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Abstract 

Contrary to the opinion about approximation nature of a simple-iteration 
method, the exact solution of a system of linear algebraic equations (SLAE) in 
a finite number of iterations with a stationary matrix is demonstrated. We 
present a theorem and its proof that confirms the possibility to obtain the fi-
nite process and imposes the requirement for the matrix of SLAE. This matrix 
must be unipotent, i.e. all its eigenvalues to be equal to 1. An example of 
transformation of SLAE given analytically to the form with a unipotent ma-
trix is presented. It is shown that splitting the unipotent matrix into identity 
and nilpotent ones results in Cramer’s analytical formulas in a finite number 
of iterations. 
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1. Introduction 

The mathematical community considers that a simple-iteration method ex-
pressed as a linear difference equation with a stationary matrix for solving a sys-
tem of linear algebraic equations (SLAE) is approximate because it does not give 
the exact answer for a finite number of iterations. 
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Examples of direct statements are: 
“Iterative methods give a tool to obtain an approximate solution of a system of 

linear equations” (Faddeev D.K., Faddeeva V.N.) [1]. 
“… iterative methods that allow the roots of a system to be obtained with a 

given accuracy via converging infinite processes” (Demidovich B.P., Maron I.A.) 
[2]. 

“The main difference of iteration methods from direct ones consists that itera-
tion methods give an exact solution to Equation (1) only as a limit of sequence of 
iterative approximations” Samarskii A.A. [3]. 

“Application of iterative method does not allow an exact solution to be 
reached …” (Strang G.) [4]. 

“Iterative methods for solving (1) are infinite methods which find only ap-
proximate solutions” (Rice J.R.) [5]. 

“… iterative methods do not frequently give an exact solution in a finite 
number of steps” (Demmel W.J.) [6]. 

“Iterative methods do not give strictly exact solution, as it is attained as a limit 
of a sequence of vectors” (Pirumov U.G.) [7]. 

“For iterative methods, i.e. for methods in which an exact solution can be ob-
tained only as a result of an infinite repetition of uniform (as a rule, simple) op-
erations …” (Verzhbitskii V.M.) [8]. 

“… iterative methods give a sequence of approximations which (one can hope) 
converges to the genuine solutions of the problem” (Watkins D.S.) [9]. 

“Iterative methods are approximate methods which find solutions of systems 
by means of infinite converging processes” (Shevtsov G.S., Kryukova O.G., 
Myznikova B.E.) [10]. 

The above statement taken from [3] has the following continuation: “The ex-
ception is methods of ‘finite’ iterations, which include methods of conjugate di-
rections that, theoretically, enable the exact solution to be found in a finite 
number of operations for any initial guess …”. This only emphasizes the authors’ 
viewpoint that the exact solution of an SLAE cannot be obtained via iterations 
with a stationary matrix. In this way, these methods are contrasted with 
non-stationary methods that provide the exact solution in a finite number of 
steps. Similar reasoning can be found in other publications, for example, in [8] 
we read: “… the conjugate gradient method being essentially iterative should 
actually be referred to direct methods, because it is proved that with its help … 
the solution of a linear system is achieved in no more than n steps for any initial 
vector”. 

Indeed, as it can be found in numerous schoolbooks and monographs as well 
as in Internet, it is generally accepted to divide methods for solving SLAE into 
direct and iterative ones and to match them with exact and approximate me-
thods with stationary matrix. This reflects the point of view on approximation 
nature of iterative methods. 

These opinions can be briefly and clearly expressed for a wide audience as 
follows: for an analytically given second-order SLAE, the solution in the form of 

https://doi.org/10.4236/am.2019.106027


A. Iskhakov, S. Skovpen 
 

 

DOI: 10.4236/am.2019.106027 373 Applied Mathematics 

 

Cramer’s formulas cannot be obtained by a simple-iteration method. 
For an arbitrary SLAE, we call this thesis the postulate about approximation 

nature. 

2. Problem Statement 

The paradox is that the postulate, which denies the possibility of obtaining a fi-
nite iterative process in a system with a stationary matrix, does not reflect the 
real situation for a very long time. 

The fact is that in control theory, where for a linear discrete system characte-
rized by the same equation, the method of achieving a given state in a finite 
number of steps has been known since the middle of the last century [10]-[19]. 
A brief history on finite processes, which have been called “deadbeat”, is pre-
sented in [19]. For a system described in the input-output relations, the finite 
processes are achieved if the coefficients of the characteristic polynomial are 
equal to zero. For a control system defined in the state space and characterized 
by a matrix of coefficients, the process of moving terminates in a finite number 
of steps if the matrix is nilpotent. Such a matrix is obtained by transformation of 
the original system matrix into Frobenius form and then the row with characte-
ristic polynomial coefficients is reduced to zero (except for sign) by adding a row 
of coefficients having the same values with opposite signs. These coefficients are 
produced in the system’s feedback loop. 

Generally, this method can be applied to iterative solution of an SLAE, but 
only in a homogeneous case, i.e. to reduce the error to zero for a finite number 
of iterations that probably was the reason of his unknown for algebraists. 

Thus, it should be assumed that from the standpoint of control theory, for a 
homogeneous SLAE, the postulate is refuted, while for a non-homogeneous one 
there is no proof. 

The aim of this work is to refute the postulate about approximation nature of 
a simple-iteration method applied to a non-homogeneous SLAE. The proof is 
given and accompanied by an example of obtaining an exact solution of a 
second-order SLAE in the form of Cramer’s formulas in two iterations. 

3. Methodology 

To achieve the goal, we have developed an alternative method for controlling the 
spectrum of a matrix without transforming the matrix to the Frobenius form for 
which the row of the characteristic polynomial coefficients needs to be obtained 
except for sign. The main advantage of the method is the possibility to produce 
the spectrum equal to a given set of eigenvalues not only by perturbation of an 
autonomous matrix, but also in the case when the matrix is multiplied by a vec-
tor and added to another vector in the composition of algebraic, difference and 
differential equations. 

Setting a zero spectrum for a difference equation gives a nilpotent matrix. The 
back conversion of an iterative system to algebraic one forms a unipotent matrix. 
The direct link between those matrix means that the condition for solving an 
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SLAE for a finite number of iterations is the transformation of system matrix to 
the form, in which all eigenvalues are equal to 1. An example is the Gauss me-
thod, where a triangular matrix with a unit diagonal (or unitriangular) is split 
into an identity matrix and strictly triangular matrix, which is nilpotent. In this 
regard, the solution process known as back substitution can be formally consi-
dered as an iterative process with a sparse matrix, which is not required to be 
multiplied by a vector. At each step, only one component of the solution vector 
is determined. In practice, this is done without any mention about the iterative 
nature of the process. 

In the proposed method, the transformation gives a nilpotent matrix but does 
not change the density of the matrix of an original SLAE. Actually, the iterative 
procedure of solution (it may also be considered as back substitution) contains 
the operation of multiplying a matrix by a vector, and all the entries of the solu-
tion vector are obtained at the final step. The maximum number of steps does 
not exceed the order of the matrix. 

4. Brief Background 

The method evolution is described in more detail in [20]. The first result in the 
form of a two-step converging process in a second-order linear discrete system 
was obtained in 2001 when we were developing an advanced deadbeat control 
algorithm for a technical device. The purpose of the algorithm was to eliminate 
the transformation of the matrix to the Frobenius form, which is necessary in 
the well-known method and requires extra time or additional hardware. This 
was accomplished through a special type of a feedback in which the first differ-
ence of the state vector was used instead of the vector itself. The equation of mo-
tion expressed in such form has been formally representing a particular case of 
the canonical form of a two-layer iterative method. 

To find eigenvalues of a matrix, a novel transformation based on the depen-
dencies between the elements of the matrix and its spectrum has been developed. 
This transformation enabled the elements of the feedback vector to be found for 
setting desired spectrum. This was how the engineering problem of synthesizing 
a deadbeat controller was solved for a wide class of technical devices such as 
semiconductor power converters that are widely used in almost all areas of hu-
man activity. 

Later it turned out that new methods allowed us to use them not only in con-
trol theory to implement control algorithms for technical systems, but also to 
obtain a qualitatively new effect in mathematics, which refutes the postulate 
about the approximation nature of a simple-iteration method for solving SLAE. 

The basics of the method for transforming a matrix spectrum were expounded 
in [21] [22]. The method for solving a linear difference equation in a finite 
number of steps was presented in several journals, for example, in [23]. In this 
way, the possibility to find the exact solution of an SLAE by using iterative pro-
cedure with a stationary matrix has been confirmed. 

In this paper, the possibility of obtaining the exact solution of an SLAE in a fi-
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nite number of iterations is demonstrated for the first time. A theorem is for-
mulated and proved. For a wide audience without a special mathematical back-
ground, the example of solving the simplest SLAE is presented for clarity and 
understanding. In addition, for the sake of clarity, two types of transformation 
are given. The first type of transformation provides a unite spectrum of the al-
gebraic equation matrix, while the second type derives the nilpotent matrix from 
the canonical form of a two-layer iterative method. The result of the iterations is 
represented in the form of Cramer’s formulas known in the school course of 
mathematics. This directly denies the above opinions about the impossibility of 
obtaining an exact solution of SLAE in a finite number of iterations. 

5. Theorem and Proof 

Theorem. To find a solution of an SLAE 

Ax b= ,                            (1) 

where х and b are the unknown and known vectors of k size, respectively, А is a 
square nonsingular matrix of k size, in a finite number of iterations, it is neces-
sary and sufficient to reduce (1) to the form 

Ex c= ,                            (2) 

where E is a unipotent matrix with unit spectrum. Then the iterative equation 

( ) ( )1x n Nx n c+ = + ,                       (3) 

where 0,1,2, ,n E I N= = − , I is the identity matrix, for an arbitrary initial 
vector х0, generates the exact solution (excluding round-off errors) 

1 1x A b E c− −= =                          (4) 

no more than for m ≤ k iterations. 
Proof. The matrix Е is split into the identity matrix I and the nilpotent matrix 

N with the intrinsic property 

0=kN .                            (5) 

A non-unipotent matrix does not form a nilpotent one, and, with с = 0, the 
solution to (3) given by 

( ) ( )0nx n N x=                          (6) 

depends on х(0). This proves the necessity. 
The sufficiency follows from the solution of (3) by using (5) for n = k: 

( ) ( ) ( ) ( ) 110k kx k N x I N N c I N c x−−= + + + + = − = .          (7) 

Remark 1. The simple-iteration method is approximate due to the extension 
of the condition det(A) ≠ 0 to the matrix of the iteration equation, as follows 
from control theory and this statement is confirmed here, but this is not neces-
sary. 

Remark 2. The transformation of the difference equation to the form with 
nilpotent matrix, used in control theory, with c = 0, results in to zero in a finite 
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number of steps, and, with c ≠ 0, it gives the shifted vector (as it was named in 
[17]) instead of the solution. 

Remark 3. The specified spectrum is formed by changing the elements of a 
row of the matrix A itself, while in control theory, a row of the elements of the 
characteristic polynomial of the Frobenius matrix is changed, which is obtained 
by the transformation of A. 

Remark 4. There exist values х0 such that the number m equals to 
( )1,2, , 1k −

, in particular, m = k – 1 for х(0) = с. 
Remark 5. There exists a variety of unipotent matrices satisfying (2) so the so-

lution (7) can be obtained by using different nilpotent matrices. 
The iterative method for exact solution of an SLAE in a finite number of steps 

has the computational procedure of iterative methods, in the conventional sense, 
like the Jacobi and Seidel methods, can be called a finite-iterative method. As in 
control theory, it is based on setting a unit spectrum for the SLAE matrix or a 
zero spectrum for the matrix of the iteration equation. The main difference is the 
possibility to solve not only a homogeneous equation, but also a 
non-homogeneous one. 

According to the control theory terminology, the transformation of an SLAE 
into the form with a unipotent matrix is provided via feedback on the first dif-
ference of the desired vector. Such a transformation is mathematically a special 
case of the canonical form of a one-step two-layer iterative method. 

It should be emphasized that the theorem specifies only the possibility of 
solving SLAE in a finite number of iterations but it does not provide an algo-
rithm for obtaining a nilpotent matrix. As noted above, the algorithm was de-
veloped in the context of solving the eigenvalue assignment problem for control 
the spectrum of the matrix of equation describing a specific technical device. 
Here, we demonstrate the application of the method that distinctly demonstrates 
a result in the form of an analytical solution of an SLAE in an iterative way, re-
futing the statements above. 

6. Examples of Solving a System of Two Linear Equations 

Consider (1) for k = 2, 

11 12

21 22

a a
A

a a
 

=  
 

, 1

2

b
b

b
 

=  
 

,                   (8) 

and write the system in standard form 

11 1 12 2 1

21 1 22 2 2

,
.

a x a x b
a x a x b

+ =
+ =

                       (9) 

6.1. Transformation of an SLAE to the form with a Unipotent Matrix 

The objective is to transform the system (9) and obtain the equivalent system (2) 
with a unipotent matrix E. We write the first Equation of (9) in the form 

11 1 12 2 2 2 1 2 2a x a x h x b h x+ + = + ,                   (10) 
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where h2 is a constant coefficient. Substituting the second unknown 

( )2 2 21 1 22x b a x a= −                        (11) 

into the right-hand side of (9) results in 

( ) ( )11 21 2 22 1 12 2 2 1 2 2 22a a h a x a h x b b h a+ + + = + .           (12) 

After dividing (12) by the constant coefficient h1, we obtain an SLAE in the 
form (2), 

21 2 2 2
11 1

22 12 2 2211 12 1 1

1 1 121 22 2 2

21 22 2

a h b ha b
a a h ae e x x

Ex
h h he e x x
a a b

   + +   +        = = =             
   
   

,    (13) 

with two (not yet known) coefficients h1 and h2, which are used to control the 
spectrum, that is, to specify two characteristic numbers λ1 and λ2. According to 
the theorem, they must be equal to 1. In this case, the matrix E = [ei,j] of (2) sa-
tisfies the following conditions 

11 22 1 2

11 22 12 21 1 2

2,
1,

e e
e e e e

λ λ
λ λ

+ = + =
− = =

                       (14) 

which leads to the following linear system 

21 2
11

22
22

1

21 2
11

22 12 2
22 21

1 1

2,

1.

a ha
a a

h
a ha
a a ha a

h h

+
+ =

+
+

− =

                   (15) 

We rewrite it in the normal form 

( )22 1 21 2 22 11

1 11 22 12 21

2 ,
,

a h a h a a
h a a a a

− + = −

= +
                   (16) 

and find the first coefficient h1 as the determinant of A. The second coefficient h2 
is 

( )2 11 22 1 22 212h a a h a a= − + −   .                   (17) 

Substituting h1 and h2 into (13) makes the matrix 

( )2
22

11 12 22
21

21 22
21 22

1
2

ae e aE ae e
a a

 − −
  − 

= =   
   

 

, 

2 2
1

221

12

2

b hb
ac

c
hc
b

 +    = =    
 
 

   (18) 

unipotent and defines the right-hand side of the first equation of (9). 
Let us summarize the above. For the original SLAE Ax = b we obtained the 

equivalent system of the form Ex = c with the unit spectrum of E. The prepara-
tory stage called a forward elimination in the Gauss method is completed. Ac-
cording to the theorem, the iterative process, with a nilpotent matrix 
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( )2
22

11 12 22
21

21 22
21 22

1
1

1

an n aN I E an n
a a

 −
  − + 

= = − =   
   − − 

,          (19) 

should provide the exact solution no more than in two iterations. We have to 
show it. 

First, we make sure the matrix (19) is nilpotent. To do this, we use (14) to 
calculate 

11 22

11 22 12 21

0,
0,

n n
n n n n

+ =
− =

                      (20) 

so the matrix (19) is really nilpotent. In the next place, using the expression (3) 
we execute two iterations 

( ) ( )1 0x Nx c= + , ( ) ( ) ( ) ( )22 1 0x Nx c N x I N c= + = + + .       (21) 

Due to the property (5), the first summand in (21) is zero. This mathematical 
statement says that the result does not depend on x(0). The matrix factor in the 
second summand, due to the equality 

( )
( )2

22
1 1 22

21

21 22

1

2

a
aI N I N E a
a a

− −

 −
 

+ = − = =  
 − − 

,             (22) 

is the inverse matrix of the equivalent system (2), which either has the unite 
spectrum. Therefore, the second iteration actually representing the product of 
E−1 by c, 

( )
( )

( )

( )

2 2
21

222 222 2
1 22 222

22 1 211 22
21

1 2 2
121 22

222
21 22 2

1

1
1

2

2
2

b hb
aab hb a ba a h aax E с a h b hba a ab a a b

h

−

 + −     +−       = = =         +− −       − − 
 

, (23) 

after simplifications gives an analytical solution of the SLAE in the form of Cra-
mer’s formulas 

( )
T

1 22x x ∆ ∆ = =  ∆ ∆ 
,                      (24) 

where 11 22 12 21a a a a∆ = − , 1 22 1 12 2a b a b∆ = − ,

 

2 11 2 21 1a b a b∆ = − . 
The expression (24) represents the solution of a system known as Cramer’s 

formulas (or Cramer’s rule) in a school course of mathematics. This confirms 
the possibility to obtain an exact solution of an SLAE in iterative way with sta-
tionary matrix and evidently proves that the postulate is false. The form of (24) 
suggests that this expression can be generalized to an SLAE of an arbitrary order 
k and the exact solution can be found at the k-th iteration, 

( ) ( ) ( )
T

11 1k kx k x I N N c I N c−− ∆∆ = = + + + = − =  ∆ ∆ 
  .    (25) 
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In accordance with Remark 4, the exact solution can be obtained for a number 
of iterations not exceeding the order of the system. In this example, the exact 
solution is found after one iteration if we choose the initial vector x(0) equal to 
the right-hand side c of the equivalent system. Then the solution (24) follows at 
the first iteration, 

( ) ( )
( )2 2 2 1

122
2222

21
1 2

21 22
2

1 1 011
0 1

1

b hba aax I N c a h
a a b

  ∆    +−      − +  ∆ = + = + ⋅ =        ∆    − −        ∆  

. (26) 

The same results can be gained by transformation of the second equation in (9) 
instead of the first one as it shown in [22]. 

6.2. Transformation of an SLAE to the Form with a Nilpotent Matrix  
Obtained from Canonical Form of Two-Layer Iterative  
Method 

The transformation is that any one row of the iterative system is changed and 
coefficients are determined in order to obtain a given spectrum of a matrix, in 
this case, to be a zero spectrum. We write (1) in canonical two-layer form [3] 
with a single iteration parameter, 

( ) ( ) ( )1Ax n H x n x n b+ + − =   ,                (27) 

and recall that the second summand in (27) plays a role of the feedback in con-
trol theory. 

Taking a rank-one matrix 

1 2

0 0
h h

H  
=  
 

                      (28) 

whose elements play the same role as in the first example, we expand the first 
equation 

( ) ( ) ( ) ( ) ( ) ( )11 1 12 2 1 1 1 2 2 2 11 1a x n a x n h x n x n h x n x n b+ + + − + + − =       . (29) 

We write the second Equation of (9) as 

( )21 1 22 2 2 21a x a x x b+ + = + ,                (30) 

and then represent it in the indexed form 

( ) ( ) ( ) ( )2 21 1 22 2 21 1x n a x n a x n b+ = + + − .          (31) 

Substituting (31) into (29) leads to an iterative equation with two coefficients 
h1 and h2, 

( )
( )

( )
( )

( )
( )

1 11 12 1 1

2 21 22 2 2

11 1 21 2 12 22 2 1 2 2
1

1 1 1
2

21 22 2

1
1

.
1

x n n n x n c
x n n n x n c

a h a h a a h b b h
x n

h h h
x n

a a b

 +      
= +      +       

− + + +   − −     = +        + −   

 (32) 
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Here, h1 and h2 are determined from the nilpotency condition (20). Substitut-
ing the elements of (32) into (20) gives a linear system 

( )

11 1 21 2
22

1

11 1 21 2 12 22 2
22 21

1 1

1 0,

1 0

a h a h a
h

a h a h a a ha a
h h

− +
− + + =

− + +
− + + =

          (33) 

expressed in normal form 

( )
( )

22 1 21 2 11

22 1 21 2 11 11 22 12 21

2 ,

1

a h a h a

a h a h a a a a a

+ − =

+ − = + −
             (34) 

whose solution is 

( )
1 11 22 12 21

2 22 1 11 21

,

2 ,

h a a a a

h a h a a

= − +

= + −  
                  (35) 

where h1 is the determinant (except for sign) like in the first type of transforma-
tion. 

Substituting (35) into (32) make the matrix nilpotent (it is easy to check), 

( )2
22

11 12 22
21

21 22
21 22

1
1

1

an n aN an n
a a

 − +
  − − 

= =   
   + 

,            (36) 

while the matrix of algebraic system becomes unipotent, 

( )2
22

11 12 22
21

21 22
21 22

1
2

ae e aE I N ae e
a a

 +
  + 

= − = =   
   − − 

.          (37) 

As a result, for х(0) = c, iterative equation with the matrix (30) gives the solu-
tion of the SLAE in the form of Cramer’s formulas 

( ) ( )
( )

( )
[ ]

2
22

122
21

2
21 22

2
T1 2 222

T 1 222
1 1 221

221 22

1 1 011
0 1

1

1

2

a cax x N I c a c
a a

b b ha
a h x xa

ba a

  − +
    − − 

= = + = + ⋅     
     +  

  + − +
∆ ∆−    = ⋅ = =     ∆ ∆    −+   

    (38) 

after the first iteration. 

7. Conclusion 

In this paper, the possibility of exact solution of an SLAE by iterations with a 
stationary matrix has been demonstrated. Two examples are given to illustrate 
different approaches for finding the exact solution of a simplest SLAE by using 
the transformation of an original system to the form with unipotent or nilpotent 
matrix. It is shown that an exact solution of an SLAE is obtained in the form of 
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Cramer’s formulas. The fallacy of the postulate about the approximation nature 
of a simple-iteration method has been proved. Therefore, there is a need to pre-
pare appropriate corrections in order to include them in educational programs 
on methods for solving linear systems. 
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