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Abstract 
In this paper, we prove existence and multiplicities of solutions for asymptot-
ically linear ordinary differential equations satisfying Sturm-Liouville boun-
dary value conditions with resonance. Adding assumption H3 that is similar 
to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more 
nontrivial solutions.  
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1. Introduction 

In this paper, we investigate the nontrivial solutions of asymptotically linear or-
dinary differential equations satisfying Sturm-Liouville BVPs with resonance. 
Various boundary value problems of asymptotically linear ordinary differential 
equations have been studied before. Most of them are gotten by the topological 
degree theory. There are also some papers about resonant problem. But the 
asymptotically linear ordinary differential equations with resonance aren’t con-
cerned ago. Here, we concern asymptotically linear ordinary differential equa-
tions satisfying both Sturm-Liouville boundary value and resonance. We solve 
the problem to get Theorem 1.1 in the following section. 

Now, we consider solutions of the following Sturm-Liouville boundary value 
problem: 
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( ) ( )( ), 0,x t f t x t′′ + =                       (11.) 

( ) ( )0 cos 0 sin 0,x xα α′− =                     (1.2) 

( ) ( )1 cos 1 sin 0,x xβ β′− =                     (1.3) 

where [ ]( )1 0,1 , , 0 π,0 πf C α β∈ × ≤ < < ≤R R . In this paper, f ′  denotes the 
derivative with respect to x. Our main result is the following theorem. 

Theorem 1.1 Assume that ( )0 0
π π1, 0,1 , ,
2 2

a H  ∈  
 

 in [1], i.e. ( )0 0x a t x′′ + =   

and (1.2)-(1.3) has one nontrivial solution ( )0 0x x t= > , [ ]0,1t∀ ∈ , 
[ ]0,1Lλ ∞∈ . f satisfies the following two conditions: 

(H1) ( ) ( ) ( )0

,f t x
a t t

x
λ≤ <  as 0x r≥ > , r is a constant, ( ) 1i λ = , 

( ) 0v λ = , ( )0 0i a = , ( )0 1v a = ;  

(H2) ( ),0 0f t ≡ , ( ) ( ) ( )0 0 01 ,i i vλ λ λ ∈ +  , where ( ) ( )0 : ,0t f tλ ′= ;  
For the sake of convenience, we denote ( ) ( ) ( )1 0, ,f t x f t x a t x= − , 
(H3)  

( ) ( )1 1
1 0 1 00 0

, d 0 , df t x t f t x t+∞ > > −∞∫ ∫ , 

where ( ) ( )1 1, liminf ,
x

f t f t x
→+∞

+∞ = , ( ) ( )1 1, limsup ,
x

f t f t x
→+∞

−∞ = , and ( )( )0 0x t >  
is a nontrivial solution of ( )0 0x a t x′′ + =  and (1.2)-(1.3), [ ]0,1t∀ ∈ . Then 
(1.1-1.3) has at least one nontrivial solution. Moreover, if we assume 

(H4) ( ) ( )0 00, 2v iλ λ= ≥ . 
Then (1.1-1.3) has at least two nontrivial solutions. 
In this paper, for any [ ]0,1a L∞∈ , ( )i a  and ( )v a  denote its index and 

nullity of the associated linear ordinary differential equation (see [2] [3] for ref-
erence). In Section 2, we will briefly recall the index and its properties. For the 
readers’ convenience, we give an example: Assume λ  is a constant, 

π
2

α =  
and 

π
2

β = . Then 

( ) ( )( 22 2 2

0 as 0,

1 as π , 1 π ,
i

k k k

λ
λ

λ

≤=  + ∈ + 
 

and 

( )
{ }

2 2

2 2

0 as π ,

1 as π , 0 .

k
v

k k
λ

λ
λ +

 ≠= 
= ∈ N

 

In [2], an index for second order linear Hamiltonian systems was defined. 
And in [3], an index for more general linear self-adjoint operator equations was 
developed. In [4] [5] [6] [7], by Conley, Zehnder and Long, an index theory for 
sympletic paths was defined. More applications about these index theories can 
be found in [8]-[13]. As in [11], throughout this paper, for [ ]1 2, 0,1a a L∞∈ , we 
write 1 2a a≤ , if ( ) ( )2 1 0a t a t− ≥ , for [ ]. . 0,1a e t∈ ; we write 1 2a a< , if 

1 2a a≤ , and ( ) ( )2 1 0a t a t− >  holds on a subset of [ ]0,1  with nonzero meas-
ure. 
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It is well known [14] that under non-resonant conditions  

( ) ( ) ( )( )22 ,
2 π 2 1 π , as 0, ,

f t x
k k x r k

x
δ δ+ ≤ ≤ + − > > ∈N  

the existence of solutions of a second order nonlinear ordinary differential equa-
tion. Such conditions are called nonresonant. Resonant conditions in [15] [16]:  

( ) ( ) ( )( )22 ,
2 π 2 1 π , as 0, ,

f t x
k k x r k

x
≤ ≤ + > > ∈N  

are not enough for existence solutions of (1.1-1.2). An additional condition 
called the (LL) condition like (H3) is usually needed. For resonant conditions, we 
refer to [15] [16] [17]. These three papers [14] [15] [16] are about existence of 
solutions. 

In [18], under resonance conditions, periodic solutions of nonlinear second 
order ordinary differential equations are considered. Second order Hamilto-
nian systems satisfying Sturm-Liouville boundary vale with the nonresanonce 
are considered in [3]. First order asymptotical linear Hamiltonian systems sa-
tisfying Sturm-Liouville boundary vale with the nonresanonce are studied in 
[19]. In [20] [21], 0, 0α β= = , the existence of solutions of (1.1-1.3) is inves-
tigated. 

In this paper, we study the existence of equations with resonance conditions. 
In order to prove our theorem, we construct the corresponding functional:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( )

1 2

0

1

0

1 d 1 , 1 1 , 1
2

, d , .

x x t t x x k x x k

F t x t t x E

ϕ β α ′= − +  

− ∀ ∈

∫

∫
  (1.4) 

where ( ) ( )
0

, , d ,
u

F t u f t s s u= ∈∫ R , ( ) ( )coscot , 0
sin

tk t t k t
t

= = =  as 0t =  or  

π, and E will be described in Section 2. This functional ( )xϕ  is continuous dif-
ferentiable on E, and any critical point of ϕ  corresponds to a solution of 
(1.1)-(1.3). 

In Section 3, we will give proofs by the Morse theory following [11] [17]. 

2. Index Theory for Linear Duffing Equations 

For any [ ]0,1a L∞∈ , consider the following equation:  

( ) ( )
( ) ( )
( ) ( )

0,

0 cos 0 sin 0,

1 cos 1 sin 0,

x t a t x

x x

x x

α α

β β

′′ + =


′− =
 ′− =

                   (2.1) 

where 0 π,0 πα β≤ < < ≤ . Define a Hilbert space ,:E Eα β= . Here  
[ ]1

, 0,1E Hα β =  as ( ), 0,πα β ∈ ; [ ] ( ){ }1
0, 0,1 | 1 0E x H xβ = ∈ =  as ( )0,πβ ∈ ; 

[ ] ( ){ }1
,0 0,1 | 0 0E x H xα = ∈ =  as ( )0,πα ∈  and  

[ ] ( ) ( ){ }1
0,π 0,1 | 1 0 0E x H x x= ∈ = = . With norm ( ) ( ){ }

1
1 2 2 2

0
: dEx x t x t t′= +∫  

and a bilinear form as ( ),aq ⋅ ⋅  as follows  
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 2

0

1

0

, d 1 , 1 0 , 0

d , , .

aq x y x t t x x k x x k

a t x t y t t x y E

β α ′= − +  

− ∀ ∈

∫

∫
    (2.2) 

From proposition 2.1.1 and 2.3.3 in [3], we have the following properties. 
Proposition 2.1 For any [ ]0,1a L∞∈ , 
1) The E can be divided into three parts:  

( ) ( ) ( )0E E a E a E a+ −= ⊕ ⊕  

such that aq  is positive definite, null and negative definite on ( ) ( )0,E a E a+  
and ( )E a−  respectively. Furthermore, ( )0E A  and ( )E A−  are finitely di-
mensional. We call ( ) ( )0: dima E aν =  and ( ) ( ): dimi a E a−=  the nullity and 
index respectively. 

2) ( ) ( )( ) { }, 0,1i a aν ∈ ×N . 
3) ( )aν  is the dimension of the solution subspace of (2.1-2.3), and 

( ) ( )
0s

i a a sν
<

= +∑ . 

4) If 1 2a a≤ , then ( ) ( )1 2i a i a≤  and ( ) ( ) ( ) ( )1 1 2 2i a a i a aν ν+ ≤ + ; if 

1 2a a< , then ( ) ( ) ( )1 1 2i a a i aν+ ≤ . 
5) There exists 0δ >  such that  

( ) ( )2, , .a Eq u u u u E aδ +≥ ∀ ∈  

Remarks: 1) The notation ⊕  means that the space E is the direct sum of 
some subspaces. 

2) By 4), we can see the index has monotonicity. 

1) Let ( ) 0a t = , 
π
2

α = , and 
π
2

β = . Then (2.1) has a nontrivial solution 

( ) 0x c= ∈ ≠R . So ( )0 1ν = , ( )0 0i = . If ( ) 2πa t = , 
π
2

α = , and 
π
2

β = , then 

(2.1) has a nontrivial solution 1 sin πc t , 1 0c ≠ . So ( )2π 1ν = , ( )2π 1i = . If 

( ) 2 2πa t k= , 
π
2

α = , and 
π
2

β = , then (2.1) has a nontrivial solution 1 sin πkc k t , 

1 0kc ≠ . So by Proposition 2.1 (3),  

( ) ( ) ( ) ( )
1

2 2 2 2 2 2

0 1
π π π 1 1

k

s n
i k k s n k kν ν

−

< =

= + = = + − =∑ ∑ , ( )2 2π 1kν = . 

The following lemmas are useful for us to prove the results. 
Lemma 2.2 The norm ( )

0 1
: supC E

t
x x t C x∗

≤ ≤
= ≤ , for any x E∈ , where 

( )*C ∈R  is a positive constant. 
Lemma 2.3 If (H1) holds, then we have that { } ( )0spanE x E λ+= ⊕ , where 

0x  is given in Theorem 1.1. 
Proof By Proposition 2.1 (1) and conditions ( ) ( )0, 1iν λ λ= = , we have that  

( ) { } ( )0 , dim 1.E Eλ θ λ−= =                  (2.3) 

By Proposition 2.1 (1) and (3), we know that with respect to [ ]0,1Lλ ∞∈ , the 
following decomposition holds,  
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( ) ( ) ( ) ( ) ( )0 .E E E E E Eλ λ λ λ λ− + − += ⊕ ⊕ = ⊕          (2.4) 

Since ( )E λ−  is one dimensional space, we can assume that { }e−  is a base 
of ( )E λ− , i.e. ( ) { }spanE eλ− −= . So for any x E∈ , we have  

0 ,x x x c e x− + − += + = +  

where ( )x E λ− −∈ , ( )x E λ+ +∈ , and 0c  is a constant. For 0x E∈ , we have 
the decomposition 0 1x c e e− += + , where ( )e E λ+ +∈  and 1c  is a constant. It 
is obvious that 1 0c ≠ . Indeed, if 1 0c = , then 0x e+= . By definition of ( ),qλ ⋅ ⋅ , 
we will have a contradiction that  

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( )

1
0 0 0 0 0 00

1 2
0 0 00

1 2
00

, , d 1 , 1

1 , 1 d

d 0

q x x x x t x x k

x x k t x t

a t t x t

λ β

α λ

λ

′ ′= −

+ −

= − <

∫

∫

∫

 

and 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( )

1

0

1

0

, , d 1 , 1 0 , 0

, d 0

q e e e e t e e k e e k

t e e t

λ β α

λ

+ + + + + + + +

+ +

′ ′= − +

− ≥

∫

∫
. So 

we obtain 

( )
0

0 0
1

1 1

0 0
0

1 1

.

x c e x
c c

c e e e x
c c

c c
x x e

c c

− +

− + + +

+ +

= +

= + − +

 
= + − 

 

 

We have proved that { } ( )0spanE x E λ+=  . It is also obvious that 
{ } ( ) { }0span x E λ θ+ = . In fact that if ( ) { } ( )0spanx x Eθ λ+≠ ∈  , we have 

that on the one hand for { }0spanx x∈ . Then there exists a ( ) 0c ∈ ≠R  such 
that 0x cx=  and  

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( )

1 22 2
0 0 00

12 2 2
0 0 00

1 2 2
0 00

, 1 , 1

1 , 1 d

d 0;

q x x c x c x x k

c x x k c t x t

c a t t x t

λ β

α λ

λ

′= −

+ −

= − <

∫

∫

∫

 

on the other hand for ( )x E λ+∈ ,  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )

1 2

0
1 2
0

, d 1 , 1 1 , 1

d 0.

q x x x t t x x k x x k

t x t t

λ β α

λ

′= − +

− ≥

∫

∫
 

By Proposition 2.1 (1) and (2.2), we have x θ= . This is a contradiction. So 
the proof is completed.  

Remark: For { }0 0spanx cx x= ∈ , we can define 
Ex c= . 

In order to prove Theorem 1.1, we need some lemmas. Let X be a Hilbert 
space and ( )1 ,C Xψ ∈ R . As in [17], let ( ){ }|K x X xψ θ′= ∈ = ,  

( ){ }|m x X x mψ ψ= ∈ ≤ . For an isolated critical point 0x , the critical group is 
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defined by ( ) { }( )( )0 0, , \ ;q q c cC x H U x Uψ ψ ψ=   R  for 0,1,2,3,q = 
, 

where U is a neighborhood of { }0x  such that ( ) { }0cK U xψ =   and 
( )0c xψ= . 

When ( )2 ,C Xψ ∈ R  and p K∈ , we have ( )pψ ′′  is a self-adjoint opera-
tor. We call the dimension of negative space corresponding to the spectral de-
composing the Morse index of p and denote it by ( )( )m pψ− ′′ , and denote by 

( )( ) ( )( )0 dim kerm p pψ ψ′′ ′′= . If ( )pψ ′′  has a bounded inverse we say that p 
is nondegenerate. 

From Theorem 3.1 in Chapter 3, Theorem 5.1, 5.2, Corollary 5.2 in Chapter 5 
in [17], one can prove the following lemma. 

Lemma 2.4. Assume ( )2 ,C Xψ ∈ R  satisfies the (PS) condition, ( ) 1ψ θ θ′ = , 
where θ  is the zero vector in X and 1θ  is the zero vector in *X  which is the 
dual space of X, and there is a positive integer γ  such that  

( )( ) ( )( ) ( )( )0,m m mγ ψ θ ψ θ ψ θ− − ′′ ′′ ′′∈ +   a n d  ( ), ;q m qH X γψ δ=R R  f o r  

some regular ( )m ψ θ< , here 
1
0q

q
qγ

γ
δ

γ
=

=  ≠
. Then ψ  has a critical point  

0p θ≠  with ( )0, 0C pγ ψ ≠ . Moreover, if θ  is a nondegenerate critical point, 
and ( )( ) ( )( )0

0m p mψ γ ψ θ−′′ ′′≤ − , then ψ  has another critical point 

1 0 ,p p θ≠ . 
The following lemma is also useful for us to prove the main result. 
Lemma 2.5 (Fatou’s lemma). Given a measure space ( ), ,µΩ Σ  and a set 

X ∈Σ , let nf  be a sequence of ( )0
, R≥

Σ  -measurable non-negative functions 
[ ]: 0,nf X → +∞ , where 

0R≥
  denotes the σ-algebra of Borel sets on [ ]0,+∞ . 

Define the function [ ]: 0,f X → +∞  by setting 

( ) ( ) ( ) ( )liminf , liminf ,n nn n
f x f x f x f x

→∞ →∞
= =  

for every x X∈ . Then f is ( )0
, R≥

Σ  -measurable, and 

d liminf d .nX Xn
f fµ µ

→∞
≤∫ ∫  

Remark The integrals may be finite or infinite. 

3. Proof of the Main Result 

The proof of Theorem 1.1 will depend on the following lemma.  
Lemma 3.1 Under (H1),(H2), and (H3), the functional ϕ  satisfies the (PS) 

condition. 
Proof For { } ( ),n nx E xϕ θ′⊂ → , and ( )nxϕ  is bounded, we shall find a 

convergent subsequence in E. By (1.3), for u E∈ , we have 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( )

1

0
1

0

, d 1 , 1 0 , 0

, d .

n n n n

n

x u x t u t t x u k x u k

f t x t u t t

ϕ β α′ ′ ′= − +

−

∫

∫
 (3.1) 

Next, we will prove { }1n Ex
∞

 is bounded. Indeed, it suffices to prove that 

n Cx  is bounded. By a contradiction, we assume that n Cx → +∞ , as n →∞ . 
Defining  
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( )
( )( )

( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )

,

, and , ,
n

n
nn n n n n

n

f t x t
x t r

x tq t h t f t x t q t x t

t x t rλ


≥= = −

 <

 (3.2) 

from (H1), (H2) and [ ]: 0,1f × →R R  is continuous, we have  

( ) ( ) ( ) ( )0 0and ,n na q t t h t r t Cλ λ≤ ≤ < +               (3.3) 

where 0C  is a constant. Then we get  

( )( ) ( ) ( ) ( ), .n n nf t x t q t x t h t= +                   (3.4) 

By (3.1), it follows that 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )

1 1

0 0
, d , , d 1 , 1

0 , 0 , .

n n n

n n

x t u t t f t x t u t t x u k

x u k x u

β

α ϕ

′ ′ = +

′− +

∫ ∫     (3.5) 

Assuming n
n

n C

x
y

x
= , by (3.4), and multiplying 1

n Cx −  on both sides of 

(3.5), we can get that  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
1 1

0 0

11

0

, d d 1 , 1 0 , 0

d , .

n n n n n

n n nC

y t u t t q t y u t y u k y u k

x h t u t t x u

β α

ϕ−

′ ′ = + −

+ +

∫ ∫

∫
(3.6) 

Furthermore, we add ( ) ( )1

0
dny t u t t∫  on two sides of (3.6) to obtain that  

( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( )

1 1

0 0
1 1

0 0

11

0

, d d

d d 1 , 1

0 , 0 d , .

n nE

n n n n

n n n nC

y u y u t y u t

q t y u t y u t y u k

y u k x h t u t t x u

β

α ϕ−

′ ′= +

= + +

− + +

∫ ∫

∫ ∫

∫

 

So, by ( )( )2

1
1 22
0

d 1n n nL Cy y t t y= ≤ =∫  and (3.3) we have  

( )

( ) ( )( ) ( )( ) ( ) ( )
( ) ( )22

1

1 1
20 0

3 2

*

sup ,

d d

,

E

n nE E
u

n n n

n LL

y y u

q t y t u t y t u t k k C

C y u k k C

C

β α

β α

≤
=

≤ + + + +

≤ + + +

≤

∫ ∫  

where 2C , 3C  and *C  are constants. So { }1n Ey
∞

 is bounded. Then { }ny  
has a convergent subsequence. Without loss of generality, we also denoted by 
{ }ny . Then 0ny y  in E and 0ny y→  in [ ]0,1C . By inequality 

( ) ( ) ( )0 na t q t tλ≤ ≤ , we have 0nq q  in [ ]2 0,1L . Then taking the limits on 
both sides of (3.6), we have, for any u E∈ ,  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )1 1
0 0 0 0 00 0

d 1 , 1 0 , 0 d 0,

.

y u t y u k y u k q t y u t

u E

β α′ ′ − + − =

∀ ∈
∫ ∫  (3.7) 

From (3.7) and [3], we have that 0y  is a solution of the following problem:  
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( ) ( ) [ ]
( ) ( )
( ) ( )

0 0, . . 0,1

0 cos 0 sin 0,

1 cos 1 sin 0,

y t q t y a e t

y y

y y

α α

β β

′′ + = ∈


′− =
 ′− =

                (3.8) 

What’s more, since ( ) ( ) ( )0 na t q t tλ≤ ≤ , we have 0 0q = . In fact, by the 
meaning of the notation “<” and “ ≤ ”, on the one hand, if ( ) ( )0q t tλ= , then 
( ) ( )0 0qν ν λ= = . Therefore, by the definition ( )ν ⋅ , this means that (3.8) only 

has a trivial solution. In fact, by 1n Cy = , we obtain 0 1Cy = . So (3.8) has a 
nontrivial solution. This is a contradiction. On the other hand, if 

( ) ( ) ( )0 0a t q t tλ< < , then ( ) ( ) ( ) ( )0 0 01 1i a a i q iν λ= + ≤ ≤ =  holds. While 0y  
is a nontrivial solution of (3.8), this leads ( )0 1qν = . So by Proposition 2.1 (4), 
we get ( ) ( ) ( )0 02 1i q q iν λ= + ≤ = . This is also a contradiction. From discus-
sion above, we obtain the conclusion that 0 0q a= . So we immediately get 

{ }0 0spany x∈ . 
Since { }0 0spany x∈ , there are two cases about 0y . One is that 0 0y > , the 

other is that 0 0y < . Without loss of generality, if 0 0y > , we assume 0 0y x= , 
and if 0 0y < , we assume 0 0y x= − . Firstly, we discuss the situation that 

0 0y > . If 0 0y > , i.e. 0 0y x= , then for ( )0, N Nε ε∀ > ∃ =  such that for 
n N> , 0 <ny x ε−  holds. Here, we take the ε  such that 0 0x ε− > , i.e. 
when n N> , ( ){ }ny t  belong to the neighborhood of 0y , ( )0 0,x xε ε− + , for 
all [ ]0,1t∈ . This means ( ) 0ny t x ε> − , as n N> , for all [ ]0,1t∈ . 

So by ( )n
n

n C

x t
y

x
= , we can get that for any [ ]0,1t∈ , ( ) ( ) 0n n n Cx t y t x= >   

for n N> . Then ( )nx t → +∞  for all [ ]0,1t∈ , as n Cx →∞ . By the assump-
tion that n Cx →∞ , as n →∞ , taking the limits on both sides of (3.1) and let-
ting 0u x= , we can obtain  

( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )
( )

0

1 1
0 0 0 00 0

1
0 00

1
1 00

,

d 1 , 1 0 , 0 , d

, d

, d .

n

n n n n

n n

n

x x

x x t x x k x x k f t x t x t

q t x f t x x t

f t x x t

ϕ

β α

′

′ ′= − + −

= −

= −

∫ ∫

∫

∫

 (3.9) 

So, by (H3), and (3.9), the following holds  

( )( )1
1 00

, d 0, as .nf t x t x t n→ →∞∫                (3.10) 

Furthermore, by the Fatou’s Lemma and (3.10), we have  

( )( ) ( )( )

( )

1 1
1 0 1 00 0

1
1 00

0 lim , d lim , d

, d ,

n n
n n

f t x t x t f t x t x t

f t x t

→∞ →∞
= ≥

= +∞

∫ ∫

∫
 

a contradiction to assumption (H3). Hence, if 0 0y > , this leads to a contradic-
tion. Secondly, in a similar way, we can show that if 0 0y < , there also be a con-
tradiction. Therefore, the sequence { }1n Cx

∞
 is a bounded sequence. By the 

equality n n n Cx y x=  and the fact that n Ey  is bounded, we can get that 
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{ }1n Ex
∞

 is bounded in E. Furthermore, { }1nx ∞  has a weak convergent subse-
quence in E, without loss of generality, still denoted by { }1nx ∞ . So we have 

*nx x  in E and *nx x→  in [ ]0,1C . In addition, by (3.1), we also have  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( )( )

1
* * *0
1

*0

d 1 , 1 0 , 0

, , d 0.

x t u t t x u k x u k

f t x t u t t

β α′ ′ − +

− =

∫

∫
       (3.11) 

At last, we only need to finish the mission that *nx x→  in E. Indeed, by (3.5), 
(3.11) and *nx x , we obtain the fact that  

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ){
( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) }

1 1
* * * *0 01 1

1
* *01

* *

1
*0

sup , sup , d , d

sup , , , d ,

1 1 , 0 0 ,

, d 0, as .

E E

E

n n n nE E
u u

n n
u

n n

n

x x x x u x x u t x x u t

f t x f t x u t t x x u

x x u k x x u k

x x u t n

ϕ ϕ

β α

≤ ≤

≤

 ′ ′ ′− = − = − + −  

′ ′= − + −

+ − − −

+ − → →∞

∫ ∫

∫

∫

 

The (PS) condition is verified. 
After the preliminary work, we can prove Theorem 1.1. 
Proof of Theorem 1.1. Since ( ) 1aν ≤  for any [ ]0,1a L∞∈ , by Lemma 2.4, 

we only need to prove  

( ), ;q z qH E γϕ δ≅R R                     (3.12) 

for ( )z ϕ θ− > −  large enough, where ( ) ( )0 1iγ ν λ= = = . By Lemma 2.3, we 
know that E can be split into two subspaces { }0span x  and ( )E λ+ , i.e.  

{ } ( )0span .E x E λ+= ⊕  

Next, we will take two steps to obtain the proof of (3.12). 
First step: For ( )z ϕ θ− > −  large enough, we have  

( ) ( ), ; , ; , 0,1, 2, ,q z q zH E H qϕ ϕ≅ = R R         (3.13) 

where H⊂  will be defined later. By assumption, for any y E∈ , we have  

( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )1 1

0 0

,

d 1 , 1 0 , 0 , d .

x y

x y t x y k x y k f t x y t

ϕ

β α

′

′ ′= − + −∫ ∫
  (3.14) 

We will consider the behavior of f in two subintervals of [ ]0,1 . One is 
( ){ } [ ]| 0,1t x t r≥ ⊂ , the other is ( ){ } [ ]0,1t x t r< ⊂ . Since f is continuous on 

[ ] ( )0,1 ,× −∞ +∞ , it is obvious that ( )( ),f t x t  is bounded on ( ){ }t x t r< . So 
there exists a constant 1M ∈R  such that ( )( ) 1,f t x t M<  when ( )x t r< . 

By Lemma 2.3, we have a decomposition with respect to ( )x t E∈ , i.e. there 
exist ( ) ( )x t E λ+

+ ∈ , and c∈R  such that 0x x cx+= + . When 0x cx r+ + < , 
we have 0 Ccx r x r x+ +< + < + . Furthermore, we get  

( ) ( )
0

0 0 1, d .C
x cx r

cx f t x cx t M r x
+

+ +
+ <

+ < +∫            (3.15) 

So by (15), we have  
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( )( )

( ) ( )

( )

0

0 0

0 0

0 0

1 1

, d

, d , d

.

x cx r

x cx r x cx r

C C

f t x cx x cx t

f t x cx x t cx f t x t

M x M r x

+

+ +

+ +
+ <

+ +
+ < + <

+ +

+ −

= + −

≤ + +

∫

∫ ∫         (3.16) 

By (H1), we have  

( )( )

( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

( )

0

0

0

0 0

0 0

0 0

0
0 0

0

0 2 2 2
0

0

0 2 2 2
0

0

2 2 2
0 0

1 2

0

, d

,
d

,
d

, ,
d d

d d

d

x cx r

x cx r

x cx r

x cx r x cx r

x cx r x cx r

f t x cx x cx t

f t x cx
x cx x cx t

x cx

f t x cx
x c x t

x cx

f t x cx f t x
x t c x t

x cx x

t x t c a t x t

t x t

λ

λ

+

+

+

+ +

+ +

+ +
+ ≥

+
+ +

++ ≥

+
+

++ ≥

+
+

++ ≥ + ≥

+
+ ≥ + ≥

+

+ −

+
= + −

+

+
= −

+

+
= −

+

≤ −

≤

∫

∫

∫

∫ ∫

∫ ∫

,M ′+∫

       (3.17) 

where M ′  is a constant. By (3.14), (3.16), (3.17), Proposition 2.1 (5) and Lem-
ma 2.3, we obtain  

( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

0

1
0 0 0 00

1
0 0 0 00

1 2

0

1 22
0 0 0 0 00

,

, d 1 1 , 1 1

0 0 , 0 0 , d

d 1 , 1 0 , 0

d 1 , 1 0 , 0

x x cx

x cx x cx t x cx x cx k

x cx x cx k f t x cx x cx t

x t x x k x x k

c x t x x k x x k

ϕ

β

α

β α

β α

+

+ + + +

+ + + +

+ + + + +

′ −

′ ′ ′ ′= + − − + −

+ + − − + −

′= − +

 ′− − +  

∫

∫

∫

∫

 

( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )

0 0

0 0 0 0

1 2

0
1 12 2 2

0 0 1 10 0
1 2 2

1 1 0 00
2

1 4 1 0

, d , d

d 1 , 1 0 , 0

d d

, 2 d

,

x cx r x cx r

C C

C

E E

f t x cx x cx t f t x cx x cx t

x t x x k x x k

c a t x t t x t M M x M r x

q x x M x rM c a t x t M

C x C x rM M

λ

β α

λ

+ +

+ + + +
+ ≥ + <

+ + + + +

+ + +

+ + +

+ +

  − + − + + − 
  

′≥ − +

′− − − − − +

′= − − − −

≥ − − +

∫ ∫

∫

∫ ∫

∫

 

where ( ) ( )1 40 , 0C C> >  and 0M  are constants. And hence, there exists 

0 0R >  such that  

( ) 0 0, 1, with .Ex x cx x E x Rϕ + +′ − > ∀ ∈ >  

Set ( )( ) { }
0 0spanRE B xλ+= ⊕ , where { }0 0R EB x E x R= ∈ ≤ . We 

want to define a deformation from ( ), zE ϕ  to ( ), zϕ . Since for every 

0x x cx+= + ∈ , f is decreasing along vector field ( ) 0V x x cx+= − + , we can 
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define the flow ( ) 0, e et tt x x cxσ σ −
+= = +  and ( ) 0ln lnx ET x R+= − , which is 

the first time that ( ),t xσ  arrives at  . Then the deformation is  

( )
( )

0 0
0

0

, ,
,

, , .
E

x E

x cx x R
t x cx

T t x x R
η

σ
+ +

+
+

 + ≤+ = 
>

 

One can verify that [ ]: 0,1 E Eη × →  is continuous and satisfy  

( ) ( ) ( )
( ) ( ) [ ]
0, , 1, , 1, ,

, , , 0,1 .
E z z

z z

id E

t t id t

η η η ϕ ϕ

η ϕ ϕ η

⋅ = ⊂ ⊂

⊂ ⋅ = ∀ ∈





 
 

Then, ( ), zϕ  is a deformation retract of ( ), zE ϕ . So (3.13) is veri-
fied. 

Second step: we will prove the following  

( ), ; ,q z qH γϕ δ≅ R R                  (3.18) 

for any ( )z ϕ θ− > −  large enough. In fact, assuming that ( ) 0x t x cx r+= + ≥ , 
by (H1), we will have two cases: one is ( )1 , 0f t x ≥  as x r≥ , another is 

( )1 , 0f t x ≤  as x r≤ − . Firstly, we analyze the situation that ( )1 , 0f t x ≥  as 

0x x cx r+= + ≥ . Since ( ) ( ) ( )1 0 1 0 1 0, liminf , liminf ,
x x y x

f t x f t x x f t y x
→+∞ →+∞ ≥

+∞ = =  and 
( )1 0inf ,

y x
f t y x

≥
 is a monotonically increasing nonnegative function with respect 

to 0x r≥ > , by (H3), we have  

( ) ( ) ( )1 1 1
1 0 1 0 1 00 0 0

, d liminf , d lim inf , d 0.
x y x x y x

f t x t f t y x t f t y x t
→+∞ ≥ →+∞ ≥

∞ = = >∫ ∫ ∫  

Then ( )*x r∃ ≥ ∈R , for all *l x> , ( )1
1 00

inf , d 0
y l

f t y x t
≥

>∫  holds. What’s 

more, since ( )0 0x t >  for all [ ]0,1t∈ . So there exists a 
[ ]

( )0
0,1

: sup 0
t

M x t
∈

= > , 

such that ( ) ( )1 1
1 1 00 0

, d inf , d 0
y l

M f t y t f t y x t
≥

≥ >∫ ∫ , i.e. ( )1
10

inf , d 0
y l

f t y t
≥

>∫ . 

So letting 0x x cx l+= + > , where c∈R , l is fixed and *>l x r≥ , we have  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

2
0 0 00 0

2
0 0 00

2
4 0 1 0

2
4 0 1 0

1, , d , d
2

1, d , d
2

1inf ,
2

1inf , .
2

x x cx

l x cx

l

x cx y l

y l

F t x f t s s f t s a t s s a t x cx

f t s a t s s f t s a t s t a t x

M x cx l f t y a t x

M x cx l f t y a t x

+

+

+

+

+

+

+ + ≥ ≥

+ ≥

= = − + +  

= − + − +      

≥ + + − +

≥ + + − +

∫ ∫

∫ ∫
 (3.19) 

Furthermore, by (3.19), we obtain  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

1 12

0 0

1 22 2 2
0 0 00

12
0 0

1 d 1 , 1 0 , 0 , d
2
1 2 d 1 1
2

0 0 , d

x x t x x k x x k F t x t

x cx x c x t x cx k

x cx k F t x t

ϕ β α

β

α

+ + +

+

 ′= − + −  

 ′ ′ ′ ′= + + − +

+ + −

∫ ∫

∫

∫
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( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 22 2 2
0 00

1 2 22 2 2 2 2
0 0 0 0 00

0 0

1
4 0 10

1 2 d 1 0
2

1 1 12 d 1 0
2 2 2
1 11 1 0 0
2 2

inf , d
y l

x cx x c x t x k x k

a t x cx x c x t c x k c x k

cx x k cx x k

M x cx l f t y t

β α

β α

β α

+ + + +

+ +

+ +

+ ≥

′ ′ ′ ′≤ + + − +

− + + − +

− +

− − + −

∫

∫

∫

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 22 2
00

1
0 0 0 0 00

2 1 2 22 2
0 0 0 0 00

1
4 0 10

1 d 1 0
2

d 1 1 0 0

d 1 0
2

inf , d
y l

x a t x t x k x k

c x x a t x x t cx x k cx x k

c x a t x t x k x k

M x cx l f t y t

β α

β α

β α

+ + + +

+ + + +

+ ≥

 ′= − − +  

′ ′+ − − +

 ′+ − − +  

− − + −

∫

∫

∫

∫

 

( )( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 22 2
00

1
4 0 10

1 d 1 0
2

inf , d .
y l

x a t x t x k x k

M x cx l f t y t

β α+ + + +

+ ≥

′= − − +

− − + −

∫

∫
 

So we get ( )xϕ → −∞ , as c → +∞ , uniformly in ( )
0Rx E Bλ+

+ ∈  . Second-
ly, we analyze the situation that ( )1 , 0f t x ≤  as 0x x cx r+= + ≤ − . In a similar 
way, we also get ( )xϕ → −∞ , as c → −∞ , uniformly in ( )

0Rx E Bλ+
+ ∈  . So 

we obtain that  

( ) ( )
0

uniformly in .Rx c x E Bϕ λ+
+→ −∞ ⇔ → +∞ ∈   

Thus, there exist 1 2 1 2 00, ,T z z T R R R> < < − > >  such that  

( )( ) { }( )
( )( ) { }( )

0 1 1

0 2 2

0

0

span \

span \ ,

R R z

R R z

E B x B

E B x B

λ ϕ

λ ϕ

+

+

′⊕ ⊂

′⊂ ⊕ ⊂

 

 




       (3.20) 

where { }0 0| andR EB cx c cx c R′ = ∈ = ≤R  by remark. For the sake of con-
venience, we set ( )( ) { }( )0 0span \R R RE B x Bλ+ ′= ⊕ . Then (3.20) can also be 
denoted as  

1 1 2 2
.R z R zϕ ϕ⊂ ⊂ ⊂      

We now begin to define a deformation from 
2zϕ  to 

1z
ϕ . For every 

( )2 1
\z zx ϕ ϕ∈  , since the flow is defined by ( ) 0, e et tt x x cxσ −

+= + , 
( )( ),t xϕ σ  is continuous with respect to t, ( )( ) ( ) 10, x x zϕ σ ϕ= >  and 
( )( ),t xϕ σ → −∞  as t → +∞ , so the time ( )1t T x=  arriving at 

1z
ϕ   ex-

ists uniquely and is defined by ( )( ) 1,t x zϕ σ = . Since  

( )( ) ( )( ) ( )

( )0 0

d ,
, , ,

d
e e , e e 1t t t t

t x
t x t x

t
x cx x cx

ϕ σ
ϕ σ σ

ϕ − −
+ +

′ ′=

′= + − + ≤ −
 

as 0t > , the continuity of ( )1t T x=  comes from the implicit function theo-
rem. 
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Define  

( )
( )( ) ( )

1

2 1

1

1

, ,

, , \

z

z z

t x x x

T x t x x

η ϕ

σ ϕ ϕ

= ∀ ∈

= ∀ ∈








 

then [ ]
2 21 : 0,1 z zη ϕ ϕ× →    is continuous, and is a deformation from 

2zϕ   to 
1z

ϕ   and ( )( ) 2 11 1, : z zτ η ϕ ϕ= ⋅ →    is a strong de-
formation retract. Hence,  

( )2 1
, ; 0.q z zH ϕ ϕ ≅  R                   (3.21) 

Recall that for any topological spaces Z Y X⊆ ⊆ , we have exact sequences  

( ) ( ) ( ) ( )1, ; , ; , ; , ; .q q q qH Y Z H X Z H X Y H Y Z−→ → →R R R R  

From (3.20), in order to prove  

( ) ( )2 1
, ; , ;q z q RH Hϕ ≅ R R                (3.22) 

we only to prove  

( )2 1
, ; 0.q z RH ϕ ≅ R   

And from (3.21), it suffices to verify  

( )1 1
, ; 0.q z RH ϕ ≅ R   

Let [ ]
2 22 : 0,1 R Rτ × →   satisfy  

( )

( )( )
2 0 0 1

1 0 2 1

, , ,

1 , .

t x cx x cx c R
cx tR t c x R c R
c

τ + +

+

+ = + >

= + + − < ≤
 

We can verify that [ ]
1 11 2: : 0,1 z zτ τ τ ϕ ϕ= × →     is continuous, 

where ( ) ( )( )1 2 1 2, ,t x t xτ τ τ τ= , [ ]0,1t∈ , 
1z

x ϕ∈  , and satisfies  

[ ] ( )( ) ( )1 2 1 0 00, 1, 0, 1,x x x cx x cx xτ η τ η + += = + = + =  

for any 
1z

x ϕ∈  . So [ ]
1

0,
z

idϕτ ⋅ =
 . And  

[ ] [ ] ( )0 1 2 1, , 1, ,t x cx t x x xτ τ τ η+ + = = =  

for any 
1Rx∈ . So [ ]

11
,

RR
t idτ ⋅ = 

. We can also see that τ  satisfy 

( )1 1
1, z Rτ ϕ ⊂  , ( )1 1

1, R Rτ ⊂  , ( )1 1
, R Rtτ ⊂  . Then ( )1 1

,R R   is 
a deformation retract of ( )1 1

,z Rϕ   . This means (3.22) and hence (3.21) 
holds. Finally from (3.21) we have  

( )
( )( ) { } ( )( ) { }( )( )
{ } { }( )( )

2

0 0 1

1 1

0 0

0 0

, ;

span , span \ ;

span ; span ;

, 0,1, 2,3, .

q z

q R R R

q R R

q

H

H E B x E B x B

H x B x B

qγ

ϕ

λ λ

δ

+ + ′≅ ⊕ ⊕

′ ′≅ ∂

= =



 

 



R

R

R

R

 

 

Here in the second ≅  we used the deformation [ ]: 0,1ζ × →   defined 
by ( ) 0,t x tx cxζ += + , and excision property. So (3.18) is proved. And by (3.13) 
and (3.18), (3.12) is obtained. The proof is completed. 
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In our theorem, we get one nontrivial solution of Equations (1.1)-(1.3). By 
adding assumption (H4), we get two nontrivial solutions of Equations (1.1)-(1.3). 

4. Conclusion 

By index theories established in this paper, and Morse theory, we study the func-
tional corresponding to the problem to obtain more nontrivial solutions of asymp-
totically linear ordinary differential equations satisfying Sturm-Liouville BVPs 
with resonance. It’s better than the results obtained by topological degree me-
thod. 
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