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Abstract 

The purpose of this paper is to investigate the behavior of a scale factor for 

Wiener integrals about the unbounded function ( ) { }1 0
exp d

Tn
jjF x a xα

=
= ∑ ∫ , 

where { }1 2, , , nα α α  is an orthonormal set of elements in [ ]2 0,L T  on the 

Wiener space [ ]0 0,C T . 
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1. Introduction 

In [1], M. D. Brue introduced the functional transform on the Feynman integral 
(1972). In [2], R. H. Cameron wrote the paper about the translation pathology of 
a Wiener spac (1972). In [3] [4] [5], R. H. Cameron and W. T. Martin proved 
some theorems on the transformation and the translation and used the 
expression of the change of scale for Wiener integrals (1944, 1947). In [6] [7], R. 
H. Cameron and D. A. Storvick proved relationships between Wiener integrals 
and analytic Feynman integrals to prove the change of scale formula for Wiener 
integral on the Wiener space in 1987. In [8], M. D. Gaysinsky and M. S. 
Goldstein proved the Self-Adjointness of a Schrödinger Operator and Wiener 
Integrals (1992). 

In [9], G. W. Johnson and M. L. Lapidus wrote the paper about the Feynman 
integral and Feynman’s Operational Calculus (2000). In [10], G. W. Johnson and 
D. L. Skoug proved the scale-invariant measurability in Wiener Space (1979). 
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In [11] and [12], Y. S. Kim proved a change of scale formula for Wiener 
integrals about cylinder functions ( ) ( )( )1 , , ,nf h x h x




 with  

( ) ,1n
pf L R p∈ ≤ ≤ ∞  on the abstract Wiener space: the analytic Wiener 

integral exists for ( ) ,1n
pf L R p∈ ≤ ≤ ∞ , and the analytic Feynman integral 

exists for ( )1
nf L R∈  (1998) and (2001). But the Feynman integral does not 

always exist for 1 p< . 
In [13], Y. S. Kim investigates a behavior of a scale factor for the Wiener 

integral of a function ( ) ( )( ){ }0
exp , d

T
F x t x t tθ= ∫ , where [ ]: 0,T Rθ × → C  is 

defined by ( ) { } ( ), exp d tR
t u iuv vθ σ= ∫  which is a Fourier-Stieltzes transform 

of a complex Borel measure ( )t Rσ ∈M  and ( )RM  is a set of complex Borel 
measures defined on R. 

In this paper, we investigate the behavior of a scale factor 0ρ >  for the 

Wiener integral 
[ ] ( ) ( )

0 0,
d

C T
F x m xρ∫  which is defined on the Wiener space 

[ ]0 0,C T  about the unbounded function ( ) { }1 0
exp d

Tn
jjF x a xα

=
= ∑ ∫  with 

0a > , where { }1 2, , , nα α α  is an orthonormal set of elements in [ ]2 0,L T  on 

the Wiener space [ ]0 0,C T . 

2. Definitions and Preliminaries 

Let [ ]0 0,C T  denote the space of real-valued continuous functions x on [ ]0,T  
such that ( )0 0x = . Let   denote the class of all Wiener measurable subsets 
of [ ]0 0,C T  and let m denote a Wiener measure and [ ]( )0 0, , ,C T m  be a 
Wiener measure space and we denote the Wiener integral of a function  

[ ]0: 0,F C T → C  by 
[ ] ( ) ( )

0 0,
d

C T
F x m x∫ . 

A subset E of [ ]0 0,C T  is said to be scale-invariant measurable if Eρ ∈  
for each 0ρ > , and a scale-invariant measurable set N is said to be scale-invariant 
null if ( ) 0m Nρ =  for each 0ρ > . A property that holds except on a 
scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.). 
If two functionals F and G are equal s-a.e., we write F G≈ . A function F 
defined on the scale invariant measurable set E is a scale invariant measurable 
function if ( )F xα  is a Wiener measurable function for all 0α > .  

Throughout this paper, let nR  denote the n-dimensional Euclidean space 
and let , +C C , and +C  denote the set of complex numbers, the set of complex 
numbers with positive real part, and the set of non-zero complex numbers with 
nonnegative real part, respectively. 

Definition 2.1. Let F be a complex-valued measurable function on [ ]0 0,C T  
such that the integral  

( ) [ ] ( )
0

1
2

0,
; d

C T
J F F x m xλ λ

− 
=   

 
∫                  (2.1) 

exists for all real 0λ > . If there exists a function ( );J F z∗  analytic on +C  
such that ( ) ( ); ;J F J Fλ λ∗ =  for all real 0λ > , then we define ( );J F z∗  to 
be the analytic Wiener integral of F over [ ]0 0,C T  with parameter z, and for 
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each z +∈C , we write  

( ) ( ) [ ] ( ) ( )
0 0,

; ; d .
anwzaw

C T
I F z J F z F x m x∗= ≡ ∫             (2.2) 

Let q be a non-zero real number and let F be a function defined on [ ]0 0,C T  
whose analytic Wiener integral exists for each z in +C . If the following limit 
exists, then we call it the analytic Feynman integral of F over [ ]0 0,C T  with 
parameter q, and we write  

( ) ( ) [ ] ( ) ( )
0 0,

; lim ; d ,qanwaf aw
C Tz iq

I F q I F z F x m x
→−

= ≡ ∫           (2.3) 

where z approaches iq−  through +C  and 2 1i = − .  
Let { } 1

n
k k

e
=

 be a complete orthonormal set and [ ] [ ]0, 0,ke C T B T∈   for 
1,2, ,k n=   and [ ]2 0,L Tα ∈  and [ ]0 0,x C T∈ . We define a  

Paley-Wiener-Zygmund integral (P.W.Z) of x with respect to α  by  

( ) ( ) ( ) ( ) ( )
0 0

1
d lim , d .

nT T
k kn k

t x t e e t x tα α
→∞ =

≡ ∑∫ ∫  

Theorem 2.2 (Wiener Integration Formula). Let [ ]0 0,C T  be a Wiener 
space. Then  

[ ] ( ) ( )

( )

0
1 20, 0 0 0

2 2

1

d , d , , d d

1 1exp d
2π 2n

T T T
nC T

n
n

j
j

f x x x m x

f u u u

α α α

=

  = −  
   

∫ ∫ ∫ ∫

∑∫



 

R

           (2.4) 

where { }1 2, , , nα α α  is an orthonormal set of elements in [ ]2 0,L T  and 
: nf →R C  is a Lebesgue measurable function and ( )1 2, , , nu u u u=



  and 

1 2d d d d nu u u u=


  and 
0

d
T

j xα∫  is a Paley-Wiener-Zygmund integral for 
1 j n≤ ≤ .  

Remark. We will use several times the following well-known integration 
formula:  

{ }
2

2 πexp d exp
4
bau ibu u

a a
 

− + = − 
 

∫R            (2.5) 

where a is a complex number with 0Rea > , b is a real number, and 2 1i = − . 

3. Main Results 

Define a function [ ]0: 0,F C T → C  on the Wiener space by  

( )
0

1
exp d

n T
j

j
F x a xα

=

 
=  

 
∑∫                  (3.1) 

where 0a >  is a finite real number and { }1 2, , , nα α α  is an orthonormal set 
of elements in [ ]2 0,L T . 

Lemma 3.1. For a finite real number 0a > , the unbounded cylinder function 
( )F x  in (3.1) is a Wiener integrable function.  
Proof. By the Wiener integration Formula (2.4), we have that for a finite real 
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number 0a > ,  

[ ] ( ) ( )

( )

0 0,

2 2

1 1

2 22

2

d

1 1exp d
2π 2

1 2π exp
2π 2

exp
2

n

C T

n
n n

j jR
j j

n
n

F x m x

a u u u

n a

n a

= =

  = ⋅ −  
   

   = ⋅ ⋅ +  
   

 = + < ∞ 
 

∫

∑ ∑∫


             (3.2) 

Remark. If we let ( ) ( )1 20 0 0
d , d , , d

T T T
nF x f x x xα α α= ∫ ∫ ∫  and : nf R → C , 

then ( ) { }1exp n
jjf u a u

=
= ∑

 is unbounded for a finite real number 0a > .  

Lemma 3.2. Let [ ]0: 0,F C T → C  be defined by (3.1). For a finite real 
0ρ >  and a finite real 0a > ,  

[ ] ( ) ( )
0

2 2
0,

d exp
2C T

nF x m x aρ ρ = + 
 ∫             (3.3) 

Proof. By the Wiener integration Formula (2.4), we have that  

[ ] ( ) ( )

( )

0 0,

2 2

1 1

2 2 22

2 2

d

1 1exp d
2π 2

1 2π exp
2π 2

exp
2

n

C T

n
n n

j jR
j j

n
n

F x m x

a u u u

n a

n a

ρ

ρ

ρ

ρ

= =

  = ⋅ −  
   

   = ⋅ ⋅ +  
   

 = + < ∞ 
 

∫

∑ ∑∫


            (3.4) 

Lemma 3.3. Let [ ]0: 0,F C T → C  be defined by (3.1). For a finite real 
0ρ >  and a finte real 0a > ,  

[ ] ( ) ( ) [ ] ( ) ( )
2

0 00, 0,
d d

C T C T
F x m x F x m x

ρ

ρ  =   ∫ ∫           (3.5) 

Proof. By the above Lemma, we have that  

[ ] ( ) ( )

[ ] ( ) ( )

0

2

2

0

0,

2 2

2

0,

d

exp
2

exp
2

d

C T

C T

F x m x

n a

n a

F x m x

ρ

ρ

ρ

ρ = + 
 

  = +    

 =   

∫

∫

                 (3.6) 

Now we define a concept of the scale factor for the Wiener integral which 
was first defined in [13]: 

Definition 3.4. We define the scale factor for the Wiener integral by the 
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real number 0ρ >  of the absolute value of the Wiener integral:  

( ) [ ] ( ) ( )
0 0,

d
C T

G F x m xρ ρ= ∫                   (3.7) 

where :G R → R  is a real valued function defined on R.  
Property. <Behavior of a scale factor for the Wiener integral.> 
We investigate the interesting behavior of the scale factor for the Wiener 

integral by analyzing the Wiener integral as followings: For real 0ρ >  and for 
a finite real number 0a > ,  

[ ] ( ) ( )
0

2 2
0,

d exp .
2C T

nF x m x aρ ρ = + 
 ∫               (3.8) 

Example. For the scale factor 21 1, , ,1,10,10 ,
100 10

ρ  =  
 
  , we can 

investigate the very interesting behavior of the Wiener integral:  

[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( )

[ ] ( ) ( ) [ ] ( ) ( )

0 0

0 0

0 0

2

0 0

1
10000

0, 0,

1
100

0, 0,

100

0, 0,

0, 0,

1(a) d d
100

1(b) d d
10

1 1(c) d d
100 10

(d) d d

C T C T

C T C T

C T C T

C T C T

F x m x F x m x

F x m x F x m x

F x m x F x m x

F x m x F x m x
ρ

ρ

   =     

   =     

      =            

 =   

∫ ∫

∫ ∫

∫ ∫

∫ ∫

    (3.9) 

Remark. <Interpretation of a scale factor for Wiener integrals of an 
unbounded cylinder function.> 

1) Whenever the scale factor 1ρ >  is increasing, the Wiener integral 
increases very rapidly. Whenever the scale factor 0 1ρ< <  is decreasing, the 
Wiener integral decreases very rapidly. 

2) The function ( ) [ ] ( ) ( )
0 0,

d
C T

G F x m xρ ρ= ∫  for ( )F x  in (3.1) is an 

increasing function of a scale factor 0ρ > , because the exponential function 
2

exy =  is an increasing function of x R∈ . 

3) Whenever the scale factor 0ρ >  is increasing and decreasing, the Wiener 
integral varies very rapidly. 

4. Conclusions 

What we have done in this research is that we investigate the very interesting 
behavior of the scale factor for the Wiener integral of an unbounded function. 

From these results, we find an interesting property for the Wiener integral as a 
function of a scale factor which was first defined in [13]. 

Note that the function in [13] is bounded and the function of this paper is 
unbounded! 

Finally, we introduce the motivation and the application of the Wiener 
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integral and the Feynman integral and the relationship between the scale factor 
and the heat (or diffusion) equation:  

Remark.  
1) The solution of the heat (or diffusion) equation  

( )
2 2

2 ,
2

i h V
t h m
ψ ψ ξ ψ

ξ
 ∂ ∂

= − − + ∂ ∂ 
               (3.10) 

is that for a real 0λ > ,  

( ) ( ) ( ) ( )
0

1 1
2 2

0
, exp d dt

t

C

it V x s s x s m s
hλψ ξ λ ξ ψ λ ξ

− −     = − + ⋅ +            
∫ ∫  (3.11) 

where ( ) ( ),λψ ξ φ ξ⋅ =  and ( )2
dL Rφ ∈  and dRξ ∈  and ( )x ⋅  is a dR

-valued continuous function defined on [ ]0, t  such that ( )0 0x = . 
2) H V= −∆ +  is the energy operator (or, Hamiltonian) and ∆  is a 

Laplacian and : dV R R→  is a potential. This Formula (3.11) is called the 
Feynman-Kac formula. The application of the Feynman-Kac Formula (in 
various settings) has been given in the area: diffusion equations, the spectral 
theory of the schrödinger operator, quantum mechanics, statistical physics, for 
more details, see the paper [8] and the book [12]. 

3) If we let 2λ ρ−= , the solution of this heat (or diffusion) equation is  

( ) ( )( ) ( )( ) ( )
0 0

, exp d dt

t

C

it V x s s x s m s
hρψ ξ ρ ξ φ ρ ξ = − + ⋅ + 

 ∫ ∫   (3.12) 

4) If we let 2mh im
i

ρ
λ

−= = − , then  

( ) ( )( ){ } ( )( ) ( )
0

2
0

, exp d dt

t

C
t m V x s s x s m sρψ ξ ρ ρ ξ φ ρ ξ= + + ⋅ +∫ ∫   (3.13) 

is a solution of a heat (or diffusion) equation:  

( )
2 2 2

2 2

1 .
2

m V
t mm
ψ ρ ψ ξ ψ

ρ ξ
  ∂ ∂

= +  ∂ ∂   
                (3.14) 

This equation is of the form:  

( )
2

2 2

1 1 .
2

V
t m
ψ ψ ξ ψ

ξ ρ
∂ ∂

= +
∂ ∂

                   (3.15) 

5) If we let ( ) ( ) ( )
1 1
2 2

0
exp d

tiF x V x s s x s
h

λ ξ φ λ ξ
− −     = − + ⋅ +            

∫ , then we 

can express the solution of the heat (or diffusion) equation by the formula  

( ) ( ) ( ) ( ) ( )
0 0

1
2, d , , dt tC C

t F x m x t F x m xρ λψ ξ ρ ψ ξ λ
− 

= =   
 

∫ ∫       (3.16) 

6) By this motivation, we first define the scale factor of the Wiener integral by 
the real number 0ρ >  in the paper [13]. 

Remark. <Gratitude for the Refree> I am very grateful for the referee to 
comment in details. 
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