profiles are investigated in Figure 7(a) and 
Figure 7(b) for the different cases of 1 2K K=  when 0.6tS = . It is observed 
from Figure 7(a) that increase in the values of ε  corresponds to increase in the 
temperature distribution for the case of 1 2 0K K= =  (Newtonian) and all 
profiles quickly merge at 5.62η =  and descend towards the free stream. Also, 
from Figure 7(b) it is observed that as ( )0wT Tε δ= −  increases from 1 through 
2.0, 3.0 to 4.0 for the case of 1 2 1.0K K= =  there is an obvious increase in 
temperature profile within the domain 0 2.8η≤ ≤  and within the domain 
2.9 3.7η≤ ≤  all profiles merge together, thereafter at specific value of 3.8η =  
the temperature decreases away from the surface and all profiles decay smoothly  
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Figure 5. (a) Effect of Magnetic parameter M on velocity profile when 1 2 0.1K K= =  (b) Effect of Magnetic parameter M on 
velocity profile when 1 2 0.8K K= = . 
 

 
Figure 6. (a) Effect of Magnetic parameter M on temperature profile when 1 2 0.1K K= =  (b) Effect of Magnetic parameter M on 
temperature profile when 1 2 0.8K K= = . 
 

to zero as η →∞ . Figure 8(a) and Figure 8(b) illustrates the influence of 
Grashof number rG  on the velocity and temperature profiles when 

1 2 0.2K K= =  and 0.4tS = . From Figure 8(a) as rG  increases from 0.1 the 
velocity profile increases but as rG  increases through 0.5,1.0,1.5  all profiles 
conflate within the domain 2.7 2.8η≤ ≤  and the velocity increases towards the 
free stream. Likewise, from Figure 8(b) it is observed that increase in rG  leads 
to considerable decrease in the temperature profile. 

4. Convergence of the Homotopy Solutions 

It is obvious that the series (27) and (28) consist of the non-zero auxiliary 
parameters f  and θ  which can adjust and control the convergence. The  
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Figure 7. (a) Effect of Temperature-dependent thermal conductivity parameter ε  on temperature profile when 0K =  (b) 
Effect of Temperature-dependent thermal conductivity parameter ε  on temperature profile when 1.0K = . 
 

 
Figure 8. (a) Effect of Grashof number rG  on velocity profile when 1 2 0.2K K= =  (b) Effect of Grashof number rG  on 
temperature profile when 1 2 0.2K K= = . 
 

interval on  -axis for which the  -curve becomes parallel to the  -axis is 
recognized as the set of admissible values of f  and θ  for which the 
solution series converges. These figures show that the ranges for the acceptable 
values of f  and θ  are 0.7 0.4f− ≤ ≤ −  and 1.3 0.8θ− ≤ ≤ − . Figure 
9(a) and Figure 9(b) depict the  -curves for this problem, we obtained the 
approximate optimal values of f  and θ  at 10th-order of approximation as 
−0.797715 and −0.989828. 

5. Results and Discussion 

Computation has been carried out for various values of emerging parameters 
like; stratification parameter, magnetic parameter, temperature dependent  

https://doi.org/10.4236/ajcm.2019.92009


T. Oreyeni, E. Omokhuale 
 

 

DOI: 10.4236/ajcm.2019.92009 128 American Journal of Computational Mathematics 
 

 
Figure 9. (a)  -curve of ( )0f ′′  obtained at 10th-order of approximation (b)  -curve of ( )0θ′  obtained at 10th-order of 

approximation. 
 

Table 1. Comparison of the results for the skin-friction coefficient 1 2
x fRe C−  at 0.6M = , 1 0.1K = , 2 0.2K = , 

0r t rG S P A Bε= = = = = =  for various values of s. 

s Hayat et al. [6] Present result 

0 1.01988 1.03854 

0.7 1.20293 1.23432 

1.0 1.27055 1.30795 

 
Table 2. Numerical values of Skin-friction coefficient for various values s, 1K  and 2K  when 0.5M =  and 0rG = . 

s M 1K  2K  1 2
x fRe C−  

0.3 0.5 0.1 0.1 1.14839 

0.3 0.5 0.1 0.5 0.99376 

0.3 0.5 0.1 0.7 0.94908 

0.3 0.5 0.3 0.7 0.93290 

0.3 0.5 0.5 0.7 0.91812 

0.3 0.5 0.8 0.7 0.89821 

0.5 0.5 0.8 0.7 0.93026 

0.7 0.5 0.8 0.7 0.95816 

0.9 0.5 0.8 0.7 0.98229 

 
thermal conductivity parameter, non-Newtonian parameters and heat source 
parameters. Table 1 is being validated by direct comparison with the numerical 
results reported by Hayat et al. [6] when 0r tG S A Bε= = = = = . The 
numerical computations of skin-friction coefficient 1 2

x fRe C−  for the values of 
s, M and 1K  and 2K  are presented in Table 2, it is shown that the values of 
skin-friction coefficient 1 2

x fRe C−  increase by increasing s and decrease by 
increasing 1K  and 2K . 
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6. Conclusions  

Free convection MHD Thixotropic fluid flow past a vertical surface with 
temperature-dependent thermal conductivity, subjected to thermal stratification 
is investigated. Series solutions for the velocity and temperature fields were 
gotten and discussed. Effects of various parameters governing the flow fields 
were investigated. From this study, we conclude thus; 

1) Increase in the values of 1 2K K=  corresponds to increase in the velocity 
profile for both cases of 0.1tS =  and 0.8tS =  with opposite effect of the 
temperature profiles.  

2) The wall shear stress increases as the values of 1 2K K=  increase when 
0.8tS = .  

3) Temperature profile is a decreasing function of tS  for both cases of 

1 2 0K K= =  and 1 2 1.0K K= = .   
4) The wall shear stress decreases with increase in values of tS  when 

1 2 1.0K K= = . 
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