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1. Introduction

The Bohr model of the hydrogen atom can be still a useful tool in
considering the electron properties in that atom. The point - which
was neglected by Bohr and was planned to be discussed in the present
paper - concerns mainly the influence of the presence of the magnetic
field in the atom on the physical processes which can be examined.

In general the Bohr model is based on the equivalence of the attrac-
tive electrostatic force between the electron and atomic nucleus and
the repulsive centrifugal force due to the velocity of the circulating
electron along its orbit [1-5]. This assumption is supplemented by the
quantization requirement concerning the electron angular momentum.
In effect it is obtained the well-known set of the electron states of a
definite energy, the differences of which remain in a perfect agreement
with experiment.

This semiclassical model was formally objected mainly because of
the fact that the motion of the electron particle should be accompanied
by a continuous emission of its energy which makes the particle motion
to be only a very temporary effect. In practice, however, the electron
motion in the electron’s ground state is never stopped, and in case of an
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excited atom we observe only a very short-time spontaneous transition
of the electron from a higher to a lower quantum energy level. The
emitted energy in course of such transition is strictly connected with
the energy difference existent between the levels.

Our idea is to re-examine the Bohr model first by taking into account
the magnetic field created in the atom due to the electron circulation.
This field was fully neglected in the original Bohr’s approach. But
in effect of the magnetic supplement the electron is moving not in
one but in two fields, i.e. the electric and magnetic together. For
a combination of such fields the Lorentz force acting on the atomic
electron can be easily calculated [6].

We find that the Lorentz force for the hydrogen electron becomes
exactly zero. A similar calculation can be done for the classical radi-
ation intensity of the electron particle. This provides us also with a
zero result for that intensity. It should be noted that both zero effects
are strictly connected with the quantization properties exhibited by
the electric and magnetic fields entering the atom.

2. A Look on the Electron Properties in the
Hydrogen Atom

A specific situation of the Bohr hydrogen atom is that all discrete
states of that atom are the bound states, so they have a negative
energy. Since the electron energy in the atom obeys the virial theorem
[7], viz.

2fckin + Epot = 07 (1)
where Fiin and Fpo are respectively the kinetic and potential energy
parts, the total energy of a quantum state n becomes

Etot = Ekin + Epot = _Ekin (2)

which is a negative kinetic electron energy in the n state. The kinetic
energy can be written as

1 1 [e*\°
Ekin = <2> mvi = Qm (nh) (3)

- @

and m is the electron mass. Evidently the lowest quantum state n = 1
entering (2) should have the largest velocity

since [7]

Un

v = (4a)
because this makes (2) of the lowest value for any n > 1. On the other
hand the velocity v,, decreases gradually to zero at infinitely high n;
see (4).

Classically the circulating electron in the atom is submitted to the
well-known attractive electric field of the atomic nucleus having the
charge Ze = e, the property applied widely by Bohr. This gives the
well-known electric field acting on the electron [7]:

— 5 92 -
- e Ty e’m* Ty

E,=———=- —. 5

" r2 Ty ntht r, (5)
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But the circular electron motion along an orbit creates also the
magnetic field the size of which is dictated by the speed v, in (4).
The quanta of this field - neglected by Bohr - are derived below; see
also [8].

First, it can be easily verified that v,, is coupled with the orbit radius

n2h?
Ty =

(6)

and the time period T, necessary for the electron travel along the orbit
having the radius r,, viz.

me?

2mnih3
Tn = met (7)
by the formula
27r
Up = Tnn' (8)

In effect the electron motion has its circular frequency

_27T

Qy
Ty

9)
and this quantity is induced by the magnetic field B,, coupled with
(9) by the formula [6] [8] [9]
eB,,
Q,=—. 10
" me (10)
In result be obtain the size of the magnetic field B,, due to the electron

orbital motion equal to:
cm?e?

Bu= s

(11)

Our aim is to examine a classical expression for the particle accel-
eration in the presence of the electric field £ and magnetic field B
represented by [6]:

3. Calculation of the Acceleration in (12)
with the Aid of E,, B,, and ©,

First we note that the electron velocity vector v, is normal to the
vector E,,, so the dot product

Ty - By = 0. (13)

In this way the last expression on the right-hand side of (12) is equal
to zero. The next point, rather evident, is that

Uy, < C. (14)
A maximal v, holds for n = 1 and this gives approximately the ratio

U1 e 1
—_— == 1
c ch 137 (15)
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This provides us with the right-hand side of (12) reduced to

e = 1 =
— | E, — | [Uh X By ¢ . 16
(£) {80+ (3) 15 B} (16)
But the second vector component in (16) contains @, which is nor-
mal to B,,. The resulted vector product lies in the orbit plane and is

normal to the electron track, as it does also the vector En In effect
FE, and the vector combining v;, and B,, can add together. We find:

2 2.3 = 5,2 =
1 e® em”e’® 1, e’m* Ty,

1 .
- _‘n Bn - - — — = — 1
<c> [P > Bn] c¢nh n3h3 r, nihtor, (17)

because the sizes of both vectors entering (17) which are normal each
to other are constant in time. In the next step let us note that the
size of (17) is equal to the size of E, in (5).

Since the results obtained in (5) and (17) have opposite signs, the
sum in (16) becomes equal to zero. In effect we obtain a vanishing
Lorentz force due to (12) acting on the electron for any quantum
number 7.

4. The Energy Radiated by the Electron in
State n

This energy is obtained for the electron particle being in the quantum
state n in the form of the integral [6]:

N = 2 o
- /+oo (En +1[7, x Bn]> — (B, - 7,)?

3m2¢c3

AE, dt.  (18)

v2

n

o0 1- %

Evidently the expression entering the numerator of the fraction under
the integral is equal to zero because of the result in (13) and

E, + <(13> [0 x Bp] =0 (19)

entering equally (16) and (18). Therefore no energy is radiated clas-
sically by the electron being in state n.

5. Reference of the Field Strengths F, and
B, to the Electron Spin

The spin of the electron particle has been fully neglected in the Bohr
atomic model. Nevertheless it can be considered in that model on the
basis of the papers [10] [11] [12].

The approach done in references [10] [11] [12] concerned mainly the
spin property of electron on the Bohr quantum level n = 1. Our aim
is to extend the spin discussion to the orbits having n > 1. First,
the assumption that the spinning electron particle is circulating with
velocity close to the light speed c along a circle having its radius equal
to the shortest distance acceptable between two electron particles, viz.

h ¢
me . Q.
remains unchanged. The €2, is the angular velocity of the spinning
electron.

(20)

AZpin =Te =
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The motion chracterized by the radius 7. in (20) induces the mag-
netic field of the strength B. which is coupled with . by the formula

B
Q.= 2 (21)

mc

This expression, together with (20), implies the relation

h mc?

— = 22

mc eB, (22)
SO ) s
mec

B,.= ——. 23

o (23)

Simultaneously a minimal distance between the proton being at rest
and the moving electron particle should approach also the distance
(20) because the proton contribution to that distance is negligible due
to a large proton mass. In effect the absolute value of the electrostatic
force between the proton and the spinning electron becomes [11] [12]:

e? e?m?c?
ek = (AZmin)? = B2 (24)

Since the force eB, is normal to eE,, the driving electron velocity
due to the joint action of eB, and eE, is given by [13]:

|E. x B,| E. e2 €2
Ve =C——=5—— =C—5 = C— = —. 25
¢ B? B. he R (25)
Therefore the driving velocity (25) is equal to the orbital Bohr electron
velocity existent in the case of n = 1; see (4a).
But the ratio % entering (25) is exactly equal to %, so we have

Ec El
L St 26
c 3. c B, vy (26)
This is a maximal driving velocity along the Bohr orbit. The other
orbit velocities like
V2, V3,Vq,... < U1 (27)

are smaller than v; and can be attained successively by the ratios:

Es e2 €2
—=c—=—= 26
‘B, ~ “2hc 20 % (26a)
E3 62
=0 e = 26b
B, = 3 = U (26b)
E4 62
R N 26
B, = Cape = U (26¢)
etc. This means that the driving electron velocities along successive
orbits n can be provided by the ratios % characteristic for these
E. .

orbits, with no reference to the ratio - excepting for the case of
n = 1.

The parameters entering . and B, define the electron spin frequen-
cy which is the same for all Bohr orbits n. Since the time of circulation
along the spin orbit having the radius r, is equal to

T o 2rre  2mh _ h

(28)

- - 77
c mec2 mc?
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the number of spin circulations in course of the time 7T, necessary to
travel along the nth Bohr orbit becomes [see (7)]:

T,  2xh*n® mc® 35262_77,73 99
7.  me*r h T T (29)

Here « is the well-known atomic constant:

Qe=—=— (31)
is evidently independent of n.

6. Adiabatic Invariants for the Electron
Orbital Motion and Spin Motion in the
Bohr Atom

Having the B,, for the electron orbital motion and B, for the spin
motion [see Equations (11) and (23) respectively] it is easy to cal-
culate the adiabatic invariant in each motion case according to the
formula [6]:

7— 3mep? '

¢B, (32)

The symbol p,, in (32) represents the size of momentum along the
electron path which is

62

Pn = mup =m_— (33)
in the case of circulation along the nth Bohr orbit with the velocity
v, [see (4)], and instead of p,, the expression

Pe =M (34)

approximates the momentum of a spinning electron particle; see the
inferences above (20).

The formula (33) substituted to (32) together with B, from (11)
gives the invariant equal to

2
5 = 3mnh, (35)

whereas (34) substituted to (32) instead of p,, and B, of (23) instead
of B,, lead to the invariant formula:

_ 3mep? _ 37rcm262h _3.h (36)

I
eB, m2¢3

Evidently (35) and (36) are much similar: they differ solely by an
integer factor n indicating the orbit number present in (35).
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7. Summary

The Lorentz force acting on the electron in the Bohr’s hydrogen atom,
and classical radiation energy of that electron which is assumed to
occupy a definite quantum state n, are examined. It is found that
both the Lorentz force and radiation energy tend to be zero, on con-
dition the magnetic field induced by the electron motion in the atom,
neglected in the former Bohr’s theory, is taken into account.

The electric and magnetic field strengths (F,, and B, respectively)
entering the Lorentz force are useful in deriving the drift velocity of
the electron along the orbit n. For n = 1 the drift velocity obtained
from F, and B, is equal to that obtained from the ratio of E. and
B, characteristic for the spinning electron particle. But for n > 1 the
driving velocity, equal to v,, < vy, is defined solely by the ratio of E,
and B,,.

A characteristic feature concerns the adiabatic invariants of the or-
bital and spin motion calculated respectively in Section 6: both invari-
ants differ solely by the integer factor n present in the orbital case.
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