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1. Introduction 

In a previous paper, [1] has been inferred two equations  
2 2log , 1 , 0 , ,j j r r

j
S m m v c v c m m= − Π Π = − ≤ ≤ ≤∑       (1.1) 

being S the statistical definition of entropy of a system of particles, jΠ  the 
thermodynamic probability of the j-th state of the system and v the modulus of 
velocity of one free particle having rest mass rm  and dynamical mass m. 
According to these equations, trivial manipulations yield  

, ,jo
j j

j jj

S
S

δ
δ

= − Π Θ = Π
Π∑ ∑                    (1.2) 

that imply  
2 2
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o o

r
j

j

m v S S S S
m c

   + = + = ≤ ≤ ≤ ≤ Θ = Π   Θ Θ Θ Θ  
∑   (1.3) 

All equations reported here have been inferred in the conceptual frame of a 
unique theoretical model and contextually checked evidencing their sensible 
implications in the quoted paper. The first (1.3) was obtained examining the 
chance of energy fluctuation of a quantum particle related to the mass increase 

rm m>  and evidenced the dual wave/corpuscle nature of matter. The addends 
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concern indeed the probability of either behavior under appropriate experimental 
conditions. The second (1.3) outlines the order/disorder probabilities in a system 
of particles as a function of its allowed j states. For the shortness, both (1.3) are 
justified here even without repeating the arguments exposed in the previous 
paper. The definition of oS  is immediate consequence of that of S: indeed 

log 1j j jSδ δΠ = − Π − , whence o
j j j j j jS S Sδ δ−Π Π = = − +Π  and thus oS  

summing over j. The second (1.3) follows thus by consequence. The first (1.3) is 
obtained simply squaring the second (1.1) that actually emphasizes the well 
accepted relativistic dependence of mass on velocity, previously inferred as a 
corollary. 

Despite apparently nothing links (1.1), formally dissimilar and at first sight 
physically unrelated, it is however unquestionable the fact that  

2 2

.
o

rm v S S
m c

   + = +   Θ Θ  
                      (1.4) 

Also, the formal analogy between the Equations (1.3) suggests in particular 
the possible correspondences  

2 2

,
o

rm S v S
m c

   ↔ ↔   Θ Θ  
                    (1.5) 

under the conditions (1.3) implied by (1.1); i.e. 

log , .j
j j j j j

j j j j j

Sδ
δ

Π > − Π Π Π > − Π
Π∑ ∑ ∑ ∑             (1.6) 

Equation (1.3) is separately reasonable; as such, their worth is based on the 
chance of being contextually deductible along with other physical laws simply 
via the “ab initio” heuristic model [1]. It could seem weird, however, the further 
step of merging them in (1.4) and next splitting again this latter as in (1.5). 

On the one hand, the mere numerical correspondence 1 1a b a b′ ′+ = ↔ + =  
does not legitimate “per se” the physical meaning of the merged equation 
a b a b′ ′+ = +  as done in (1.4); in other words it is necessary to demonstrate 
that the chance of inferring (1.4) from (1.3) to obtain (1.5) is sensible and 
implies sensible consequences, too. If so, then it is possible to replace ↔  with 
the equality sign and define thereafter new statistical equations. 

On the other hand, the Equation (1.4) is quite peculiar also for another reason; 
it equates the probabilistic behavior of one corpuscle/wave particle described by 
its ratios rm m  and v c  to the statistical behavior of states allowed to a set of 
particles described by the sums (1.2) and (1.1). 

However, since anyway (1.4) is formally legitimate, a form of correlation 
between the quantities (1.3) cannot be in principle excluded. 

To introduce the statistical model proposed in this paper, regard first of all the 
modulus of velocity v as the modulus of group velocity gv  of a wave packet 
representing the De Broglie momentum of a given particle in the set. Regard 
next this gv  as the average value gv  resulting from the various group 
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velocities gjv  of the set of particles constituting the system, as if in fact gv  
would be itself one among the possible values of gjv : in a statistical set of states 
with corresponding gjv , it is probable that gv  is very close to or even 
coincides with one among the allowed gjv . So this gv  summarizing all gjv  
of the respective (1.1) and (1.2) describing the actual microstates of the system, 
can be related to (1.4) via the positions (1.3). 

Trust therefore that a unique gv  appropriately defined, i.e. taking into 
account even the possible interactions between particles, is representative of all 
microstates of the system and compliant with (1.4): then it is in principle 
possible that both correspondences (1.5) have actual physical meaning, in which 
case sensible implications should be hidden in and deductible from them. 

All considerations exposed in the following sections aim to clarify these points. 
Purpose of the paper is to show that the thermodynamic functions can be 
inferred directly from quantum first principles that concurrently imply 
relativistic outcomes as well. 

The model highlights a further series of evidences additional to that carried 
outed in [1] to show the actual reasonableness of (1.5): this is the new 
contribution of this paper with respect to the previous one. The following 
considerations aim also to highlight the physical essence of these implications. 
With this premise, after a short remind of elementary statistical concepts in 
Section 2, the positions (1.5) are first concerned in the subsections 3 and 4 in a 
mere formal way through simple algebraic steps to infer preliminary 
corollaries, whose physical meaning is next exposed in the Sections 5 and 6. In 
particular the sections 3 to 5 are not a superfluous list of results already known; 
considering that (1.4) merges dual corpuscle/wave behavior of matter and 
entropy through their probabilistic meaning via the relativistic (1.1), the 
systematic check of both (1.5) is actually required to highlight their validity 
through new corollaries/implications exposed in the next Sections 7 and 8. The 
results are proposed step by step to emphasize the underlying strategy: to link 
information on the microstates defining the terms of the sums (1.2) and (1.1) to 
the respective macrostates concerned by (1.3). The present paper completes [1] 
looking for further concepts already known while obtaining contextually also 
unprecedented results. The text is organized in order to be as self-contained as 
possible. 

2. Mathematical Tools  

The quantum uncertainty equations read  

* * * *
x p t

x p n t

n n n n nε

δ δ δεδ= =

= =



                         (2.1) 

inferred themselves as corollaries in [1]. The stars label arbitrary rational 
numbers expressing the range sizes as *n  times the respective Planck units, n is 
an arbitrary integer. 
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It is essential to emphasize that by definition of quantum uncertainty all range 
sizes are unknown and conceptually unknowable; thus all *n  are arbitrary and 
unspecifiable pure numbers. So, since even n symbolizes an integer neither 
identified nor identifiable, it follows that both x pδ δ  and tδεδ  waive a 
specified reference system, inertial or non-inertial; although any x pδ δ′ ′

  
implies its own n′ , in fact n and n′  are indistinguishable because actually both 
symbolize 1,2,n = ⋅⋅⋅  and 1, 2,n′ = ⋅⋅ ⋅  identically. Thus the respective reference 
systems are in fact indistinguishable themselves as well. This conclusion is 
self-evident in the second dimensionless form (2.1). 

Also note that, being in general 1Θ ≠ , the various jΠ  are thermodynamic 
probabilities, not mathematical probabilities with sum over all allowed j 
normalized to the unity; instead by definition  

j j
j

j
j

Π Π
= =

Θ Π∑
                         (2.2) 

is the mathematical probability of the j-th state. In general gv  has statistical 
character: being related to oS  and thus to S, it represents the average group 
velocity of the De Broglie momentum wave packets summarizing all states of the 
particles constituting the system, e.g. atoms or ions in a gas or a solid lattice. Is 
interesting in particular the average momentum wave group velocity g gv v≡  
related to and representative of all De Broglie matter waves allowed in the 
system. Introduce thus explicitly the notation gv  to emphasize that in (1.5) 

gv  is actually to be regarded as mean value of all group velocities characterizing 
all states of the system. So, being the summations (1.6) compliant with and 
contributing to gv , write accordingly  

,j
g g gj

j
v v v v

Π
→ → =

Θ∑                     (2.3) 

where gjv  is the j-th group velocity of the wave packet related to the respective 
state of the system concurring to define S and Sδ . Also, analogous 
considerations hold for  

2 2 2 2 ,j
g g gj

j
v v v v

Π
→ → =

Θ∑                    (2.4) 

e.g. useful to calculate the average kinetic energy gε  of all 2 2gj gjmvε ≈  of 
the j-th wave packets. 

To generalize these equations and calculate the average of any physical 
property, introduce an exemplificative function f defined by  

,
j

j j
j

j

f
f f f

N
Π

→ = ≡
Θ

∑
∑                   (2.5) 

being N the number of terms of summation, i.e. the number of allowed states. As 
done for gjv , express the macroscopic average properties as summation over the 
aforesaid j of local corresponding properties jf . For example to find the sought 
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statistical link between micro and macro states of S, (1.1) yields in particular  

log log log const,

const log ,

j
j

j
S

Π Π
= −Θ Π = −Θ Π = −Θ +

Θ Θ

= −Θ Θ

∑       (2.6) 

where const  is a quantity not dependent on the summation index j. Here 
appears the average normalized probability Π Θ  plus a constant. So S Θ  
is the dimensionless Boltzmann entropy, usually expressed with positive sign as 

logBS W=  being W = Θ Π . 
Moreover hold for the variation range fδ  the useful statistical equations [2]  

( ) 22 2
1 2 1 2, ;f f f f f f fδ = − ⋅ = ⋅             (2.7) 

the left hand side has the meaning of mean square fluctuation of the statistical 
function f. Also, 1f  and 2f  are two physical properties related to the 
respective physical subsistems of that defining f.; for example, as in the present 
context S and oS  define the disorder and order degree of a heterogeneous 
physical system, the subsistems described by 1f  and 2f  are two different 
volumes disordered and ordered of a whole crystal lattice. Particularly interesting 
is the first equation, rewritten as  

22 2 22
0

2 2 2 2
0

( )
1 1

f vv f
f v f c

δ
= − = −                  (2.8) 

where the factor 2
0v  is here an arbitrary square velocity: taking advantage of the 

inequality 22f f≥ , easily verifiable in general assigning arbitrary values to 
the function f and carrying out trivial calculations, it is possible to define 0v  in 
order that if 2 2 2

0v f c=  then necessarily 2 2
0v f v= . Thus (2.8) reads  

( )2 2
2 22 2 2 2

0 02 2 2
0

1 , , .
f v

v f c v f v
c v c

δ
= − = =  

Hence  

( )2 2 22 2 2 2

2 2 2 2 2
0

f c v c t v t
c v c c t

δ δ δ
δ

− −
= =  

i.e.  

( ) ( ) ( )

22 2 2
2

2 2 2 2 2 2
0 0

, ,g
g g c

c c

c t s
f s v t s c t

v c s v c s

δ δ δδ δ δ δ δ
δ δ

−
= = = =

  (2.9) 

appears here the invariant interval 
22 2 2

gc t sδ δ δ= −  of the special relativity 
and the square length 2

csδ . To understand what has to do all of this with the 
entropy, note preliminarily that regarding v as gv  and thus gv  according to 
the previous considerations (2.3) and (2.4), the Lorentz factor (2.8) and the 
invariant interval (2.9) take statistical meaning, as they represent through gv  
all j-th terms pertinent to the respective quantities defined by their own gjv . 
This agrees with (1.3) and (1.5), because writing  
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1
o

gv S S
c
= = −

Θ Θ
 

one infers that if S has statistical meaning, then the same must hold also for 

gv c ; in effect it will be also shown in the next Equation (3.3). This conclusion 
and the meaning of the factor 0v  are further concerned soon below. 

Although reasonable, these preliminary remarks and that of section 1 are 
examined in the following three introductory sections. To carry out the next 
considerations are enough simply the average definitions of thermodynamic 
functions; in particular gv  is enough for the present purposes whatever the 
statistical distribution law of group velocities around this mean value might be. 

3. Preliminary Corollaries of (1.5)   

Relevant implications of both (1.5) are immediately recognizable writing 
formally  

2 2

2 2 , , ;
o

g g g g g
g g g

g

v mv p v mvS mcv p
c mc

γ
ε

ε γ γγ
= = = = =

Θ
        (3.1) 

the proportionality factor γ  has been purposely introduced for sake of 
generality. Thus, whatever γ  might actually be, it must be also true that  

2 ,g g
g

v
p

c
ε

=                            (3.2) 

as it is immediate to verify. 
First of all, quoting shortly [1], (3.2) yields ( ) ( )gj gj gjv c p cδ δ ε=  and thus  

( )

0

0

log

log log ;

gjgj gj gj gj gj

gj gj gj gj gj

gj gj gj

gj gj gj

p cv p c p c p c
c p c

p c p c p c p c

δ δε
δ δ

ε ε ε ε

ε ε ε ε

    
 = − =          

   
= −       

         (3.3) 

the last step has implemented explicitly the general definition of range 
( ) 0 0p p pδ ε ε ε= − . So, defining  

0
0

0

1, 1, ,gj gj
j j

gj

v p c p c
W W

c ε ε
Π = < = < =  

(3.3) implies 0logj j j jW W W WδΠ = − ; thus, calling by definition 
j j vjδΠ = Π −Π , summing over j one finds  

0logv j j
j

W W W WδΠ = Π − Π = −∑  

being thus reasonably  

0log , .v j j
j

W W W WΠ = − Π = −∑              (3.4) 

Even the average group velocity probability vΠ  fulfills an entropy-like law; 
indeed, as it is possible to put purposely the arbitrary constants 0p  and 0ε  
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such that 0 0p c ε= , results in fact 0 0W = . 
Moreover, combining (3.1) squared and (3.2) one finds  

( ) ( )222 2
22 2

2 2 21 1 ,g g
g g g

mcv v
p c

c c
ε ε

γ

   
− = − = −      

   
            (3.5) 

whence the reasonable correspondences  

( ) ( )
2

222 2 2
2, 1 g

g g

v
p c mc

c
ε γ− ↔ ↔ −  

and thus  

( ) ( )
2

222 2 2
2, 1 .g

g g

v
p c mc

c
ε γ− = = −                (3.6) 

It is worth emphasizing that the last two (3.1) and then (3.2) along with (3.6) 
have been obtained merely via the second (1.5) only, without additional 
hypotheses. So the equalities (3.1) yield themselves self-consistently the correct 
relativistic momentum and energy of the free particle, which in turn takes 
statistical meaning through the aforesaid steps g gv v v→ → : it is enough to 
express (3.1) as a function of gv  instead of v. Eventually the first (1.5) yields 
according to (1.3)  

2 2 2 2 2
2 2 2

2 2 2 , ,g g
g g

c v c t sS s v t
c c t

δ δ
δ δ

δ
− −

= = =
Θ

 

whence the possible correlation chances  
2 2 2 2 2 2, , ,c g cS s c t s s c tδ δ δ δ δ δ δ↔ Θ↔ = − =         (3.7) 

that agree with (2.9) and imply with the help of (1.1) and first (1.5)  
22

2
2 .r

c

mS
ms

δ γ
δ

 = = = Θ  



                    (3.8) 

If so, then S should be a relativistic invariant. In effect, this conclusion agrees 
with that early inferred by Planck [3], who concluded that “the entropy of the 
body does not depend on the choice of the reference frame”; i.e. the disorder 
degree of a body appears the same to two inertial observers in reciprocal motion. 
Consider now the first equality (3.8)  

2

2 2 2 .
c

S
s
δ

γ δ γ
=

Θ
                        (3.9) 

suggests that Θ  defined in R implies regarding gsδ γ  as gsδ ′  in another 
R′ ; indeed in R′  it is possible to write  

2
2 2 2 2

2 , .c c
c

S s s
s
δ γ δ δ γ
δ

′ ′= Θ = Θ ↔ =
′ ′Θ

            (3.10) 

In other words Θ  defined as a square range size transforms like a square 
time length inherent the definition of csδ : as it is reasonable to expect, the 
Lorentz time dilation affects all probabilities jΠ  allowed to the system of 
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particles and thus the resulting Θ . 
On the one hand is evident the connection of (3.9) with (2.9), since both have 

the same form if 2 2 2
0v c γ= ; then 

( )22 2 2
0 2, .g

Sv c v fδ
γ

= − =
Θ

                (3.11) 

So S Θ  appears as mean square fluctuation of an appropriate function f 
defining 2 2

gv c  in agreement with (1.4) and (1.5), whereas it appears that  

( ) ( )22
0 1.gv c v c+ =                    (3.12) 

On the other hand further information is provided by (3.10) itself noting that 
in general 2 *

gc vγ = , being thus *
gv  any group velocity different from c. Thus 

the last (3.7) implies the following chains of equations  

( ) ( ) ( )22 2 * * * *,c c c g
tc t c t s c s s v tδγ γδ δ δ γδ δ δ
γ

 
Θ = = = = 

 
 

whence  

( )* * * * *, , :c c c c c
t ts s t s t s s tδ δγδ δ δ δ δ δ γδ δ
γ γ

  ′ ′ ′ ′= = = = 
 

 

i.e. one finds the Lorentz space contraction * *
c cs sδ γδ′ =  and time dilation 

t tδ δ γ′ = . 
The connection of these considerations with the quantum theory is immediate 

with the help of (3.7) and (2.1), simply noting that (3.7) defines an invariant 
time  

2 2 2 2
2

2 2 21 1 , .g g g
inv g

s t v sc tt t v
c c c c t

δ δ δδ δδ δ
δ

= ± = ± − = ± − =
  

Thus, writing identically  
2

2

1 1 1 g

inv

v
t t cδ δ
= ± −  

and multiplying both sides by h, one finds  
2

21 , , .g
inv inv

inv

v
t tc

δε δε δε δε
δ δ

= ± − = =
   

On the one hand δε ε ε= −


; thus, being correspondingly 0inv inv invδε ε ε= − , 
the first equation splits as follows  

2 2

02 21 , 1 :g g
inv inv

v v
c c

ε ε ε ε= ± − = ± −


 

i.e. putting 2
0inv mcε =  the second equation yields the relativistic Lagrangian 

ε


 of a free particle, whereas the first equation shows that invε  requires the 
Lorentz transformation rule of energy tε  . Both boundaries of the energy 
range δε  have thus their own physical meaning. Further considerations on 
these well known results are unnecessary and waived. 
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On the other hand (2.1) yields also g n tδε δ=  , i.e.  

2 2

2π, ;
1

g
g g

g

n
tv c

ω
δε ω

δ
= ± =

−



 

of course 2 1g g gδε ε ε= −  at the left hand side is the range size that encloses all 
energies *

gn ω  at the right hand side compatible with any arbitrary integer n. 
Hence to any particular * *

gn ω  corresponds the value *
gε , i.e.  

* *
* *

1 22 2
= , .

1
g

g g g g

g

n

v c

ω
ε ε ε ε± ≤ ≤

−



 

Being the boundaries of δε  arbitrary means that actually n can take any 
integer value. A reasoning exactly similar implements the further chance of 
inferring from (GGG)  

2

2

2π, ,

1

g
x g

gg

n
p

xv
c

κ
δ κ

δ
= ± =

−



 

where gκ  is actually the so called wave vector. Thus, as before,  
* *

*

2

2

.

1

g
x

g

n
p

v
c

κ
= ±

−



 

The connection with the relativistic (3.1) is of course given by the following 
specific correlations  

* * 2 * *, .g g gn mc n mvω κ→ →   

Note that the double sign of xp  clearly corresponds to both x-components of 
momentum, that of the energy prospects the existence of negative states of 
energy. Also, all of this introduces the Planck energy gω  and De Broglie 
momentum h λ  corresponding to gκ ; obviously the Lorentz factor merges 
with their respective 1t−  and 1λ−  dependencies. 

As a preliminary conclusion, therefore, the hints prospected in the present 
section by both (1.5) appear sensible enough and stimulating to deserve further 
investigation, in particular as concerns the direct link between thermodynamics 
and relativity. As the quantum definition (1.1) of entropy is already evident 
through its statistical meaning related to the probability of allowed states, 
actually this link is reasonably expected to highlight the connection between 
quantum probabilistic and relativistic theory. These non trivial conclusions 
justify the reasoning hitherto carried out via its possible implications. 

Note eventually that 2 2
g g g gp v v cε=  of (3.2) with gv c≤  implies itself  

0;g g gp vε − ≥   (3.13) 

this result indeed agrees with that inferable in an analogous way from (3.5), 
which implies it “a fortiori”. As this inequality holds even multiplying both sides 
by an arbitrary coefficient 0θ > , it is possible to write the dimensionless 
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inequality  

0, ,g g g g g g
pv p

p v p v
S S S Sε ε

ε ε
θ θ θ θ

− = − ≥ = =          (3.14) 

where θ  represents an arbitrary energy factor. (3.13) is significant because it 
implies (3.14) that defines S as the ratio of two energies and evidences its 
fundamental property  

0, .g g g p p pvp v S S S Sε ε εε θδ δ− = ≥ = −             (3.15) 

In this respect, note that (3.14) is not “ad hoc” position: implementing once 
more (1.5), it is easy to acknowledge that S defined by (3.14) is actually the same 
function introduced in (1.1). Indeed, proceeding in analogy with (3.1), one finds 
that just (1.5) allow writing  

2 *

2 **
r r r rm m m m cS

m m m mc
εγ

γ ε
= = = =

Θ
 

where S is in fact an energy ratio; regarding of course Θ  still as that introduced 
in (3.7), this suggests the correlations  

*
2

** , .S tε δ
ε

↔ Θ Θ↔  

So, whatever *ε  and **ε  might be, the proportionality constant θ  justifies 
in principle the link between Sε  and pvS  of (3.14) to that hitherto concerned 
via (1.1) only; are crucial in this respect the positions (1.5). 

As a closing remark, note that in general owing to (3.14) it is possible to 
expand in series (3.15) as  

( )2 2 2 2

2

2

1 1 2 , ;

1
p g g g

g

S mc mv mc mv v c
v
c

εδ = − ≈ − +

−

      (3.16) 

recalling now (2.4) and (2.5), average both sides and implement 2 2
g gv v→  to 

write thanks to (3.15)  

2 21,
2g pv gS mc S m vεθ ε θ= = ≈ +  

The importance of this result and (3.15), better explained in the next section, 
appears even here regardless of any information or hypothesis about gε  and 

g gp v ; it is simply due to 0 gv c≤ ≤  allowing (1.3) and (1.4). Precisely for this 
reason it holds for an isolated system not subjected to any external action that 
would necessarily require an appropriate external energy extε  exchange to be 
introduced in the previous equations; this action could perturb and modify the 
spontaneous evolution of the system leading, as so far described, to (3.15). 

In the present model, owing in particular to both positions (1.5), quantum, 
relativistic and thermodynamic results merge in a natural and elementary way. 

The definition (3.8) of entropy as ratio of two square lengths is seemingly 
weird; actually however it is not so, the next section shows that this definition is 
closely related to two significant relativistic corollaries. 
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4. Black Hole Surface Entropy and Red Shift  

It is known that the Hawking surface entropy of a black hole is in fact the ratio 
of square lengths [4], like (3.8). So it is sensible to start just from this equation 
and write  

22 *
*

2 *2 2 2

2 2, , ,bh
bh bh bh bh

c bh

mG m GS S
s c c

δ χ
δ

= Θ → = Θ = =




 



      (4.1) 

being bh  the black hole radius of mass m and χ  an appropriate 
proportionality constant expressing bhχΘ = Θ . The reason of these positions is 
intuitive: the general Equation (3.8) is here purposely specified to describe in 
particular the surface entropy of a black hole; thus the positions (4.1) are not “ad 
hoc” hypotheses, rather they fit the physical meaning of the actual problem 
concerned here. To this aim is necessary to regard δ   of (3.7) as length bh  
consistent with m, whereas the proportionality constant χ  can be exploited in 
order to define the surface of a sphere; accordingly csδ  must turn into the new 
reference length *

bh , radius of a black hole of arbitrary mass *m . In other 
words, *

c bhsδ δ→   is the new scale factor coherent with bhδ δ→   in 
defining the dimensionless bhS S→ . In this respect is also appropriate the 
position  

2

*2

4π 4π, ;bh
bh

bhbh

S χ= =
Θ





                   (4.2) 

this definition of χ  makes the particular form of bhΘ  introduced in (4.1) 
compliant with the black hole surface 24πbh bhA =   of radius bh  and given 
mass m, whereas csδ  becomes the dimensional proportionality constant 2

bh
∗−
  

between dimensionless surface entropy bhS  and surface area bhA . In this 
respect, a reasonable way to define uniquely bhS  is to implement Planck units 
and thus to identify the constant *m  with the Planck mass. Put then  

( )*2 2 *2 *2 * 2
2, , . . 4 , ,pl pl bh bh pl pl pl

c Gm m m i e m m
G c

= = = = = =
 

     

so that (4.2) reads  
2

2 2

4π
.

4 4
bh bh

bh
pl pl

A
S = =



 

 

This is the well known Hawking-Beckenstein surface entropy of a black hole. 
Are omitted for brevity further considerations on this result. 

It is worth remarking once more that the crucial point here is not the fact 
itself of having obtained this result, already known, but mostly to have 
confirmed once more (1.3) and the link (1.5) between the probabilistic 
corpuscle/wave behavior of matter and probabilistic concept of entropy 
appearing in the first (1.1). In particular is significant the fact of having found 
again a sensible result implementing S Θ  as weird ratio of square lengths. 

Consider now that the Equation (3.7) allows defining an invariant time τ  
defined by  
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22
2 2

2 2 ,gs
t

c c
δδτ δ= = −

  

which can be rewritten via frequencies as follows with obvious meaning of 
symbols  

( )

2 2 22
2

2 2 2 2 2

1 1 ;gs
t

c c
δ ν νδδ

ν ν ν ν
−

= − = − = 





  

thus, being by definition gsδ  the difference between two arbitrary space 
coordinates 2 1s s− , this result yields  

( )

2 2 2
2 2

02 2 2
0

, , , .g
g

s
s

c c
ν δ δϕ δν δν νν δν ν ν δϕ ν δ

ν ν νν ν ν
= = = = = − =

++


 




 (4.3) 

In the present context, regard once more g gν ν ν→ →  exactly as done in 
(2.3) and (2.5); in turn gν  results from all gjν , whereas 2 2

g gjs sδ δ→  with 
2
gjsδ  resulting from all 2

gjsδ . These positions allow regarding accordingly 
(4.3), i.e. with reference to its representation of each j-th state. Next, taking the 
average of both sides after summing over all states as done in (2.5), one finds 
with the help of (2.7) whatever 0g gδν ν ν= −  and 0gν  might be  

22 2 2 2 2 2 2
2 1 1 1 2 22

0 0

, , , .g g
g g

s s s s s s
c
δϕ δνδν δϕ ν ν

ν ν
= = = − = =

 

 (4.4) 

The first equation introduces the average of a function δϕ  having physical 
dimension of square velocity, to which corresponds an average δν ; as before, 

2c  and 0gν  are the respective reference values. These terms are easily 
recognizable multiplying both sides of ϕ  by an arbitrary mass m, which yields 
the dimensional relationship  

( )2 energy :m m sϕ ν= =                     (4.5) 

this equation shows that if energy massϕ =  is in particular the gravitational 
potential, then it also appears that the frequency shift 0gδν ν  is related to 

2cδϕ  [5]. It is worth noticing in this respect that (3.7) and (3.8), the key 
equations bringing to (4.3) and (4.4), are usually inferred as properties of the 
space time; in particular the identification of ϕ  with the gravitational potential 
guessed via mere dimensional basis, can be better understood showing that ϕ  
is proportional to S Θ . Note indeed that the Equation (1.5) yields  

2

,r r r r r

r r

m m m mS
m m m m

γ
γ = = = = Θ  

 

 

 

where r  is an arbitrary length in the reference system R were is defined the 
rest mass rm ; in the last step rγ=   is the Lorentz contraction of r  in 
another inertial reference system R′  moving with respect to R at arbitrary rate 
v corresponding to that defined by γ . So to show that  

( )
( )

,r

r

mS m
ϕ ∝

Θ 
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let us regard the rest mass and length as constants; as previously done to infer 
(WKQ) from (4.1), rm  and r  fix the scale of the γ  dependent length   
and mass m in R′ . Let for example 2c  the proportionality constant 
consistently with the physical dimensions of ϕ ; including then rm  and r  in 
this proportionality constant, write  

2, ,r

r

mSG G c
m

ϕ = =
Θ





 

being G the aforesaid proportionality constant; so in the particular case of an 
attractive field  

, , :eff
eff eff

eff

Gm
m mSϕ = − = = Θ 



              (4.6) 

The notation emphasizes that effm  is the effective dynamical mass Sm in rm  
units modulated by S. Consider for example an atom in an amorphous solid or 
in a crystal lattice: the dynamical mass m is related to its rest mass rm  not only 
via the Lorentz factor, see (1.1), but also through the degree of order/disorder 
dimensionless factor S characterizing the lattice interaction. In other words effm  
accounts for the way the motion of the atom is perturbed by the neighbors in a 
given kind of lattice. Analogous reasoning holds for eff . Anyway the 
definitions of effective mass and length highlight the expected form of the 
gravitational potential; owing to the choice of G as proportionality constant, ϕ  
has in effect physical dimensions of square velocity, as indeed it appears in (4.4). 

Is interesting the fact that the function ϕ  results calculated in (4.4) at two 
different points 1s  and 2s  where are defined the respective averages, whereas 
the boundaries of the frequency range size δν  are related to δϕ . This is 
the statistical formulation of the red shift δν  of a beam of photons having 
average frequency 0gν  moving radially from or towards the gravity center by 
effect of an average gravitational potential difference δϕ , while instead the 
deterministic approach of general relativity yields the frequency shift of one 
photon traveling between the local points 1s  and 2s  in the presence of a 
central gravity field; this information is replaced here by a statistical reasoning 
leading to the same conclusion, now however probabilistic and non 
deterministic thus fully compatible with the ideas of quantum theory. 

5. Thermodynamic Corollaries   

All considerations of the previous section did not need introducing explicitly the 
microstates appearing at the right hand sides of (1.2); this is done now. As a 
preliminary consideration note that owing to (1.3)  

0,j

j

Sδ
δ

≤
Π

                          (5.1) 

which implies that jSδ  increases when decreases the range size allowed to the 
various jΠ  of the states of the system in order that o

jS  are positive. 
Implement the first equality (3.1) according to (3.2)  
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,
log

o
g g j j j

j jg j j

p v S SS δ δ
ε δ δ

Π
= = − = −

Θ Θ Π Π∑ ∑              (5.2) 

through which is easily proven the aforesaid statistical meaning of gε  and gp  
on the one hand and gv  on the other hand, see (3.3) and (3.4); owing to (2.5), 
it is possible to regard now also (3.2) as  

g g g g

g g

p v p v
ε ε

→                        (5.3) 

in order to obtain from (5.2) 
2

2 .gg g j gj gj j
j

j jg gj j

vp v p v S
c

δ
ε ε δ

Π
Θ = Θ = Θ = − Π

Θ Π∑ ∑         (5.4) 

In agreement with (5.1), Equation (5.4) is fulfilled by  

0,gj gj j

gj j

p v Sθδ
ε θδ

+ =
Π

                      (5.5) 

where θ  formally introduced in (3.14) is an arbitrary function to be defined 
requiring that it does not depend explicitly on the index j. The validity of the 
steps (5.3) to (5.5) is supported examining their implications. The fact of 
introducing the explicit definitions of momentum gjp  and energy gjε  of the 
j-th matter wave packet along with dimensionless jSδ , suggests a general way 
to link side by side numerator and denominator of (5.5) for any j-th index just 
through θ , i.e.  

0 0, , , ;gj gj j gj j j j j j j jp v S S S Sθδ ε θδ δ δ↔ ↔ − Π = − Π = Π −Π    (5.6) 

in this way θ  appears again as an energy factor. The minus sign depends on 
how is defined jδΠ  in (5.1): clearly 0 jS  and 0 jΠ  are arbitrary values 
expressing explicitly the boundaries of the respective ranges. In effect, whatever 
the j indexed and non-indexed quantities might be, (5.5) is verified dividing side 
by side and then summing the first two (5.6). Combining gj gj jp v Sθδ=  and 

gj jε θδ= − Π  the single j-th terms (5.6) and performing their summations, are 
obtained macrscopic functions Sδ  and U defined as follows  

.

j gj gj j gj gj
j j

gj j gj j
j j

S p v S S p v

U

θδ θδ θ δ

ε θδ ε θ δ

= → = =

= − Π → = = − Π

∑ ∑

∑ ∑
             (5.7) 

Subtracting side by side one finds  

( ), , 0,gj gj gj
j

U S U p vθδ θδ ε− = = − Θ = − ≥∑           (5.8) 

where   and U are energies and  

0. . .gj gj
j

S p v i e S S Sθδ δ
θ

= = = − =∑ 
             (5.9) 

To explain these equations, write explicitly the ranges  
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( ) ( )0 0 0 0, , j
j

S S Sθδ θ θδ θ= − Θ = Θ−Θ Θ = Π∑  

and next expand and recombine conveniently these addends appearing in (5.8); 
the second and first terms read respectively  

0 0 0, 0.U S Sθ θ θ θ θ θ+ Θ = Θ = − Θ+ Θ − + ≥           (5.10) 

Then calling  

0 0, , ,H L Sθ θ θΘ = Θ = =                   (5.11) 

the Equation (5.10) read  

, 0.H U L U Sθ= + = + − ≥                  (5.12) 

Clearly, putting 0SΘ =  in (5.10), (5.12) with L=  reads H Sθ= − ; the 
notation L≠  has been proposed for sake of generality. The positions (5.11) 
make consistent the definition of   in (5.10) and (5.12):   is the Gibbs free 
energy, whereas with 0 0Sθ = =  one recognizes the Helmholtz free energy. 
Eventually to clarify the meaning of   write now  

0,S Uθδ δ δ= + ≥                       (5.13) 

being δ  an amount of energy balancing Uδ  and Sθδ . The L≥  
notation is suggested by (3.15) and confirmed more in general soon below. 

On the one hand, owing to (5.9) and (5.13),  

.Uδ δ= +                           (5.14) 

On the other hand  

( )S S Uδ θ δθ δ δ− = +   

yields  

( ) :S U S Eδθ δ θ δ− = + − =  

so, thanks to the position (5.13) appears at the right hand side the same function 
  defined in (5.12). Specify now for example PV= , where P and V are 
external pressure acting on the system and volume of the system, so that 

P V V Pδ δ δ= + ; then at constant P one finds  

( )
.

U PV S
S

δ θ
δθ

+ −
− =                    (5.15) 

The last equation at constant P is the well known thermodynamic definition 
of entropy, whereas (5.14) is the first law taking   as heat affecting internal 
energy change Uδ  and work δ  done on/from the system. 

To clarify the link between   and L put L X= + , being X a positive or 
negative quantity to be specified. So in (5.10) 0U L X Sθ= + + − ≥ , i.e. 

0H X Sθ− = − ≥ . The right hand side is consistent however with 0X ≥  
only, so that L≥ . Thus with Lδ δ≥  (5.13) reads U Lδ δ≥ + , i.e. exists 
an amount Qδ  such that Qδ≥  and Q U Lδ δ δ= + . Hence (5.9) and 

Qδ≥  merge first and second law writing (5.14) simply as  
.S Q U Lθδ δ δ δ≥ = +  
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This result is the first law and the property of S of being equal to Qδ θ  for 
reversible process and Qδ θ>  for irreversible processes; also, it clarifies the 
link between L and L≥ . 

Further comments on these results are superfluous; the fact of having 
introduced the factor θ  in (3.14) and (5.5) is thus not merely formal. 

Two significant implications of these results allow to highlight more clearly 
the thermodynamic meaning of (3.15). 

1) The second line of Equation (5.7) reads 0gj j jε θ θ= − Π + Π , which 
introduces  

0 ;j j gj jθ θ ε δΠ = Π − =                     (5.16) 

then, summing over j the expression  

1 1 ,j j

j jθ δ δ
Π Π

= = Θ
Θ 

 

one finds  

1 .j
N δ
θ

−= Θ   

As it is immediate to verify that 
11

g gδ δ
−− ≥  , where the equality sign 

holds only for gjδ  all equal, write  
11 , 1;g gδ ζ δ ζ
−− = ≥   

so  

g

N ζ
θ δ

Θ
=


 

reads  

1. . , .g gSN i e S
N

δ δδ δ
θ θ

≥ Θ ≥ =
Θ

 
 

At the equilibrium, when all jΠ  are all equal to a unique Π  so that 

eq NΘ = Π  by definition, one finds once more  
.Sδ ≥ Π  

Note that all 0 0j gjθ εΠ − ≠  does not exclude 0 0j gjθ εΠ − = ; if so, 
according to (5.16) and (5.11) holds the equality sign that implies 

0H U L− = =  resulting from the possible chance 0gδ = . 
Here appears again, but now explicitly, that 0Sδ ≥  implies no work done on 

or performed by the system, which is one condition for an isolated system. 
2) An interesting way to regard further (5.4) implements the following 

position  
2

02
0

,
log

g j
j j

j j

v S
c

θδ
δ

θ
Θ = Π = Π −Π

− Π Π∑           (5.17) 

and considers 0jSδ > , so that by definition 0jΠ < Π . Unlike before in (5.6), 
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now all jΠ  of jδΠ  are regarded with respect to a unique constant 0Π  that 
fulfills by definition the given inequality. Next introduce two arbitrary masses 

0jm m>  such that 0 0j jm mΠ = Π , whence ( ) ( )0 0log logj jm mΠ Π = . Then  

0

0 0 0

log log log log ;j j j

j

m V Cm
m m V C

Π
= = − = −

Π
            (5.18) 

this position introduces an arbitrary volume V defining two densities 0C  and 

jC  of the respective masses. So, owing to (3.1) it is possible to write (5.17) as  
2

2
0

, logg j j
j

j j

v S C
Cc

θδ
µ θ

µ
Θ = =∑  

Consider now this result at the equilibrium with all j eqΠ ≡ Π  and thus 

jC C≡ , while being also eq eqNΘ = Π  by definition; in this particular but 
important case one finds owing to (5.18)  

2

02 , log const, const log
g eq

eq eq

v SN C C
c

θδ µ θ θ
µ

Π = = + = −  

For example C can be related to the number of mol  in an ideal gas with 
C mol V P RT= = , in which case µ  takes the familiar form log Pµ θ= ; of 
course 0C  is automatically to be regarded with reference to its coherent energy 
constant, which indeed is the so called “reference state”. 

So, now one finds the chemical potential µ  as statistical average of all 
quantum microstates of the system. Also in this case is explicitly apparent in this 
result the implication  

0,Sδ ≥                           (5.19) 

where the equality sign holds for 0eqC C C= = : indeed in (5.17) is possible 

0jΠ = Π  provided that 0jSδ =  itself. As expected, this formulation of the 
second law describes explicitly the tendency of any system to flatten the local 
concentration/composition differences to reach the equilibrium state. In effect 
the different density distributions in a crystal lattice, due for example to local 
composition gradients, are intuitively a form of disorder with respect to the 
perfect order represented by its uniform composition. Hence eq inS S Sδ = −  
means that the equilibrium state is attained via an entropy increase with respect 
to an arbitrary initial disordered state. 

6. Statistical Distributions  

Let us check now the validity of (5.18) starting from the statistical Equation (1.6) 
regarded as a collective property of the system of particles. Since the second (1.3) 
has macroscopic statistical meaning, the inequality S ≤ Θ  written as  

( )1 log 0j j
j
Π + Π ≥∑                      (6.1) 

must be fulfilled by the sum, not necessarily by all single terms ( )1 logj jΠ + Π  
separately. In fact every j-th term alone fulfills  
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( )1 log 0j jΠ + Π ≥                        (6.2) 

for 1
j e−Π >  but not for 1

j e−Π < . On the one hand the chance that 1Θ > , in 
principle possible for 1Θ ≠ , does not prevent assuming all 1

j e−Π > ; on the 
other hand, however, the physical validity of (6.1) is easily shown even regardless 
of whether actually some addends contribute to the sum with 1

j e−Π < . In other 
words it is possible to show that (6.2) is enough but not necessary to fulfill (6.1). 
Let indeed 1 log 0j+ Π   be introduced now and expressed by  

1 log , 0,j j jg g+ Π =                      (6.3) 

with both signs allowed for the arbitrary function jg  without violating (6.1) so 
that ( )exp 1j jgΠ = − . Next calculate ( )exp 1j j jg gδ δΠ = − , which reads  

( ) 0exp 1j j jg gδΠ = − Π                    (6.4) 

once having written explicitly 0j jδΠ = Π ±Π  to which corresponds in effect an 
appropriate sign of jgδ . The double sign is justified by the chance of modifying 

jδΠ  increasing or decreasing its initial value jΠ . With the positions involving 
the number jN , in agreement with the previous reasoning to infer (5.18),  

0 0 0

0

;j x

j j x j

m N m N
m N m N

Π
= = =

Π
 

i.e. via the total number 0N  of particles of the system and the number jN  of 
particles in the j-th state, the Equation (6.4) yields  

( )0

0 0

exp 1 1.j j
j

j

gN
g

N
δΠ

= = −
Π Π

  

Hence rewriting  

( )0
0

exp 1 ,j
j

g
s s

δ
= − +

Π
 

where js  and its corresponding 0s  are related to the arbitrary jgδ , the last 
expression turns with trivial manipulations into  

( )
0

0

, 0
exp 1j j j j

j

N
N r g s

r s
= = + >

− 

             (6.5) 

whatever the sign of jg  might be thanks to the additional term js  coming 
from jgδ . Is evident the physical meaning of this result regarding the 
dimensionless 0jr s−  as ( )0jε ε θ− , as done in (5.5) and (5.7). This well 
known equation was obtained in [1] following a different reasoning, through 
which the link between spin and statistical distribution has been also concerned. 
Here further considerations are superfluous; is however essential the fact of 
having found the quantum statistical distributions regardless of the single values 
of jΠ  that determine the signs of the respective terms of (6.1) consistent with 
(6.3). These signs do not prevent the physical meaning of the whole sum, thus 
confirming that actually (1.6) holds considering the sum of all states. From a 
physical point of view the validity of (6.5) means that in a system of particles are 
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allowed states of local order and disorder without contradicting (1.3) of the 
whole system. 

7. Quantum Correspondences: Bell Inequality  

After having introduced a self consistent landscape of relativistic properties of 
thermodynamic functions linking macro and quantum micro states of physical 
systems, is justified the further extension of these results to better emphasize the 
quantum basis unifying all concepts of the present theoretical model. 

Consider (1.4) recalling that all terms have probabilistic meaning and range as 
in (1.3); write then (1.4) as 

1 1
log .

N N
jo

j j j
j j j

S
S S

δ
δ= =

+ = Θ = − Π Π − Π
Π∑ ∑              (7.1) 

This equation can be identically rewritten as  

1 1 1 1
log log ,

d o

d o

j jN N
j jo

j j j j j j
j j j j j jj j

S S
S S

δ δ
δ δ= = + = = +

+ = Θ = − Π Π − Π Π − Π − Π
Π Π∑ ∑ ∑ ∑  

where the summations over all allowed states have been simply split into partial 
sums defined by the arbitrary limits dj  and oj . Next, it is convenient to 
rewrite again this equation as 

* ,o
d oS S S Sδ+ = Θ = + Θ +                    (7.2) 

where  

1 1

*

1 1

log , ,

log .

d o

d o

j j
j

d j j o j
j j j

N N
j

j j j
j j j j j

S
S S

S

δ
δ

δ
δ

δ

= =

= + = +

= − Π Π = − Π
Π

Θ = − Π Π − Π
Π

∑ ∑

∑ ∑
             (7.3) 

The notation is justified because *δΘ  reads  

*

1 1 1 1
log

d d

d o d o

j jN N
j j j

j j j j j j
j j j j j j jj j j

S S Sδ δ δ
δ

δ δ δ= + = + = + +

 
Θ = − Π Π +Π − Π = Π − Π  Π Π Π 

∑ ∑ ∑ ∑  

that in turn yields  

*

1 1 1 1 1

1 1
;

d d d

d o o

d d

o

j j jN N
j j

j j j j j
j j j j j jj j

j j
j

j j
j j j

S S

S

δ δ
δ

δ δ

δ
δ

= + + = = +

= +

Θ = Π − Π = Π − Π − Π
Π Π

= Θ− Π − Π
Π

∑ ∑ ∑ ∑ ∑

∑ ∑
      (7.4) 

i.e. * *δΘ = Θ−Θ , where *Θ  summarizes both addends in the last equality 
(7.4). Therefore subtracting * 0d oS S δ+ + Θ −Θ =  from 0oS S+ −Θ =  
according to (7.2), one finds  

* 0, , .o o o
d oS S S S S S S Sδ∆ + ∆ − Θ ≥ ∆ = − ∆ = −          (7.5) 

With these premises, it this possible to highlight more Expressively (7.5) 
introducing Bell’s language: the aim is to show without “ad hoc” hypotheses that 
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the second law 0Sδ ≥ , previously obtained in (3.15) and (5.19) via 
thermodynamic considerations, is actually a Bell inequality. Are available here 
three independent and arbitrary parameters: dj  and oj , plus N that will be in 
fact implemented as a third independent parameter dN j− . 

1) Write first  

( ) ( ), , :d dS S S X N X j∆ = − = Π −Π  

the notation emphasizes that S depends on an appropriate parameter X, which 
reasonably is a representative feature of the specific system; e.g. X depends on 
whether the system is crystal lattice or gas or liquid or amorphous material. The 
notation ( ), dX jΠ  for dS  is quite obvious. Take N as a fixed parameter, 
which for simplicity of notation will be thus omitted in the following, whereas 
instead dj  and oj  affect of course the resulting S∆  concerned here. Note 
that  

( ) ( ) ( ) ( ) ( ) ( ), , , , , :X notZ X notZ X Z X Z X X ZΠ = Π +Π −Π = Π −Π  

in general, indeed, it is intuitive that the sum of probabilities ( ),X notZΠ  plus 
( ),X ZΠ  reduces to ( )XΠ  merging both possible chances notZ  and Z. So, 

summing and subtracting ( ),X ZΠ , the difference of probabilities at the right 
hand side is summarized by the unique not  term at the left hand side. Thus, 
whatever X might be,  

( ), , , .o d dS S S X notZ Z j notZ N j∆ = − = Π → → −        (7.6) 

2) An analogous reasoning holds to handle the term  

( ) ( ), , ;o o
o oS S S Y X Y j∆ = − = Π −Π  

in effect one finds now  

( ) ( ) ( ) ( ) ( ) ( ), , , , , .Y notX Y notX Y X Y X Y Y XΠ = Π +Π −Π = Π −Π  

Hence, owing to the previous considerations,  

( ), , , .o
o oS Y notX X j notX N j∆ = Π → = −           (7.7) 

3) As concerns *δΘ , it is positive owing to (7.3) and (5.1). Considering that 
*Θ  consists of terms from dj j=  to j N= , regard then ( )* *

dN jδ δΘ = Θ −  
and thus  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ;Y notZ Y notZ Y Z Y Z Y Y ZΠ = Π +Π −Π = Π −Π  

hence  

( ) ( ) ( )* * , , , .Y Y Z Y notZ Y NδΘ = Θ−Θ = Π −Π = Π =        (7.8) 

In summary, Collecting (7.6), (7.7) and (7.8), by comparison with (7.5) it is 
possible to write three possible correspondences linking the three ranges (7.5) to 
the respective not . So from  

( ) ( ) ( )

* 0

, , , 0

oS S

X notZ Y notX Y notZ

δ∆ + ∆ − Θ ≥

Π + Π − Π ≥
        (7.9) 
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follows therefore the correlation  

( ) ( ) ( ), , , 0 0.X notZ Y notX Y notZ SδΠ +Π −Π ≥ ↔ ≥      (7.10) 

The former is in fact the Bell inequality, usually written  

( ) ( ) ( )1 2 3, , , 0Number X notZ Number Y notX Number Y notZ+ − ≥    (7.11) 

here normalized dividing both sides by 1 2 3Number Number Number+ + ; in this 
way the three iNumber  turn the addends into the respective probabilities. The 
correspondence (7.10) with the second law is clear: (7.9) comes from (7.2) that 
simply rewrites (7.1); in turn this latter is straightforward consequence of (1.3) 
from which has been obtained 0Sδ ≥ , see eqs (3.15) and (5.19). 

In other words, the Equation (1.3) imply the second law both in its usual 
entropic form when handled as shown in section 5 and equivalently in the Bell 
form when handled as just shown here. Therefore (3.15) and (5.19) already 
assessed via reliable thermodynamic considerations are confirmed through a 
sound quantum reason, the Bell inequality. 

A crucial aspect of this result is that 0Sδ ≥  is calculated as difference 
between S of a system with N states and another dS  of a system with dj N≤  
allowed states; this shows that in fact the entropy tends to increase along with 
the number of states, in turn corresponding to an increased total disorder of the 
whole system. Obviously the positions (7.2) concern an isolated system, because 
they do not involve explicitly any external energy that could modify them: in 
effect according to (7.5) all addends are self-defined uniquely through the 
allowed states of the system, regardless of any possible external energy,   or 
 , that in principle can modify the spontaneous evolution of the system 
explicitly inherent the right hand side of (5.8) and (5.9). 

It is known that the Bell inequality is the key to prove the non locality and 
reality of the quantum world; hence, recalling also the previous results, the 
correlations (1.5) are to be considered at this point definitively proven. 

The correlations (TP0) deserve a further comment. 
Encouraged by this result let us check the chance of linking to the Bell 

formalism also the Pauli principle that in effect reads 1pN =  or 1pN ≥ , being 

pN  the number of particles allowed per quantum state; here we have omitted 
0pN = , that trivially means empty quantum state. It is known that the equality 

sign only holds for fermions, whereas the inequality holds for bosons. The 
following simple considerations show also this result. 

Add and subtract ( ),X ZΠ  at left hand side of the first (7.10). So  

( ) ( ) ( ) ( ) ( ), , , , , 0Y notX X notZ Y notZ Y Z Y ZΠ +Π −Π −Π +Π ≥  

i.e.  

( ) ( ) ( ) ( ), , , 0,Y notX X notZ Y Y ZΠ +Π −Π +Π ≥  

which reads  

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , 0 , , , .Y notX X notZ Y Z Y Y Y notZ Y ZΠ +Π +Π ≥ +Π Π = Π +Π  
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Now introduce the new condition that two chances only are allowed for Z, i.e. 

eZ Z=  or oZ Z= ; so notZ  turns these Z-s respectively into onotZ Z=  and 

enotZ Z=  where the subscripts stand for “even” and “odd”. In other words 
not  exchanges the states labeled with subscripts e and o. Consider the case 
where the system is formed by particles of one kind only fulfilling either chance; 
then one expects two corresponding inequalities  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , 0 ,

, , , 0 .
e o

o e

Y notX X Z Y Z Y

Y notX X Z Y Z Y

Π +Π +Π ≥ +Π

Π +Π +Π ≥ +Π
         (7.12) 

Summing these inequalities one finds  

( ) ( ) ( ) ( ) ( ) ( )2 , , , , , 0 2 ;e o o eY notX X Z Y Z X Z Y Z YΠ +Π +Π +Π +Π ≥ + Π  (7.13) 

thus, being  

( ) ( ) ( )
( ) ( ) ( )

, , ,

, ,
e o

o e

X Z X Z X

Y Z Y Z Y

Π +Π = Π

Π +Π = Π
 

for the aforesaid reasons, (7.13) reads  

( ) ( ) ( ) ( )2 , 0 2Y notX X Y YΠ +Π +Π ≥ + Π  

i.e.  

( ) ( ) ( )
, 0 .

2
Y X

Y notX
Π −Π

Π ≥ +               (7.14) 

Then  

( ) ( ) ( ) ( ) ( ),
, , .

2
Y Y X

Y notX Y Y X
Π −Π

Π = Π −Π ≥        (7.15) 

Considering the inequality symbol, the validity of this result is self evident 
whatever ( )YΠ  and ( ),Y XΠ  might be; in this case no further condition is 
required. To fulfill the equality, instead, a glance to (7.15) reveals that (7.15) can 
be fulfilled if both sides are anyway equal to zero only. This is possible either if 
( ) ( ), 0Y Y XΠ = Π =  that in turn requires 0X Y= = , or if a couple * 0X ≠  

and * 0Y ≠  exists such ( ) ( )* * *,Y Y XΠ = Π . Thus are possible two chances 
only: the former trivially means that the probability of occupancy of a given 
quantum state is identically null, empty state, the latter that admits the 
occupancy of a particle whose X and Y are uniquely selected, *X X=  and 

*Y Y= , compatible with probabilities ( )*YΠ  and ( )* *,Y XΠ  non identically 
null but equal. In fact is in principle admissible one well specified couple of 
values *X  and *Y : according to (7.7) and (7.8), indeed, 1,2,3, ,oj N=   and 
thus , 1, 2, 3, , 2,1,0oN j N N N N− = − − −  , so that the first and unique 
occupancy allowed beside the empty state corresponds to nothing else but 

* *
oN j X− =  to which is related just *X  for a given *Y N= ; moreover *X  

is unique because but next, since the value of oX N j= −  are all different. So 
one must conclude that the occupancy numbers allowed by the equality are 0, 1 
only already introduced, whatever other possible Y and X might be. 

This is clearly the Pauli principle: although the Bell inequality does not 
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concern explicitly the existence of a property of particles we call “spin”, 
nevertheless it states the principle according which in Nature must exist two 
ways to fill the allowed states of a physical system. Regarding Z as a two valued 
property compliant with (7.12) would seem seemingly a weird “ad hoc” 
hypothesis, but knowing the existence of the spin this position becomes a 
fundamental statement to acknowledge the two different ways to fill the allowed 
states of physical systems in agreement with (6.5). Also this point has been better 
explained in [1]. 

8. Further Implications of (1.5)  

If it is true that the entropy is the “arrow of time”, then once more (1.5) should 
be adequate to infer an interesting implication: to describe the evolution of the 
Universe. This is the purpose of this last section. 

Rewrite the previous (3.7) as follows  
2 2

2 2 2 2 2 2 2 2 2
2 :g g g

c tc t s c t s sδδ δ δ δ δ γ δ
γ

′ ′= − = − = −            (8.1) 

the first equality reminds the starting point (3.7) in R, the second equality is (3.7) 
with time and space ranges tδ ′  and gsδ ′  defined in another inertial reference 
system R′ , the third equality rewrites the second one emphasizing explicitly 
time dilation and space contraction of the initial respective ranges in R with 
respect to that in R′ . Implement now the new position  

2
2 0

2 21 mv q
c

χ
γ

= − =                          (8.2) 

that introduces the function ( )2
0,mv qχ χ γ=  of 2γ  as shown via the factor 

0q  and velocity mv  to be defined. In fact (8.2) simply replaces gv  of 2γ  in 
(3.6) with a new velocity 2

mv ; its form has been guessed in order to write with 
the help of (1.5) and (1.3)  

22 2 2
20

02 2 2 2 21, , 1;
o

gm r rvq v m mS S q
c m c m

γ
γ

+ = + = + = = <
Θ Θ

         (8.3) 

so, replacing in (8.1) 2 2
0qγ χ=  according to the last equality, 2δ   becomes  

( ) ( )
2 2

2 2 2 2 2 2 2 2
0 2 2 2

0
2

2 2 2
0

0

/ 1 ,
1

, .

g g
m

m

g g

s s
q c t v c c t

q v c

ts q s t
q

δ δ
δ χ δ δ

χ

δδ δ δ

′′
′′ ′′= − = − −

−

′′ ′′= =



     (8.4) 

To understand the last equality (8.2) that defines mv  in the particular case of 
an attractive gravity field, remember (4.6) and multiply both sides by an 
arbitrary mass m′  so that  

2 21 2. . :
2 m m

m mG mGm v i e v
r rδ δ

′
′ ≈ =  

the left hand side shows the kinetic energy of the mass m′  in the gravitational 
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field of m. In effect 2mv mG rδ=  is the classical escape velocity of m′  at 
distance rδ  from the gravity center of m; it holds for any 0r rδ ≥ , being 0r  
the radius of m. Hence (8.4) takes the more familiar form  

( )
2

2 2 2 2
21 2

1 2
gs

mG c r c t
mG c r
δ

δ δ δ
δ

′′
′′ ′′= − −

−
  

i.e., taking the average of both sides and recalling (CC1),  

( )
2

22 2 2 2 2
21 2 .

1 2
gs

mG c r c t
mG c r
δ

δ δ δ
δ

′′
′′ ′′ ′′ ′′= − = − −

−
     (8.5) 

In turn this result reads  

( )
2

22 2 2 2
21 2 ,

1 2
gs

mG c r c t
mG c r
δ

δ δ
δ

′′
′′ ′′ ′′= + − −

−
       (8.6) 

being  

( ) ( )2 2 2 22 2 2 2 2 2, , , , , , , , ,g gs r t s r tϑ φ δ δ δ ϑ φ δ δ δ′′ ′′ ′′ ′′ ′′ ′′= =     

average functions of the arguments; regarding 2δ ′′
  according to the 

quantum uncertainty, i.e. as an uncertainty range, its upper and lower 
boundaries 2′′

  and 2′′
  are in fact arbitrary. One recognizes in (8.6) the 

metric of the general relativity, which however here has a probabilistic character, 
once acknowledging at the right hand side of (8.5) an appropriate rotational 
term ( )2 2 2 2sinrδ ϑδφ δϑ= − +  that describes through 2′′

  the uniform 
reciprocal rotation of non-inertial reference systems; this term can be inferred in 
an elementary way. On the one hand the last equality (8.1) is the key to extend 
the invariant interval of special relativity to the metrics of general relativity; in 
fact it replaces 2γ  with 2

0q χ  that introduces the presence of mass in (3.7). 
On the other hand however 2′′

  is positive by definition, so it cannot account 
for the negative sign of   in (8.6); then some additional positive contribution 
  is missing in Einstein’s early metric of standard general relativity such that 
actually 2 0′′ = + >   . Work in progress and previous results [8] indicate 
that this required contribution   has to do with the consequent cosmological 
constant, which therefore appears as a necessary correction to the early 
formulation of the theory and not as “ad hoc” hypothesis. 

Since according to (8.2) and first (1.5) 2 2
0q Sχ γ −= = Θ , (8.4) reads  

( ) ( )
2 2

2 2 2 2 2 2 2
2 21 ;

1
g g

m
m

s s
S c t v c c t

S v c
δ δ

δ δ δ
′′

′′ ′′= Θ − = − −
Θ −

        (8.7) 

thus, since  

( )2 2 2 2 0,gS c t sδ δΘ − ≥  

it must be true that  

( ) , 0gS c t s K Kδ δΘ − = ≥                   (8.8) 

where K is a positive quantity. So recalling that S ε θ=  and being kTθ = , 
this result reads  
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( ) 01 :gK s K
T

k c t t

δ ε

δ δ

+
= =

Θ
                    (8.9) 

this expression yields θ , i.e. the temperature, as a function of tδ . As it seems 
appropriate to express explicitly this result as a function of S write identically 
S ε θΘ = Θ  so that 1 Sε θΘ = Θ ; replacing in the last equation one finds  

( ) ( )2 22
2 2

2 2

1 , .g gS
S

K s K sK
T K

t tck S ck S

δ ε δ ε

δ δ

+ +
= = =

Θ Θ
         (8.10) 

Substantially Equations (8.9) and (8.10) are conceptually identical; (8.10) 
differs from (8.9) only for having explicitly expressed θ  as a function of S. 
These relationships are easily verifiable taking tentatively, for a first preliminary 
assessment, 0 constK =  or constSK = ; either of them should allow plotting 

kTθ =  vs tδ  to check the respective chance. To this purpose is useful a 
diagram of T vs time elaborated by the Fermilab [6] [7]: if these considerations 
are correct, then this plot should fit reasonable the temperatures of expanding 
Universe at various milestones after the Big Bang. More specifically is useful a 
log log plot of θ  vs tδ : one should obtain linear plots 0log log logt Kθ δ= − +  
or log 1 2log log St Kθ δ= − +  and verify whether in fact both formulas are 
correct or wrong. The Figure 1, formerly obtained in [9] via different reasoning 
based on an operative definition of space time, shows that in effect the entropy is  
 

 
Figure 1. Timeline of the Universe comparing the plot calculated with 
(8.10) and the data of time and temperature shown in the plot authored 
by [6] and also reported in [7] since the Big Bang to today; SK  has been 
preliminarily taken as a constant. This guess is sensible: the line 
represents the best fit regression log 0.492log 2.769T tδ= − −  of the 
data ( ),t T  marked in the figure [6] by little arrows evidencing relevant 

events in the history of the Universe. The law revealed by this analysis, 
1 2T tδ −∝ , agrees with that found in [9] via different arguments not 

involving explicitly the entropy. 
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the expected property that marks the evolution timeline of the Universe since its 
beginning to today. The best fit regression also shows that in fact (8.10) defines 
correctly the condition constSK = . 

9. Discussion   

The present paper must be regarded as an extension of the previous [1]. Most of 
the considerations hitherto carried out show that (1.4), formally legitimate, has 
actual physical worth and that its splitting into separate correlations (1.5) 
implies sensible outcomes. The probabilistic meaning of both (1.3) explains why 
(1.4) is more than mere algebraic unification of two equations seemingly 
different and highlights the correlations (1.5). Although (1.1) have been 
contextually inferred in the quoted paper through different arguments, it has 
been remarked for shortness in section 1 that the first (1.3) is simply the widely 
accepted velocity dependency of mass even though its inherent physical meaning 
concerns the actual probability that one particle exhibit dual corpuscular or 
wave like properties. The question about what has to do the wave/corpuscle dual 
behavior of a single particle with the probabilistic concept of order/disorder of a 
system of particles, has adequate statistical answer suggested by their form of 
alternative probabilities concurring to the respective certainties: the chance of 
quantum energy fluctuation implies actually both of them, as it appears in (1.1) 
through rm m>  and in (3.11). The position (2.5) has made acceptable the idea 
of linking the average properties of a whole system to that of its j-th microstates, 
being these states representative of the macroscopic behavior even concerning 
one particle only as a limit case. In effect (1.4) regards dual behavior and entropy 
increase of matter as two different aspects of a unique probabilistic cause: the 
evolution of an undefined state merging both probabilities (1.3) brings to a new 
state revealed by and accessible to the experiment. So one particle appears as 
corpuscle or wave through its rm m  or gv c  depending on what the 
experiment is aimed to measure; similarly where matter appears ordered or 
disordered with probabilities S Θ  or oS Θ  via a microstructural 
observation. In fact, if the quantum world is non-local and non-real until an 
experiment is carried out, there is no reason to reject the idea that even order 
and disorder are undefined states that take physical meaning under the 
experiment. This consideration reminds for example Schrödinger’s cat, with the 
dead cat described by 0gv v≡ ≡  to which corresponds dynamical mass m 
equal to its rest mass rm . This delicate conceptual point deserves special 
attention and explains the strategy followed in the previous and present paper: to 
reproduce well known results or infer crucial implications confirming the 
validity of (1.5) and related equations. Although several results have been 
already inferred in the quoted paper, it appeared appropriate to propose here 
further results to obtain more significant confirms. 

The novelty of this study is the way to identify the common root underlying 
quantum physics, thermodynamics and relativity implementing the premises 
introduced in section 1; formulas and concepts are in turn part of a broader 
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panorama of outcomes inferred in the holistic model [1] of evolving Universe. It 
is not surprising, therefore, the plot of Figure 1 involving directly the entropy. 

Just in this respect the present model appears significant: a subtle connection 
is evidenced between quantum interpretation of De Broglie waves, statistical 
meaning of entropy and concept of invariance of the special relativity, which in 
turn implies Lorentz transformations, velocity dependence of mass and 
definition of thermodynamic functions. Also two results of general relativity, for 
brevity the Hawking entropy and the red shift only, have been included in 
section 4 as straightforward and natural corollaries of these premises. This 
connection compels accepting even the statistical meaning of invariant interval 
and Lorentz transformations evident since the early Equations (2.8) and (2.9). 
Consider in particular the entropy, which is known to be a fundamental 
principle of thermodynamics; it appears here closely related to other 
fundamental principles of Nature like the aforesaid dual behavior of matter and 
the Pauli principle via Bell’s inequality. Thermodynamics was born as 
conceptual extrapolation of the technology of heat engines; with the contribution 
of the quantum theory, e.g. see Boltzmann’s H theorem and Maxwell equations, it 
became a fundamental Science itself. The present model introduces the basic 
principles of thermodynamics without implementing neither concepts of heat 
cycles nor intuitive assumptions like the energy conservation, in fact expressed 
through the first law. Actually it appears reductive to introduce fundamental 
concepts like S and 0Sδ ≥  merely examining the Carnot cycle; as it is known 
that the Bell inequality is the key to prove the non locality and reality of the 
quantum world, (7.9) and (7.14) of the section 7 appear the most appropriate 
way to understand what really the entropy is and thus the correlations (1.5), 
which at this point are to be considered definitively proven. 

10. Conclusions  

The present model unifies within a common conceptual frame relativity, 
thermodynamics, quantum theory and, via the Bell inequality, dual 
wave/corpuscle behavior of matter and Pauli principle; electron diffraction, 
“Aufbau” of electrons in atoms and molecules and red shift appear rooted in a 
unique principle, the quantum uncertainty. Usually, the Bell inequality is 
synonym of EPR paradox; here however it appears as a law of thermodynamics. 

In general, it is reductive and misleading to think quantum theory or relativity 
or thermodynamics as separate disciplines of physics; trying to merge all of 
them does not imply necessarily more difficult approach, but an in-depth 
investigation on their shared root. In effect, the laws of Nature reveal 
unexpected links and common implications that solve problems apparently 
different through simple arguments and, mostly important, elementary 
mathematical formalism. 
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