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Abstract 

This study aims to estimate the quantum Bogoliubov-Born-Green-Kirkwood- 
Yvon (BBGKY) hierarchy in curvilinear coordinates. We used the results to 
calculate the quantum binary and triplet distribution functions in curvilinear 
coordinates. The analytical form of the quantum distribution functions was 
obtained for dusty plasma in Saturn’s rings model. We use particles-in-cell 
(PIC) simulations to find a visualization of dusty three-component plasma 
phase space in curvilinear coordinates. Our results were compared with others. 
 

Keywords 

Dusty Plasma, Binary and Triplet Distribution Functions, Three Component 
Plasma, BBGKY Hierarchy 

 

1. Introduction 

The quantum distribution functions are of great interest for understanding the 
properties of dusty plasma. In statistical mechanics, we can get the thermody-
namic functions such as the internal energy, the osmotic pressure, and the excess 
free energy by using the distribution functions for the plasma particles. The im-
portance of quantum distribution function in statistical physics is to give the 
particles number density in the phase space at time t. 

Many authors have calculated the quantum distribution functions. Hussein 
and Hassan [1] have calculated the quantum binary distribution of high temper-
ature plasma. Kraeft et al. [2] used effective potentials to calculate the binary 
distribution function. Bogoliubov and Kraeft et al. [3] [4] defined a set of equa-
tions describing the dynamics of a system of a large number of interacting par-
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ticles by using the quantum BBGKY hierarchy. Kaniadakis [5] showed that the 
classical BBGKY hierarchical equation, for the n-particle reduced distribution 
function. Fesciyan [6] calculated the quantum time independent BBGKY hie-
rarchy of equations at low densities. Hussein et al. [7] used the BBGKY hie-
rarchy for calculating the binary and triplet distribution functions for one- and 
two-component Plasmas in terms of Green’s function technique. A quantum 
mechanical calculation of the radial distribution function for a Plasma was given 
by [8]. Also, many others have studied the binary and triplet distribution func-
tions [9]-[19]. Many researchers have been interested in identifying the optimal 
form of the classical distribution functions [16]. Hansen [17] calculated the dis-
tribution functions for one component plasma in the classical form and quan-
tum corrections. 

The calculation of the distribution functions in general form by using curvili-
near coordinates makes it easier for the researchers to find the form of the dis-
tribution function in the spherical or cylindrical coordinates or any type of 
coordinates that facilitates the study of the physical problem. Błaszak and Do-
manski [20] calculated the canonical quantization of classical mechanics in cur-
vilinear coordinates. Kjaergaard and Mortensen in 1990 [21] made a simple de-
rivation of the quantum mechanical Hamiltonian in curvilinear coordinates. In 
2012 a generalized, curvilinear-coordinate formulation of Poisson’s equations to 
solve for the electrostatic fields in plasma was given by Fichtl et al. [22]. 

Dusty Plasmas plays an important role in experimental physics and in many 
astrophysical situations [23]. To understand many space and astrophysical phe-
nomena, and many industrial and physical applications, the study of plasmas 
containing heavy dust particles is very important [24]. It differs from ordinary 
plasma in the presence of dust particles along with a number of positive and 
negative charges moving at a high speed if compared with the speed of dust [25]. 
Wang and Zhang [26] employed the quantum hydrodynamic model to study the 
solution and chaotic structures of dust ion-acoustic waves in quantum dusty 
plasmas consisting of electrons, ions and charged dust particles. 

Dusty plasma was originally important in the field of astrophysics. Examples 
of astronomical dusty plasmas include planetary ring systems (rings of Saturn). 
The rings of Saturn are the most important models in space dusty plasma study 
[27]. The rings of Saturn are made of billions of particles; these particles mostly 
range from tiny, dust-sized icy grains to giant chunks. They are made of small 
chunks of ice and rock coated with another material such as dust. A few particles 
are as large as mountains. 

Saturn’s ring system extends up to 175,000 miles (282,000 kilometres) from 
the planet, yet the vertical height is typically about 30 feet (10 meters) in the 
main rings [28]. Named alphabetically in the order they were discovered, the 
rings are relatively close to each other, with the exception of a gap measuring 
2920 miles (4700 kilometres) wide called the Cassini Division that separates 
Rings A and B. The main rings are A, B and C. Rings D, E, F and G are fainter 
and more recently discovered; each ring orbits at a different speed around the 
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planet [29]. But if we ask a question why plasma molecules move in these rings 
in circular paths and what is the nature of their components. And how to find 
the distribution functions of their particles. Does the use of curvilinear coordi-
nates make it easier to find and deal with the functions of predisposition? In this 
study, we attempted to find the form of the distribution functions of the mole-
cules of planetary rings. A model was found that simulates its shape. How fast 
the particles of planetary rings and whether it is necessary to use Einstein 
patches for high speeds. In this research, we tried to answer some of these ques-
tions. 

Particle-in-cell (PIC) simulations are a useful tool in modelling plasma. The 
electron velocity distribution function and the plasma potential are found by 
particle-in-cell (PIC) simulations [30]. Reinmüller in 1998 [31] determined the 
plasma potential from PIC simulations. We use particle-in-cell (PIC) simula-
tions to find a visualization of dusty three component plasma quantum phase 
space in curvilinear coordinates. 

This work is aimed to calculate the quantum binary and triplet distribution 
functions of a dusty plasma in curvilinear coordinates. In geometry, curvilinear 
coordinates are a coordinate system for Euclidean space in which the coordinate 
lines may be curved. Commonly used curvilinear coordinate systems include 
rectangular, spherical, and cylindrical coordinate systems. The calculation is 
based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [3]. 

The cluster expansion method consists of writing the binary distribution 
function as a power series in the density. The coefficients of different powers of 
the density involve integrals of the order of that power. These coefficients are 
then expressed as a sum of a product of integrals. The power series of the binary 
distribution function in the density convergence badly at high densities, many 
attempts have been made to overcome such difficulty. 

2. The Basic Equations and Hierarchy 

Consider 3 Dimensions space with coordinates ( )1 2 3, ,X x x x= . A point p in 3d 
space can be defined using Cartesian coordinates or it can also be defined by its 
curvilinear coordinates ( )1 2 3, ,ξ ξ ξ ξ= . The relation between the coordinates is 
then given by the invertible transformation functions: 

( )1 2 3, , , 1, 2,3s s x x x sξ ξ= =  

( )1 2 3, , , 1, 2,3i ix x iξ ξ ξ= =                    (1) 

The surfaces 1ξ  = constant, 2ξ  = constant, 3ξ  = constant are called the 
coordinate surfaces. The coordinate axes are determined by the tangents to the 
coordinate curves at the intersection of three surfaces. They are not in general 
fixed directions in space, which happens to be the case for simple Cartesian 
coordinates, and thus there is generally no natural global basis for curvilinear 
coordinates. The momentum operator in quantum mechanics is the gradiant 
operator ( )p i= ∇

. By defining the Jacobi matrix as: 
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, , 1, 2,3.xj
α

αβ β α β
ξ
∂

= =
∂                     

(2) 

The Jacobian of the transformation is the determinant of the Jacobi matrix 

( ) detJ jαβξ  =                           
(3) 

Define the natural basis vectors: 

, 1, 2,3i
rh
α

α
ξ
∂

= =
∂

 

( )1 2 3, ,r x x x=                          (4) 

The reduced s-particle density operators defined by Bogoliubov [3] in the fol-
lowing form 

( ) ( )
1 2 1

1
1 2, , , , , , exp ;

N s N

s
s N NF P P P V Tr Q Hξ ξ ξ ξ ξξ ξ ξ β

+

−= −




       
(5) 

where NH  is the Hamiltonian of our system given by 

( )
2

2

2NH V
m

ξ−
= ∇ +


                      
(6) 

where V is the potential of the system and Q is the configuration integral is given 
by 

1
e ,N

s N

HQ Tr β
ξ ξ+

−=
                        

(7) 

The solution of N-particle schrödinger (time-dependent) equation with this 
Hamiltonian are given by ( ) ( )1 MΨ Ψ

 and from a complete orthonormal 
basis 

( ) ( )
( )2

1 2
1 2 3 1d d dn

n

Jp J
i

ξ ξ ξ
ξ

∗ ∂ Ψ
Ψ Ψ = Ψ

∂∫ ∫ ∫
  

( ) ( )

1
1

M
k k

k=
Ψ Ψ =∑

                       
(8) 

Define the N-particle density operator 

( ) ( )

1

ˆ
M

k k
k

k
wρ

=

= Ψ Ψ∑
                      

(9) 

where wk are positive real probabilities 

1
1

M

k
k

w
=

=∑
                          

(10) 

0 1kw≤ ≤  

The density operator ρ̂  follow the Von Neumann equation 

ˆˆ ˆ, 0i H
t
ρ ρ∂  − = ∂



                      
(11) 

In order to derive the quantum BBGKY-hierarchy, we introduce the reduced 
s-particle density operator as 

1 1
ˆ ˆN

s s s NF C Tr ρ+=
                        (12) 
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and 
( )1 1

!ˆ .
!

N
s s s

NTr F C
N s

= =
− 

 

The equation of motion for the reduced density operator obeys directly the 
Von Neuman equation. Now by substituting from Equation (12) into Equation 
(11) we get 

1 1 1 1 , 1 1 1
1

ˆ ˆ ˆ ˆˆ, ,
s

s s s s i s s
i

i F H F Tr v F
t + + +

=

∂    − =   ∂ ∑
   



           
(13) 

where ,î jv  is the potential between particles i,j and 1
ˆ

sH


 is the s-particle Ha-
miltonian operator. The above equation constitutes the quantum generalization 
of the (BBGKY) hierarchy. 

3. The Binary Distribution Function 

We assume that the momentum of the electron lies between 1ξ  and 1 1dξ ξ+  is 

1
Pξ . Also the momentum of the positron lies between 2ξ  and 2 2dξ ξ+  is 

2
Pξ  

and the momentum of the dust (ion) lies between 3ξ  and 3 3dξ ξ+  is 
3

Pξ . In 
this section, we shall find the binary distribution function of a quantum dusty in 
curvilinear coordinates. Firstly, define the quantum N particle distrbution func-
tion as follows: 

( )
( )

( )

2

1

2

1

!exp
2

,

d exp d exp
2

i

N

i
N

N

N
iqu

N N
N

N N
i

P
N U

m
F P

P
P U

m

ξ

ξ
ξ

ξ

β β ξ

ξ

β ξ β ξ

=

=

 
− − 
  =

 
 − −   

  

∑

∑∫ ∫
     

(14) 

The one particle distribution function is obtained by reducing ( ),
N

qu
N NF Pξξ  

by integrating over N − 1 positions and momenta then 

( ) ( ) ( )11 1
1, d d ,

1 ! N N

qu qu
N N NF P P F P

Nξ ξ ξξ ξ ξ=
− ∫∫

           
(15) 

If there are no external fields 

( )1 1

2
1 1, exp

2
quF P P

mξ ξ
βξ α − =                      

(16) 

where the value of α  can be found by normalization: 

( )1 11 1 1d d ,quP F P Nξ ξξ ξ =∫∫                    
(17) 

By substituting from Equation (16) into Equation (17) we get 
3 2

1 2πV m
N

α
β

−  
=  

                        
(18) 

Then the one particle distribution function is given by 

( )1 1

3 2
2

1 1, exp
2π 2

qu NF P P
V m mξ ξ

β βξ −   =                     
(19) 

By putting s = 1 into Equation (13) we can get the first equation of quantum 
BBGKY as 
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1 1 1 1 12 12
1

ˆ ˆ ˆ ˆˆ, ,
s

s
i

i F H F Tr v F
t +

=

∂    − =   ∂ ∑

               
(20) 

Then we have the binary distribution function by substituting from Equation 
(19) into Equation (20): 

( ) ( ) ( ) ( )
1 2 1 212 1 2 1 1 2 2 1 2, , , , , ,qu qu quF P P F P F P gξ ξ ξ ξξ ξ ξ ξ ξ ξ= +

       
(21) 

where ( )1 2,g ξ ξ  is the correlation function. 
Let us now study the model of dusty three component plasma i.e. the neutral 

system of point-like particles of positive and negative charges such as electrons, 
positrons and dust particles like ions. This model is an important model in both 
laboratory physics and space physics and has many applications [24]. By finding 
the quantum distribution functions of this model we can get the important 
thermodynamic functions such as the internal energy and the equation of state. 
Dust particles are heavier and slower in their velocities than electrons and posi-
trons where for dusty plasma the relation between electrons, positrons, and dust 
(ion) density at equilibrium is e d i pn Z n n= + , where sn  is the number density 
of sth species and dZ  is the charge state of dust [24]. 

Substituting Equations (19) and (21) into (13) for 1,2s =  we obtain 

( )

( )

12
1 2

12

2 2 2

32

12 2 3 3 2

231 21 2
2

112 12

exp exp
2 2

2
π8

e 1e

e e i

e e iqu

e e i

s

s s s

P P P
m m mNF

V m m m

e e qe e
KT mmc KT

ξ ξ ξ

κξ
ξ ξκξ

β
β

ξ ξξ

−

−

=

    
− +    

         = +  
   

 
 

⋅
− − + +∑

p p


       

(22) 

4. The Triplet Distribution Function 

The quantum triplet distribution function 123
quF  defined in such a way that 

( )1 2 3 1 2 3123 1 2 3 1 2 3, , , , , , d d d d d dquF P P P t P P Pξ ξ ξ ξ ξ ξξ ξ ξ ξ ξ ξ  is the probability of finding a 
particle of the type 1th in the volume element 1dξ  surrounding 1ξ ,with mo-
mentum in range 

1 1 1
dP P Pξ ξ ξ→ + , a particle of type 2th in the volume element 

2dξ  surrounding 2ξ , with momentum in range 
2 2 2

dP P Pξ ξ ξ→ +  and a par-
ticle of the type 3th in the volume element 3dξ  surrounding 3ξ , with momen-
tum in range 

3 3 3
dP P Pξ ξ ξ→ +  respectively at time t. 

The quantum triplet distribution function ( )1 2 3123 1 2 3, , , , ,quF P P Pξ ξ ξξ ξ ξ  is de-
fined by the calculation of the interaction between three charged particles seems 
rather involved, because the force on particle 1 at time t would depend on the 
position and momentum of particles 2 and 3 at a retarded time. For simplifica-
tion the quantum triplet distribution function 123

quF  can be written as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

123 1 1 1

1 1

1

123 1 2 3

1 23 2 13

3 12 123

qu qu qu qu

qu qu

qu

F F F F

F g F g

F g h

=

+ +

+ +              
(23) 
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where ( )123h  is the correlation function between particles 1, 2 and 3. 
Substituting Equations (19) and (22) into (13) for 1,2,3s =  we obtain 

( )
( )

( ) ( )

( ) ( )

31 2

1 2

3

22 2

9
3 2 1 2 3

123 3 23
1 2 3

3 2
2 2

2

exp
2 2 2

123
π16 2

exp 23 exp 13
2π 2 2

exp 12 123
2

qu

PP P
m m mNF

V m m m

N P g P g
V m m m

P g h
m

ξξ ξ

ξ ξ

ξ

β

β β β

β

  
+ +  

     =   
   

 
 

 − −     + +          
−  + +      

(24) 

For three component plasma, we can use the two particle correlation function 
( )12g  which is given by 

( ) ( )
( )

( )( )
( )

1 21 2 12 12

1 12 2 2 2
12

12 1
2

g g
mc mc

ξ ξξ ξξ
ξ

 ⋅ ⋅⋅ = + + 
  

p pp p ξ ξ

         

(25) 

where 

( ) 121 2
1 12

12

e
e eg

KT
κξξ

ξ
−= −

                    
(26) 

( )1 12g r  is the Debye-Hückel solution and the three particle correlation func-
tion ( )1,2,3G  which is given by 

( ) ( ) ( ) ( )
( ) ( )

( )
( )( )

( )

1 2 1 3

2 3

1 12 1 13 1 23 2 2

3

2 2 2
, 1,

123 1

2

i jij ij

i j i j ij

h g g g
mc mc

mc mc

ξ ξ ξ ξ

ξ ξξ ξ

ξ ξ ξ

ξ= ≠

 ⋅ ⋅= + +


⋅ ⋅⋅ + + + 


∑

p p p p

p pp p


ξ ξ

       

(27) 

Whatever particles 1, 2, 3 are, we can write the quantum triplet distribution 
function ( )123 123quF  as 

( )
( )

( )
( )

( )( )
( )

31 2

2 32 3

1

2

22 2

9
3 2 1 2 3

123 3 23
1 2 3

3 2
23 232

1 23 2 2 2
23

2
1

exp
2 2 2

123
π16 2

exp 1
2π 2 2

exp
2

qu

PP P
m m mNF

V m m m

N P g
V m m mc mc

P g
m

ξξ ξ

ξ ξξ ξ
ξ

ξ

β

β β ξ
ξ

β

  
+ +  

     =   
   

 
 

   ⋅ ⋅⋅−      + + +              

− +   

p pp p ξ ξ

( )
( )

( )( )
( )

1 31 3 13 13

13 2 2 2
13

1
2mc mc

ξ ξξ ξξ
ξ

  ⋅ ⋅⋅  + +      

p pp p ξ ξ
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( )
( )

( )( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )( )
( )

1 21 2

3

1 2 1 3 2 3

12 122
1 12 2 2 2

12

1 12 1 13 1 23 2 2 2

3

2 2
, 1,

exp 1
2 2

1

2

i jij ij

i j i j ij

P g
m mc mc

g g g
mc mc mc

mc

ξ ξξ ξ
ξ

ξ ξ ξ ξ ξ ξ

ξ ξ

β ξ
ξ

ξ ξ ξ

ξ= ≠

  ⋅ ⋅⋅−     + + +           
 ⋅ ⋅ ⋅+ + + +

⋅ ⋅
+ 


∑

p pp p

p p p p p p

p p

ξ ξ

ξ ξ

     

(28) 

5. Quantum Distribution Functions of Saturn’s Rings 

An alternative statistical description of planetary rings was formulated in a series 
of papers by Hämeen-Anttila [32] [33]. It uses a kinetic equation of Boltzmann 
type for the description of the evolution of the one-particle phase space distribu-
tion function, in a similar manner as gas-kinetics. Hämeen-Anttila gives analyt-
ical solutions for the collision integrals, where necessary in terms of appropriate 
approximations. The effect of self-gravity is taken into account in a self consis-
tent manner in the local vertical gravity field of the disk and in its effect on close 
particle encounters. In principle the theory can treat the average effect of particle 
surface irregularities stochastically and it is formulated so that it can be extended 
to describe particle fragmentation and coagulation. 

The biggest advantage is that the balance equations for mass, stress, and scale 
hight of the ring, are given analytically as partial differential equations. Thus, the 
theory can be applied to investigate the dynamical evolution of a planetary ring. 
The disk’s self-gravity potential diskφ  couples to the surface mass density 
through Poisson’s equation [34] 

2 4πdisk aφ σδ∇ =                        (29) 

where σ  is the surface mass density, a is gravitation parameter and δ  is the 
Dirac delta function. 

2 3 1 3 2 1

1 2 3 1 1 1 2 2 2 3 3 3

1 4πdisk disk diskh h h h h h a
h h h h h h

φ φ φ
σδ

ξ ξ ξ ξ ξ ξ
     ∂ ∂ ∂∂ ∂ ∂

+ + =     ∂ ∂ ∂ ∂ ∂ ∂         
(30) 

where 1 2 3,h h h  is the natural basis vectors. The Kinetic theory describes the 
evolution of the local velocity distribution function of an ensemble of particles in 
terms of the Boltzmann equation or a suitable generalization of it, like Enskog’s 
theory of hard sphere gases. The kinetic equation can be derived from Liouville’s 
theorem, appearing as the leading equation in a hierarchy of equations describ-
ing n-particle distribution functions in phase space and neglecting correlations 
between particle pairs. Then the one particle distribution function in Equation 
(19) in in the local vertical gravity field can be given by 

( )1 1

3 2
2

1 1, exp
2π 2

qu NF P P e
V m mξ ξ

β βξ φ−   = −                   
(31) 
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Kinetic theory allows us to incorporate the full complexity of the dynamics of 
a planetary ring in a statistical description, such as the effects of the motion of 
ring particles on curved orbits between inelastic collisions, their finite size, the 
anisotropy of the velocity dispersion, and in principle also coagulation and 
fragmentation of the ring particles. 

The collision motion of an ensemble of identical particles in the plane, in the 
frame of reference rotating with angular velocity ω  can be described by the 
Boltzmann equation [35] in Curvilinear Coordinates: 

1 2 2
2

1

1 2
1

2

2
1

1 1 2 2 2 1 1

2
1

2
1 2 21 2

2

2 cl

p p pf f f fp
t mh mh m mh h p

p p f fp
mh h p tm h h

ξ ξ ξ
ξ

ξ

ξ ξ
ξ

ξ

φωω
ξ ξ ξ

φκ
ω ξ

   ∂∂ ∂ ∂ ∂
+ + + + + −    ∂ ∂ ∂ ∂ ∂   
 ∂ ∂ ∂ = + + +   ∂ ∂ ∂        

(32) 

where 1 2 3, ,ξ ξ ξ  was defined by Equation (1) and 
cl

f
t

∂ 
 ∂ 

 is the collision integral  

which takes into account effects due to the discrete-point nature of the gravita-
tional charges, or collision effects (including diffusion in space and velocity), 
and defines the change of the distribution function f(r, v, t) arising from ordi-
nary interparticle collisions (in a plasma this term represents the change of f 
arising from collisions with particles at distances shorter than a Debye length). 
The Boltzmann form for the collision integral is based on an assumption that the 
duration of a collision is much less than the time between collisions instantane-
ous collisions are considered [36]. The simple Krook integral in the case of a 
two-dimensional disk of identical particles has the form 

( )0c
cl

f v f f
t

∂  = − − ∂                       
(33) 

where f is the actual distribution function of particles and f0 is the steady-state equi-
librium distribution function (Shu and Stewart, 1985) [35]. The equilibrium axially 
symmetric distribution function is the Maxwellian with the surface density 0σ : 

2
0

0 2 2 2exp
2π 2

p
f

c m c
ξσ  

= −  
                     

(34) 

The gravitational potential of a rotating oblate planet 

( )
2

20
2

1 3, 1 sin
2 2 2

aM R Iφ ξ β β
ξ

    = − + −    
                

(35) 

where r is the distance from the center of the planet to the point at which the 
potential is sought, β  is the planetocentric latitude of the point, R is the radius 
of the planet, and 0M  is its mass. For saturn 2 0.017I = , 29

0 5.7 10 gM = ×  
and 76 10 mR = ×  for more exact values of the parameters see Ref. [37]. 

6. Conclusions 

In this work we obtained the quantum binary and triplet distribution functions 

https://doi.org/10.4236/ijaa.2019.92009


N. A. El R. Hussein et al. 
 

 

DOI: 10.4236/ijaa.2019.92009 124 International Journal of Astronomy and Astrophysics 

 

of dusty plasma; the calculation is based on curvilinear coordinates and the Bo-
goliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. We consider only 
the thermal equilibrium plasma. The model under consideration is the 
three-component dusty plasma i.e. neutral system of point like particles of posi-
tive and negative charges (electrons and positrons) interspersed with dust par-
ticles (ions) [24]. Figure 1 and Figure 2 show the effect of dust on the quantum 
binary and triplet distribution functions. From these figures we note that the ex-
istence of dust makes a fluctuation in binary and triplet distribution functions in 
the range of ( )0.5,2.5ξ = . It was shown that the local stability criterion ob-
tained from the computer models is in general agreement with the theoretical 
prediction as outlined in the present paper. 

The first derivation of reactive quantum Boltzmann equations by Olmstead 
and Curtiss [18] starts with the Wigner transformed version of the standard 
BBGKY hierarchy for a system of stable atomic and diatomic constituents. Also, 
they calculated the quantum triplet distribution function of moderately dense 
gases. Alavi et al. [19] described the time evolution of a one-particle statistical 
distribution or density operator, influenced by the interaction of another particle 
which represents the effect of all other particles in the system. 

 

 
Figure 1. The quantum binary distribution function from Equation (22) without dust ef-
fect (solid line) and with a dust effect (dashed line). 

 

 

Figure 2. The quantum triplet distribution function from Equation (28) without dust ef-
fect (solid line) and with a dust effect (dashed line). 
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Figure 3 and Figure 4 show the comparison between the quantum binary and 
triplet distribution function based on our result without dust effect (solid line), 
Alavi et al. [19] (dashed line) and from Olmstead and Curtiss [18] (dot-dashed 
line). We note from this comparison the convergence between the results ob-
tained and the results of the references [19] and [18]. 

Figure 5 and Figure 6 show the comparison between the quantum binary and 
triplet distribution function based on our result with the effect of dust, Alavi et al. 
[19] and from Olmstead and Curtiss [18]. After taking into account the effect of 
dust, we noticed that our results are closer to the results obtained by Olmstead 
and Curtiss [18] in the range of ( )0,0.5ξ = , but with the increase in the value 
of the variable ξ  in the range of ( )0.5,1ξ =  the results are closer to results 
obtained by Alavi et al. [19]. 

Initial quantum curvilinear coordinates phase-space ( ),Vξξ  for dusty plasma 
electrons (gray color), positrons (red color) and dust (orange color) was given in 
Figure 7. Figure 8 shows the quantum curvilinear coordinates phase-space 
( ),Vξξ  for dusty plasma based on Particle-In-Cell (PIC) simulation methods.  

 

 

Figure 3. The comparison between the quantum binary distribution function based on 
our result without dust effect (solid line), Alavi et al. [19] (dashed line) and from 
Olmstead and Curtiss [18] (dot-dashed line). 

 

 

Figure 4. The comparison between the quantum triplet distribution function based on 
our result without dust effect (solid line), Alavi et al. [19] (dashed line) and from 
Olmstead and Curtiss [18] (dot-dashed line). 
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Figure 5. The comparison between the quantum binary distribution function based on 
our result with a dust effect (solid line), Alavi et al. [19] (dashed line) and from Olmstead 
and Curtiss [18] (dot-dashed line). 

 

 

Figure 6. The comparison between the quantum triplet distribution function based on 
our result without dust effect (solid line), Alavi et al. [19] (dashed line) and from 
Olmstead and Curtiss [18] (dot-dashed line). 

 

 

Figure 7. Initial quantum curvilinear coordinates phase-space ( ),Vξξ  for dusty plasma 

electrons (gray color), positrons (red color) and dust (orange color). 
 

We observe from the phase space that the speed of dust particles is much lower 
than the speed of electrons and positrons. The density of dust particles varies 
due to the large volume of dust particles. 

The quantum binary distribution function for dusty plasma was given in Fig-
ure 9. The quantum triplet distribution function for dusty plasma see Figure 10 
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with 1 2 3=ξ ξ ξ≠ . 
Figure 11 and Figure 12 show the quantum binary and triplet distribution 

functions for dusty plasma in curvilinear phase space ( ), Pξξ . These solutions 
are important in different branches of physics and other areas of applied 
sciences and can provide help for researchers to study and understand the phys-
ical interpretation of the dusty plasma model. 

 

 

Figure 8. The quantum curvilinear coordinates phase-space ( ),Vξξ  for dusty plasma 

electrons (gray color), positrons (red color) and dust (orange color) based on Particle-In-Cell 
(PIC) simulation methods. 

 

 

Figure 9. The quantum binary distribution function for dusty plasma with 1 2ξ ξ≠ . 
 

 

Figure 10. The quantum triplet distribution function for dusty plasma with 1 2 3=ξ ξ ξ≠ . 
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Figure 11. The quantum binary distribution function for dusty plasma in curvilinear 
phase-space ( ), Pξξ . 

 

 

Figure 12. The quantum triplet distribution function for dusty plasma in curvilinear 
phase-space ( ), Pξξ . 

 

 

Figure 13. Model of Saturn planet rings in the radius interval (92,000 km; 139,350 km). 
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Figure 14. 2D Model of Saturn planet rings in the radius interval (92,000 km; 139,350 km). 
 

 

Figure 15. Ultraviolet ring’s image; red color refer to dust and blue for water ice. 
 

 

Figure 16. Simulation of dusty plasma for sturan rings for different values of gravitation 
parameter in the radius interval (92,000 km; 139,350 km). 
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Model of Saturn planet rings in the radius interval (92,000 km, 139,350 km) 
was given in Figure 13 and Figure 14. Figure 15 shows ultraviolet ring’s image; 
red color refers to dust and blue for water ice. Figure 16 shows the Simulation 
model of dusty plasma for Saturn rings for different values of gravitation para-
meter. Also, we note from this figure when gravitation parameter increased the 
dispersion of the presence of particles becomes more visible than the lower val-
ues of the gravitation parameter. 
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