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Abstract 
Extreme events are defined as values of the event below or above a certain 
value called threshold. A well chosen threshold helps to identify the extreme 
levels. Several methods have been used to determine threshold so as to ana-
lyze and model extreme events. One of the most successful methods is the 
maximum product of spacing (MPS). However, there is a problem encoun-
tered while modeling data through this method in that the method breaks 
down when there is a tie in the exceedances. This study offers a solution to 
model data even if it contains ties. To do so, an optimal threshold that gives 
more optimal parameters for extreme events, was determined. The study 
achieved its main objective by deriving a method that improved MPS method 
for determining an optimal threshold for extreme values in a data set con-
taining ties, estimated the Generalized Pareto Distribution (GPD) parameters 
for the optimal threshold derived and compared these GPD parameters with 
GPD parameters determined through the standard MPS model. The study 
improved maximum product of spacing method and used Generalized Pareto 
Distribution (GPD) and Peak over threshold (POT) methods as the basis of 
identifying extreme values. This study will help the statisticians in different 
sectors of our economy to model extreme events involving ties. To statisti-
cians, the structure of the extreme levels which exist in the tails of the ordi-
nary distributions is very important in analyzing, predicting and forecasting 
the likelihood of an occurrence of the extreme event. 
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1. Introduction 

Certain values in the tails of any distribution, represent extreme events and they 
are pointers to eventuality. The values in the tails are rare, few, but can have 
great impact on the conclusion arrived at by the analysts. Different sectors of our 
life experience extreme events and here we mention just but a few. According to 
[1] and [2], extremely low production in agriculture results to famine if the 
agriculture depends on rainfall. This means that the amount of rain experienced 
in that region was too low that crops dried up [3] or very high rainfall that it 
destroyed all crops that had been planted. [4] studying extreme rainfall in 
mountainous region and [5] studying extreme rainfall in west Africa did observe 
that, how low or high the amount of rainfall depends on the threshold attached 
to the rainfall in that region. In insurance industries [6], while discussing tools in 
finance and insurance, noted that extreme high claims by the customers can be 
very dangerous for the company while extreme low claims by the customers can 
be very beneficial for the company’s profit. This means that there is a critical 
level that the insurance company would wish it is not surpassed and if it is, 
according to [7], it must be prepared for this eventuality. Very high emissions of 
the waste product from the manufacturing industries is detrimental to the 
environment and ozone layer. However, countries must continue to industrialize 
or expand their industries for economic prosperity. A certain level of emissions 
must not be exceeded otherwise the environment and ozone layer would be 
destroyed. The critical value for which if exceeded, an eventuality occurs is called 
a threshold. The events beyond this threshold are called extreme events and they 
happen to be at the tails of the distribution. Extreme value theory (EVT) is a tool 
which attempts to provide us with the best possible estimate of the tail area of 
the distribution. In [8] work on the importance of tail dependence in Bivariate 
frequency analysis, there are two principal kinds of model for extreme values. 
The oldest group of models is the block maxima models; these are models for the 
largest observations collected from large samples of identically distributed 
observations. According to [9] and [10], the block maxima/minima methods 
are fitted with the generalized extreme value (GEV) distribution. A more 
modern group of models is the peaks-over-threshold (POT) models; these are 
models for all large observations which exceed a high threshold. The POT 
models are generally considered to be the most useful for practical applications, 
due to a number of reasons. First, by taking all exceedances over a suitably 
high threshold into account, they use the data more efficiently and second, 
they are easily extended to situations where one wants to study how the 
extreme levels of a variable Y depend on some other variable X for instance, Y 
may be the level of tropospheric ozone on a particular day and X a vector of 
meteorological variables for that day. This kind of problem is almost impossible 
to handle through the annual maxima/minima method. POT methods are used 
where the exceedances are modeled to understand the behavior of the data in the 
tails. Many methods of determining an optimal threshold have been developed. 
The most common one is the graphical method proposed by [11]. This method 
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is however subjective and requires experts to determine the threshold. The most 
successful method is the Maximum Product of Spacing (MPS). Maximum 
product of spacing (MPS) method or maximum spacing estimation (MSE) 
method was proposed by Cheng [12] and Ramnaby [13] as an alternative 
method to maximum Likelihood Estimate method (MLE). A threshold approach 
for peaks over threshold using MPS was carried out by [14] and noted that the 
selection of a threshold is an important and challenging problem [15]. While 
studying traditional estimation methods and MPS in Generalized Inverted 
Exponential Distribution found out that MPS outperformed MLE and least 
square (LSE) methods on the basis of K-S distance and Akaike Information 
Criterion (AIC). This method however encounters a problem whenever the 
exceedances have a tie. This study intended to offer a solution to this problem.  

2. Methodology 
2.1. Improved MPS Methodology 

The MPS allows efficient estimators in non regular cases where MLE may not 
exist. This is especially relevant to the GEV distribution in which the MLE does 
not exist when 1ε < − . According to [12] Maximum spacing estimators are 
sensitive to closely spaced observations, and especially ties. In cases of ties, some 
scholars have suggested that one value of each tie is taken [16] and [17]. Let 

1 2, , , nx x x  be a random sample of independent observations from a 
continuous distribution 

0
Fθ  belonging to ,Fθ θ ∈Θ . Applying the probability 

transform ( ).Fθ  to the order statistics 1, 2, ,n n n nx x x≤ ≤ ≤  yields  
( ) ( ) ( )0, 1, 1,0 1n n n nF x F x F xθ θ θ +≡ ≤ ≤ ≤ ≡ . We define the spacings as the gaps 

between the values of the distribution function at adjacent ordered points  

( ) ( ) ( )1i i iD F x F xθ θθ −= −                      (1) 

for 1,2, , 1i n= +
. The maximum spacing estimator of 0θ  was defined as 

value that maximizes the logarithm of the geometric mean of sample spacings 
[12].  

( )ˆ arg max nS
θ

θ θ
∈Θ

=                         (2) 

where  

( ) ( ) ( ) ( )( )

( )

1
1 2 1

1

1

ln

1 ln
1

n
n n

n

i
i

S D D D

D
n

θ θ θ θ

θ

+
+

+

=

= ⋅

=
+ ∑



 

This maximum spacing estimator is sensitive to the ties. That is, for any  

1i m i m ix x x+ + −= = =  

Then ( ) ( ) ( )1i m i m iD D Dθ θ θ+ + −= = = . This therefore collapses the method. 
The modified MPS method proposed here is to use grouped data frequency table. 
Let 1 2, , , nx x x  occur 1 2, , , nf f f  times respectively. The geometric mean is 
given by  
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( )1 2

1
1

1 2
1

n i
n Nf ff f N

n i
i

G x x x x
=

 = ⋅ =   
∏  

This implies that  

1

1ln ln
n

i i
i

G f x
N =

= ∑                        (3) 

This leads to the modified MPS method as  

( ) ( ) ( ) ( )( ) ( )11 2
1

1
1 2 1

1

1ln ln
1

n
n

ff fn
n n i i

i
S D D D f D

n
θ θ θ θ θ+

+
+

+
=

= ⋅ =
+ ∑      (4) 

In case 1 2 1 1nf f f += = = = , then we go back to the standard MPS. The 

Spacings are such that ( )
1

1
n

i
i

D θ
=

=∑ . Under MPS, the ( )iD θ ’s are defined as: 

( ) ( )1 1: ,nD F xθ θ=  

( ) ( ) ( ): 1:, ,i i n i nD F x F xθ θ θ−= −  

( ) ( )1 :1 ,n n nD F xθ θ+ = −  

Therefore, Equation (4) can be partitioned as: 

( ) ( ) ( ) ( )1 1 1 1
2

1; , , ln ln ln
1

n

n i i i n n
i

S x f D f D f D
n

θ ε σ θ θ θ+ +
=

 = + + 
+  

∑     (5) 

2.2. Estimation of Generalized Pareto Distribution Using the  
Modified MPS Method 

To estimate the parameters, we substitute the GPD  

( )

1

1 1 , 0
; ,

1 exp , 0

x u
G x

x u

ε
ε ε

σε σ
ε

σ

−
 −   − + ≠     = 

 −   − − =     

             (6) 

into the MPS method. This lead to two cases of estimating the GPD parameters. 

2.2.1. Case 1: When 0ε ≠  
In this case:  

1

1
1 1 1

xD
εθ

ε
σ

−
 −  = − +  

  
                     (7) 

1 1

11 1 1 1i i
i

x x
D

ε εθ θ
ε ε

σ σ

− −

−

   
 −   −       = − + − − +                  

   

 

which leads to  
1 1

11 1i i
i

x x
D

ε εθ θ
ε ε

σ σ

− −

− −   −    = + − +      
      

            (8) 

and  
1

1 1 1 1 n
n

x
D

εθ
ε

σ

−

+

 
 −   = − − +      

 

                 (9) 
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implying that  
1

1 1 n
n

x
D

εθ
ε

σ

−

+

 −  = +  
  

 

Therefore, Equation (5) now becomes:  

( )
1

1
1

1 1

1

2

1

1

1; , , ln 1 1
1

ln 1 1

ln 1

n i

n
i i

i
i

n
n

xS x f
n

x x
f

x
f

ε

ε ε

ε

θ
θ ε σ ε

σ

θ θ
ε ε

σ σ

θ
ε

σ

−

− −

−

=

−

+

  
 −    = − +    +      

 
 −   −     + + − +              
 


 −   + +   

   

∑    (10) 

The estimation of the parameters involves taking partial derivatives of 
Equation (10) with respect to each of the parameters and setting the result to 
zero. For the estimation of ε , the first term on the R.H.S is worked out as: 

Let  
1

1
1 ln 1 1

xK
εθ

ε
σ

− 
 −   = − +      

 

                 (11) 

implying that 
( )11 1

2
1

1 ln 1
1

xK x
x
θ θ

ε
ε σεθσε ε

σ

−∂  −  = − +  ∂  −     +  
  

          (12) 

Working out the second term of Equation (10); 
Let  

1 1

1
2 ln 1 1i ix x

K
ε εθ θ

ε ε
σ σ

− −

−

 
 −   −     = + − +       

        

         (13) 

Therefore;  

2
1 1

1

1 1
2

1

2

1

1 1

1 1 1ln 1
1

1 1 1ln 1
1

i i

i i

i

i

i

K

x x

x x
x

x
x

ε ε
ε θ θ

ε ε
σ σ

θ θ
ε

θσ ε σε ε
σ

θ
ε

θσ εε ε
σ

− −

−

− −

−

 
 
 ∂

=  
∂   −   −     + − +              

 
  −  −    × + − × ×     −       +      

 −  − + − × ×   −    +  
 

ix θ
σ

 
 −         

 (14) 
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And the last term of Equation (10); 
Let  

1

3 ln 1 nx
K

εθ
ε

σ

−
 −  = +  

  
                     (15) 

Therefore,  

3
1 2

1 1 1ln 1

1

n n

n

K x x

x ε

θ θ
ε

ε σ ε σεθ
ε

σ

−

 
 
   ∂  −  −    = + −      ∂          −   +       

   (16) 

Similarly, we parameter to estimate is σ , from the: 
( )1

1 1 1
21

1

1 1

1 1

K x x

x

ε
ε

ε

θ θ
ε

σ σ σ
θε

σ

+
−

−

 
∂  −  −    = + ×     ∂         −     − +        

   (17) 

2 2K K w
wσ σ

∂ ∂ ∂
= ×

∂ ∂ ∂
 

( )

( )

2
1 1

1

1

2

1

1 1
2

1

1 1

1

1

i i

i i

i i

K

x x

x x

x x

ε ε

ε
ε

ε
ε

σ θ θ
ε ε

σ σ

θ θ
ε

σσ

θ θ
ε

σσ

− −

−

+
−

+
−

− −

∂
=

∂
 −   −    + − +      

      


−  −    × +     
    



−  −     − +     

     


           (18) 

and  
1

3
2 1n nK x xθ θ

ε
σ σσ

−
∂ −  −    = − +    ∂     

                (19) 

Finally, we estimate θ  as follows: 

( )

1
1

1

1

1 1

1

1 1

1 1 1

K

x

x x

ε

ε
ε

θ
θε

σ

θ θ
ε

ε σ σ

−

+
−

∂
=

∂  
 −   − +        

 
 −  −    × − + ×          

 

          (20) 

2 2K K A M
hθ θ θ

∂ ∂ ∂ ∂ = × − ∂ ∂ ∂ ∂ 
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( )

( )

2
1 1

1

1

1 1

1

1

1 1

1

1

i i

i i

i i

K

x x

x x

x x

ε ε

ε
ε

ε
ε

θ θ θ
ε ε

σ σ

θ θ
ε

σ σ

θ θ
ε

σ σ

− −

−

+
−

− −

+
−

∂
=

∂
 −   −    + − +      

      
  

−  −      × +             
 

−  −      − +             

           (21) 

and  
1

3 1n nK x xθ θ
ε

θ σ σ

− ∂ −  −     = +    ∂       
               (22) 

Therefore, after differentiating partially Equation (10) with respect to the 
parameters, we get the normal Equations (23), (24) and (25);  

31 2
1 1

2

1 0
1

n

i n
i

KK KS f f f
nε ε ε ε+

=

∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂ 

∑            (23) 

where the terms 1K
ε

∂
∂

, 2K
ε

∂
∂

 and 3K
ε

∂
∂

 are from Equations (12), (14) and (16) 

respectively. 

31 2
1 1

2

1 0
1

n

i n
i

KK KS f f f
nσ σ σ σ+

=

∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂ 

∑           (24) 

where the terms 1K
σ

∂
∂

, 2K
σ

∂
∂

 and 3K
σ

∂
∂

 are from Equations (17), (18) and (19) 

respectively. 

31 2
1 1

2

1 0
1

n

i n
i

KK KS f f f
nθ θ θ θ+

=

∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂ 

∑           (25) 

where the terms 1K
θ

∂
∂

, 2K
θ

∂
∂

 and 3K
θ

∂
∂

 are from Equations (20), (21) and (22) 

respectively. The parameters were obtained from Equations (23), (24) and (25) 
using numerical analysis procedures for optimization. 

2.2.2. Case 2: When 0ε =  
Parameters under this case are estimated here. When 0ε = , the spacings 
become;  

1
1 1 exp

xD θ
σ

 −  = − −  
  

                   (26) 

1exp expi i
i

x x
D

θ θ
σ σ
− −   −    = − − −      

      
            (27) 

1 exp n
n

x
D

θ
σ+

 −  = −  
  

                   (28) 
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Therefore, Equation (5) can be written as;  

( ) 1
1

1

2

1

1; , , ln 1 exp
1

ln exp exp

n i

n
i i

i
i

n
n

xS x f
n

x x
f

x
f

θ
θ ε σ

σ

θ θ
σ σ

θ
σ

−

=

+

   −  = − −    +     
  −   −    + − − −       

       
− − × 

 

∑      (29) 

Let  
*
1 1lnK D=                              (30) 

Therefore,  
*
1 1 1

2 1

exp
1 exp

K x x
x

θ θ
σ σθσ

σ

∂ −  −  = − −  ∂   −      − −      

        (31) 

Similarly, let 1exp expi ix x
P

θ θ
σ σ
− −   −    = − − −      

      
 and  

*
2 lnK P=                              (32) 

Therefore,  

( ) ( ) 1
1*

2

2 1

exp exp

exp exp

i i
i i

i i

x xx x
K

x x

θ θ
θ θ

σ σ
σ θ θ

σ
σ σ

−
−

−

  −   −    − − − − −       ∂        =
∂   −   −    − − −       

       

    (33) 

Let  

( )*
3

nx
K

θ
σ
−

=                           (34) 

implying that;  

( )
*
3

2

1
n

K
x θ

σ σ
∂

= −
∂

                        (35) 

The equations for estimating θ  can also be derived from, 

1
*
1

1

exp

1 exp

x
K

x

θ
σ

θ θσ
σ

 −  −  ∂   = −
∂   −  − −      

                 (36) 

Next, let *
2K  and P be defined as Equation (32), so that  

*
2

1

1 1

exp expi i

K
P P x xθ θ

σ σ
−

∂
= =

∂  −   −    − − −      
      

 

Simplifying to;  
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*
2 1K
θ σ

∂
=

∂
                           (37) 

Lastly, let *
3K  be defined as Equation (15), implying that; 

*
3 1K
θ σ

∂
= −

∂
                          (38) 

Therefore, after differentiating partially Equation (29) with respect to the 
parameters, we get the normal Equations (39) and (40); 

*

** *
31 2

1 1
2

1 0
1

n

i n
i

KK KS f f f
nσ σ σ σ+

=

 ∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂  

∑           (39) 

where the terms 
*
1K
σ

∂
∂

, 
*
2K
σ

∂
∂

 and 
*
3K
σ

∂
∂

 are from Equations (31), (33) and (35) 

respectively. 

*

** *
31 2

1 1
2

1 0
1

n

i n
i

KK KS f f f
nθ θ θ θ+

=

 ∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂  

∑           (40) 

where the terms 
*
1K
θ

∂
∂

, 
*
2K
θ

∂
∂

 and 
*
3K
θ

∂
∂

 are from Equations (36), (37) and (38) 

respectively. The parameters were obtained from Equations (39) and (40) using 
numerical analysis procedures for optimization. 

3. Results and Discussion 
3.1. Simulation Study 

A simulation was performed to compare the standard MPS methodology with 
the improved MPS methodology. We simulated data from a gamma distribution 
with the parameters shape = 2.6, scale = 1:1000. Repetitions were later 
introduced in the order of 0, 20, 40 and 60. The repeated values gave rise to 
situations of ties. Gamma distribution is known to have fairly heavy tails. To 
determine our threshold, we simulated a set of data constituting 300 values. 100 
values did not have a repetition while 100 values had each a repetition making 
them to have a frequency of 2 each. This set of data was used in the improved 
MPS model. After the simulation, this set of data was reorganized in such a way 
that the 300 values had a frequency of 1 each regardless of whether it was 
repeated or not. This set of data was used in the standard MPS model. The 
normal equations derived above were used as the model for the improved MPS 
methodology. For the three parameter models 23, 24 and 25 were used while for 
two-parameter model 39 and 40 were used. 

Suitable values for k and θ  for which the gamma distribution would produce 
long tail were selected. In this case, a simulation using 2.6k =  and 1:1000θ =  
was made and the density of the simulation is shown in Figure 1. 

The x-axis of Figure 1 represents the number of values generated for the 
specified parameters of gamma distribution. The y-axis represents the density of 
those values. Figure 1 indicates that majority of the values are concentrated  
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Figure 1. The density of the Gamma distributed initial values. 

 
between 0 and 450. The values with big magnitude concentrate to the right of the 
distribution. The simulated values are Gamma distributed with a long right tail. 

When the two parameter standard and improved models were used, the 
following results Table 1 from the simulation were obtained. 

The threshold (location parameter) from the improved MPS model was 
higher than that obtained through standard MPS model Table 1. However the 
scale parameter of the improved MPS model was lower than that obtained 
through the standard MPS model. Three parameter improved MPS model and 
the standard MPS model were used to determine the threshold of the same data 
set. The results are shown in Table 2. 

The threshold (location parameter) determined from the improved MPS 
model was high compared to the threshold determined through the standard 
MPS model Table 2. The shape parameter determined through the improved 
MPS model was also high compared to the one obtained through the standard 
MPS model. However, the scale parameter obtained through the improved MPS 
model was lower than that obtained through the standard MPS model. To assess 
the performance of the parameters in the standard and improved models,the 
GPD parameters determined in Table 1 and Table 2 were backtested in the 
simulated data. Table 3 contains a summary of the values obtained. 

From Table 1, a threshold of 725.5767 was determined for the standard MPS 
model from a data that contained ties. When this threshold was backtested on the 
same data, It produced 18 data values as excesses Table 3. This was a proportion 
of 0.06. A threshold of 736.476 was determined for the improved MPS model 
from the same data that contained ties Table 1. When this threshold was  
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Table 1. Pars estimates of two parameter model. 

 Location Scale 

Improved 736.476 13.72969 

Standard 725.5767 16.31062 

 
Table 2. Pars estimates of three parameter model. 

 Location Scale Shape 

Improved 738.1303 9.483573 −0.84884 

Standard 726.3707 13.33941 −5.49648 

 
Table 3. Model selection. 

MLE and MPLE Estims 2parStd 2parImpovd 3parStd 3parImpvd 

Threshold 725.5767 736.476 726.3707 738.1303 

No. above 18 15 18 15 

Proportion above 0.06 0.05 0.06 0.05 

     Scale estimate 146.3 163.9 98.69 130 

Scale std. err 34.49 42.31 31.66 40.8 

Shape estimate 0.3728 0.1903 0.3879 0.2146 

Shape std. err 0.2808 0.2573 0.2855 0.2644 

 Asympt Var-Cov-Scale 1189 1790 1002 1664 

Asympt Var-Cov-Shape 0.07887 0.06623 0.08151 0.06993 

             Deviance 214.8238 183.1161 214.5401 182.7789 

    Penalized Deviance 215.4867 182.9699 215.796 183.3916 

                AIC 216.8238 185.1161 216.5401 184.7789 

   Penalized AIC 217.4867 184.9699 217.796 185.3916 

 
backtested, it produced excesses of 15 data values which was a proportion of 0.05 
Table 3. The threshold from improved model was higher than that of standard 
MPS model hence fewer data values in the excesses. The deviance and AIC 
criterion were used to compare the threshold that would make a generalized 
pareto distribution (GPD) model more fitting Table 3. The deviance of the two 
parameter standard MPS model was 214.8238 while that of the two parameter 
improved MPS model was 183.1161. The deviance of the improved model was 
lower than that of the standard MPS model. The AIC value of the standard MPS 
model was 216.8238 while that of the improved MPS model was 185.1161. The 
improved model had a lower AIC value. Treating the GPD model of the 
standard MPS model and that of improved MPS model as competing models, 
then the improved MPS model produced a more optimal threshold than that of 
standard MPS model. A threshold value of 726.3707 was determined for the 
three parameter standard model while that for the improved MPS model was 
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738.1303 Table 2. These two thresholds were back tested in the appropriate data 
sets Table 3. 18 excesses were realized on backtesting 726.3707 while 15 excesses 
were realized on back testing the value of 738.1303. The deviance of the standard 
model was 214.5401 while that of the improved model was 182.7789. The 
deviance of the improved MPS model was lower than that of the standard model. 
The AIC value of the improved model is lower than that of the standard MPS 
model. Whenever two models are competing, the model with the lower AIC is a 
better model. Thus the threshold obtained from improved MPS model makes 
the GPD to perform better than that obtained from a standard MPS.  

3.2. Effects of Number of Repetitions on Threshold 

In this section, the effect of number of repetitions on threshold was investigated. 
The gamma distribution with parameters 2.6k =  and 1:1000θ =  was used. 
However, to change the number of repetitions, y1 and y2 were made to take 
different values. To create a sample with 20 repetitions, variables 

( )1 1, 240)y rep=  and ( )2 1: 2,20y rep=  were used .To create a sample with 40 
repetitions,variables ( )1 1,180y rep=  and ( )2 1: 2,40y rep=  were used, while 
a sample of 60 repetitions was created by using the variables 

( )1 1,120y rep=  and ( )2 1: 2,60y rep= . For 0 repetions, the variables used were  

( ) ( )1 21,50 and 1,250y rep y rep= =  

The repetitions cause ties and therefore, these samples contain grouped ties. 
The improved MPS model used this raw sample. For this sample to be used with 
standard MPS model, the data had to be ungrouped so as each value had a 
frequency of one. The density of the distribution in the four cases of repetitions 
were ploted as shown in Figure 2. 

The x-axis of the plots in Figure 2 represents the number of the values 
specified in the gamma function while the y-axis represents the density of those 
values for different repetitions. The figure shows that there were some values in 
the tail and that the distribution was skewed towards right. This distribution was 
similar to Gamma density which was used in the simulation of this data set. The 
data indicate that several values are in the tails of the distribution meaning that 
the density’s contained extreme values. This justified the use of GPD to analyze 
the simulated data. 

According to [16], some values of each tie have to be dropped to leave only 
one value of each tie for the standard MPS to work. Therefore, samples of size 
300 with ungrouped ties of 0, 20, 40 and 60 repetitions were each subjected to 
the two parameter standard MPS model. The results obtained were as in Table 4. 
The threshold (location) value increased as ties increased. However, the scale 
parameter increased from 5.993496 to 9.99465 then decreased as the number 
of ties increased. The samples with grouped ties were subjected to the two 
parameter improved MPS model and the results obtained are as in Table 5. It 
was observed that, the location parameter(threshold value) increased as the 
number of ties increased. The scale parameter increased from 4.097801 to  
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Table 4. Two parameter std model estimates. 

Repetitions 0 20 40 60 

Location 1111.897 1116.442 1121.845 1124.372 

Scale 5.993496 9.99465 3.056949 1.373637 

 
Table 5. Two parameter improved model estimates. 

Repetitions 0 20 40 60 

Location 1111.009 1127.579 1130.066 1140.35 

Scale 4.097801 7.830554 5.119941 4.395648 

 

  
 

  
Figure 2. The densities for data with repetitions. 
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7.830554 then decreased as the number of ties increased. The samples with 
ungrouped ties were subjected to a three parameter standard MPS model and the 
results are as in Table 6. The location (threshold value) parameter increased 
from 1111.473 to 1121.675 as the number of ties increased.The scale decreased 
from 17.44149 to 4.950339. The shape also decreased from −0.05918 to −6.59819 
as ties increased. The samples with grouped ties were subjected to the three 
parameter improved MPS model and the results are as in Table 7. The location 
(threshold value) parameter increased from 1111.954 to 1141.156 as the number 
of ties increased from 0 to 60. The scale parameter decreased from 15.4904 to 
9.42994 as the number of ties increased from 0 to 60. The shape parameter 
increased from 0.05365 to 2.54892 at 40 repetitions then decreased to −4.74385 
at 60 repetitions. 

Plots to compare the performance of the parameters obtained were made as 
indicated in Figures 3-7. 
 

 
Figure 3. Behavior of location parameter in the two parameter model. 
 

 
Figure 4. Behavior of location parameter in the three parameter model. 
 
Table 6. Three parameter standard model estimates. 

Repetitions 0 20 40 60 

Location 1111.473 1118.298 1120.145 1121.675 

Scale 17.44149 12.04152 4.716338 4.950339 

Shape −0.05918 −0.04098 −1.90142 −6.59819 
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Figure 5. Behavior of scale parameter in the two parameter model. 
 

 
Figure 6. Behavior of scale parameter in the three parameter model. 
 

 
Figure 7. Behavior of shape parameter in the three parameter model. 

 
Table 7. Three parameter improved model estimates. 

Repetitions 0 20 40 60 

Location 1111.954 1128.368 1133.003 1141.156 

Scale 15.4904 7.009472 8.335507 9.42994 

Shape 0.05365 1.586433 2.54892 −4.74385 

3.3. Location Parameter 

When there was no tie Figure 3, the two parameter standard MPS model and the 
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improved two parameter MPS model give the same threshold. The plot for the 
two parameter models indicate that the threshold improved as the number of 
repetitions increased. The increase rate of the improved MPS model was higher 
than that of the standard MPS model. In both models, there was a decrease of 
the threshold at around 32 repetitions after which the threshold continued to 
improve. 

The trend observed in the two parameter model Figure 3 was also observed 
in the performance of the three parameter models Figure 4. However, the 
drop at 32 repetitions in the three parameter models was not as big as in the 
two parameter models. From the two plots above, the improved MPS model 
performed better than the standard MPS models as ties increased. 

3.4. Scale Parameter 

A plot of scales was also made to compare the performance of the scale 
parameter as the number of repetitions increased for the two and three 
parameter MPS model Figure 5. 

The two parameter model had different scale parameters when there were no 
ties. The scale of the standard MPS model increased faster than that of the 
improved MPS model as the repetitions increased up to the 20 repetitions after 
which the two models showed a downward trend Figure 5. However, the 
downward trend rate is higher in the standard MPS model than the improved 
MPS model. The two models had the same scale parameter at the 31 
repetitions. Beyond 31 repetition, the improved model had a higher scale 
parameter than standard model despite the fact that both of them were still on 
the decline. 

The three parameter MPS models Figure 6 had different scale parameters at 
zero repetitions. The size of the parameters showed a downward trend but the 
improved MPS model had a higher rate of downward trend than the standard 
MPS model up to 20 repetitions after which the trend of the improved MPS 
model changed and showed some improvements. However the trend of the 
standard MPS model continued to drop until the 45 repetitions after which it 
started to improve.The two models had the same scale parameter at about 31 
repetitions. The improved MPS model had a higher rate of improvement than 
the standard one. The trend of the scale parameter in the two parameter model 
and the three parameter model are similar. 

3.5. Shape Parameter 

The two parameter standard and improved model have location and scale 
parameters only. These models have a zero shape parameter. For the three 
parameter standard and improved models, the shape parameter performed as 
shown in Figure 7. 

The two models had the same shape parameter when the data had no 
repetitions(ties) 7. The shape parameter of the improved MPS model improved 
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up to around 38 repetitions after which it showed a downward trend. The 
standard model remained steady between 0 and 20 repetitions after which it 
followed a downward trend. The drop rate in the shape parameter was higher 
on improved model than it was on the standard model. The shape parameter 
showed a consistent decrease beyond 20 repetitions for the standard model and 
38 repetitions for the improved model. A general observation was that there was 
a change in the trend of all parameters in between 30 and 40 repetitions. 

3.6. Back Testing Two Parameter Models 

The determined threshold obtained in different samples were back tested in the 
sample data they were obtained from to assess their performance. 

For two parameter models at 0 repetitions, both models, the standard and the 
improved MPS model Table 8, had the same number of observations over the 
threshold and both had the same deviance value and AIC criterion value. 
Therefore, at this level both models performance were the same. At 20 
repetitions, the standard model had 23 observations over the threshold while the 
improved model had 21 observations over the threshold. However, the deviance 
value and AIC criterion values were lower in the case of improved model 
compared to those of the standard model. For 40 repetitions, the number above 
the threshold was 14 for both models but the deviance value and AIC criterion 
values of the improved model were lower compared to those criterion values 
for improved model were lower than those of standard model. From this analysis, 
the improved MPS model performed better than the standard MPS model. 
 

Table 8. Two Parameter model with repetitions. 

Ests 0Std 0Impd 20Std 20Impd 40Std 40Impd 60Std 60Impd 

Thresh 1111.897 1111.009 1116.402 1127.579 1121.845 1130.066 1124.372 1140.35 

No.abv 16 16 23 21 14 14 11 11 

Pro.abv 0.0533 0.0533 0.0767 0.07 0.0467 0.0467 0.0367 0.0367 

Sca.est 168.3 169.3 169.6 178.3 180.7 170.8 199.5 174.7 

Scastd.er 51.09 51.37 42.41 46.64 59.37 56.54 76.02 67.84 

Sha. Est. 0.5588 0.5505 0.3235 0.6702 0.5486 0.6172 0.5641 0.7014 

Shastd.er 0.309 0.3065 0.1047 0.2861 0.3211 0.3412 0.3779 0.4265 

AVarCo. Sc 2610 2639 1798 2175 3525 3197 5779 4602 

AVarCo. Sh 0.09545 0.09395 0.1047 0.08186 0.1031 0.1164 0.1428 0.1819 

Deviance 208.5296 208.6634 301.9033 277.4688 184.4465 183.3083 147.1072 145.1982 

Pen. Devia 204.2043 204.3792 292.9033 269.3051 181.331 180.0228 145.7075 144.0077 

     AIC 210.5296 210.6634 303.9033 279.4688 186.4465 185.3038 149.1072 147.1982 

Pena. AIC 206.2043 206.3792 292.5338 271.3051 183.331 182.0228 147.7075 146.0077 
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Table 9. Three parameter model with repetitions. 

Ests 0repsStd 0repsImpd 20repsStd 20repsImpd 40repsStd 40repsImpd 60repsStd 60repsImpd 

Thresh 1111.473 1111.954 1118.298 1128.3679 1120.145 1133.003 1121.647 1141.156 

No.abv 16 16 21 21 14 14 11 11 

Pro.abv 0.0533 0.0533 0.07 0.07 0.0467 0.0467 0.0367 0.0367 

Sca.est 168.8 168.2 188.5 177.5 182.6 167.1 203 173.3 

Scastd.err 51.23 51.07 49.17 46.42 59.96 55.54 77.09 67.39 

Sha. Est. 0.5548 0.5594 0.5979 0.6765 0.5362 0.6467 0.5427 0.709 

Shapstd.er 0.3078 0.3091 0.2705 0.2875 0.318 0.3488 0.3709 0.4295 

AsVarSc 2624 2608 2418 2155 3595 3085 5944 4542 

AsVarSh 0.09473 0.09555 0.07319 0.08265 0.1011 0.1217 0.1376 0.1845 

Deviance 208.5939 208.5209 279.2341 277.3027 184.6582 182.8486 147.3715 145.0816 

Pen. Devia 204.2876 204.1926 271.4901 269.1153 181.5982 179.5488 145.997 143.9223 

      AIC 210.5939 210.5209 281.231 279.3027 186.6582 184.8486 149.3715 147.0816 

Pena. AIC 206.2876 206.1926 273.4911 271.1153 183.5982 181.5488 147.997 145.9223 

3.7. Back Testing Three Parameter Model 

To assess the performance of the threshold obtained when the GPD had the 
shape parameter,a back testing was done on the samples through the two models 
and the results were as in Table 9. 

For 0 repetitions, the number of observations above the threshold were 16 in 
both models Table 9. The deviance values and the AIC values were the same 
for the three parameter model. Meaning that the two models performed 
equally the same. For 20 repetitions, the number of observations were 21 but 
the deviance value and AIC criterion value were lower in case of improved 
model compared to those of standard model. The deviance value and AIC 
criterion value for the improved model were also lower than those of standard 
model in the 40 and 60 repetitions although, the number of observations in the 
40 repetitions were 14 while that of the 60 repetitions were 11. In this case 
therefore, the improved model performed better than the standard model. The 
presence of ties in the data set causes a difference in the performance of the two 
models. 

4. Conclusion 

This study helped to improve the MPS model by introducing the concept of f to 
both two-parameter and three-parameter model 23, 24, 25, 39 and 40. Through 
simulation, the improved MPS, both two-parameter and three-parameter models 
yielded a higher threshold as compared to the two standard MPS model Table 1 
and Table 2. The scale parameter of the improved MPS model was lower than that 
of the standard model. The shape parameter of the improved model performed 
well compared to the standard model. When the determined GPD parameters 

https://doi.org/10.4236/ojmsi.2019.73008


P. Murage et al. 
 

 

DOI: 10.4236/ojmsi.2019.73008 167 Open Journal of Modelling and Simulation 
 

were back tested into the same simulated data Table 3, the improved model 
performed better than the standard model. The deviance statistics and the AIC 
criterion for the improved model yielded lower values compared to the standard 
model. This study therefore managed to come up with an improved MPS model 
which was able to take care of the analysis of ties in the data set. The back testing 
for each repetition indicates that the improved MPS model performed better 
than the standard MPS model. When frequency 1f =  of each data point, the 
improved MPS model reduces to the standard model. The improved MPS model 
helps to yield a more optimal threshold which in turn would help different 
sectors of the country’s economy to be adequately prepared for any eventuality. 
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