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Abstract 
In this paper, we describe the two different stochastic differential equations 
representing cholera dynamics. The first stochastic differential equation is 
formulated by introducing the stochasticity to deterministic model by para-
metric perturbation technique which is a standard technique in stochastic 
modeling and the second stochastic differential equation is formulated using 
transition probabilities. We analyse a stochastic model using suitable Lyapu-
nov function and Itô formula. We state and prove the conditions for global 
existence, uniqueness of positive solutions, stochastic boundedness, global 
stability in probability, moment exponential stability, and almost sure con-
vergence. We also carry out numerical simulation using Euler-Maruyama 
scheme to simulate the sample paths of stochastic differential equations. Our 
results show that the sample paths are continuous but not differentiable (a 
property of Wiener process). Also, we compare the numerical simulation re-
sults for deterministic and stochastic models. We find that the sample path of 

s aSI I R B−  stochastic differential equations model fluctuates within the 
solution of the s aSI I R B−  ordinary differential equation model. Further-
more, we use extended Kalman filter to estimate the model compartments 
(states), we find that the state estimates fit the measurements. Maximum li-
kelihood estimation method for estimating the model parameters is also 
discussed.  
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1. Introduction 

It is well known that diseases have impacts on people’s health. Therefore, it is 
necessary to study the mechanism by which the disease spread, conditions for 
the disease to have minor or major outbreak and get the knowledge on how to 
control the diseases such as cholera, Ebola, etc. In this study we are mainly con-
cern with cholera epidemic. Cholera is an infectious disease that causes severe 
watery diarrhea, which leads to dehydration and even death if untreated. Ac-
cording to WHO report [1], about 1.4 to 4.3 million cases of cholera are reported 
each year worldwide and more than 140,000 deaths per year are reported due to 
cholera. As a result of this, several mathematical models have been developed to 
model cholera epidemics, through these models one can predict the behaviour of 
the disease and control the particular epidemic. Any epidemic of an infectious 
disease can be modelled by using either deterministic or stochastic models. The 
deterministic models are formulated as a system of ordinary different equations 
and are preferred by many researchers since its analysis is simple compared to 
stochastic models. However, the shortcomings of deterministic models are: they 
give less information, rely on the law of large numbers, difficulty to do estima-
tion, when the population is very small it becomes difficult to do analysis and 
also, experimentally the measured trajectories do not behave as predicted due to 
some random effects that disturb the system [2]. 

Due to these limitations of ordinary differential equations in modelling infec-
tious diseases, stochastic modelling of infectious diseases in both heterogeneous 
and homogeneous population emerged as an alternative to deterministic model 
and alleviated some of the problems of deterministic models in modelling epi-
demic diseases. In reality many phenomena in nature are usually affected by 
stochastic noise and the ordinary differential Equation (ODEs) models ignore 
the stochastic effects [2]. The stochasticity can be added to the ODEs by includ-
ing the random terms or elements by parametric perturbation technique. This 
technique introduces other parameters to the model known as noise intensities. 

Many of the models that have been employed in water-borne settings have 
been deterministic, thus ignoring the possible effects of randomness; see, e.g. [3] 
[4] [5] [6] [7]. These models incorporate an environmental pathogen compo-
nent that is the concentration of the vibrios into a SIR (suscepti-
ble-infected-recovered) and SIsIaR (susceptible-symptomatic infected-asymptomatic 
infected-recovered) epidemic framework. Some of these models only considered 
compartment I as a single compartment (individuals with severe symptoms on-
ly) (e.g. [3] [4] [5] [6]) instead of splitting it into two heterogeneous groups that 
are symptomatic and asymptomatic infected individuals to study the transmis-
sion dynamics of cholera epidemic. Also, some of these models considered only 
direct transmission of disease i.e., human to human and other models ignored 
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the feedback loop from infected individuals to the environment reservoir. How-
ever, in their studies no stochastic models considered, so as to keep track where 
the disease is at continuous time and not only at discrete time as shown in their 
studies. 

In [7] they developed deterministic model by extending the work by [6]. The 
work in [6] considered infected individuals (I) as a homogeneous group that is 
people with severe symptoms like vomiting and diarrhoea. Therefore, [7] di-
vided infected individuals (I) into symptomatic infected (Is) and asymptomatic 
infected (Ia), in order to observe the contribution of concentration of Vibrio 
cholerae in the environment through excretion from each compartment and 
hence how it leads to the transmission dynamics of cholera epidemic. 

In the stochastic modeling of cholera epidemic few papers emphasized on 
cholera stochastic models. [8] developed a deterministic model and further, ex-
tended it stochastic differential equations, the limitations to their paper are: no 
numerical analysis considered in their paper and compartment I is considered as 
single compartment, it could be better to split it into two groups, individuals 
with severe symptoms (symptomatic infected individuals) and those with mild 
symptoms (asymptomatic infected individuals) so as to observe the contribution 
of these two groups to the concentration of Vibrio cholerae through excretion. 

[9] [10] developed a simple deterministic and stochastic model to discuss the 
spread of cholera. In their paper, they described the spread of cholera by model-
ing the bacteria population in contaminated water and human interaction with 
the bacteria in the water supply. The limitation to their paper is the absence of 
enough theoretical and numerical analysis. In [11] proposed a deterministic 
model that described the interaction among the two types of vibrios and viruses. 
The deterministic model proposed was further extended to include the random 
effects and from the stochastic model formulated it indicated that there is always 
a positive probability of disease extinction within the human host. 

In this paper, we extend the deterministic model developed in [7] by formu-
lating an equivalent stochastic differential Equation (SDEs). The formulated 
stochastic differential Equation (SDEs) models will be analyzed theoretically us-
ing suitable Lyapunov functions, Itô formula and some stochastic techniques. 
Numerical simulation will be carried using Euler-Maruyama scheme and ex-
tended Kalman filter. Also, maximum likelihood estimation method will be used 
to estimate the model parameters. 

In the next section, we present a deterministic cholera epidemic model with 
water treatment, which is a model formulated by [7]. In Section 3, the corres-
ponding two different stochastic models are formulated using parametric per-
turbation technique and transition probabilities approach. In Section 4, the for-
mulated stochastic differential equations are analyzed by proving the existence 
and positivity of solutions, stochastic boundedness, global stability in probabili-
ty, moment exponential stability, and almost sure convergence. In Section 5, the 
numerical results from the deterministic and stochastic simulations are pre-
sented, discussed and compared. In Section 6, we provide a brief discussion to 
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support our findings. Ultimately, the last section concludes our paper.  

2. Cholera Deterministic Model 

From the description of the dynamics of cholera as shown in Figure 1, we the 
following set of ordinary differential equation system as in [7].  
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with suitable initial conditions. The total human population is given by 
( ) ( ) ( ) ( )e s aN S t I t I t R t= + + + . 

From the model: ( )S t , ( )sI t , ( )aI t , ( )R t  and ( )B t  refer to suscepti-
ble individuals, symptomatic infected individuals, asymptomatic infected indi-
viduals, recovered individuals and the pathogen concentration in the contami-
nated environment respectively. The model parameters are described as follows. 

b is the birth rate or recruitment rate, β  is rate of exposure to contaminated 
water, κ  is the concentration of Vibrio cholerae in water, 1α  is the contribution  
 

 
Figure 1. The interaction of cholera epidemic transmission dynamics between compart-
ments is shown. 
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of ( )sI t  to the population of Vibrio cholerae through excretion, 2α  is the 
contribution of ( )aI t  to the population of Vibrio cholerae through excretion, 
d death rate due to cholera, δ  death rate of Vibrio cholerae due to water 
treatment, φ  is the mortality rate for bacteria including phage degradation, 1r  
is the recovery rate of symptomatic infected individuals, 2r  is the recovery rate 
of asymptomatic infected individuals, p is the prob. of new infected from ( )S t  
to be symptomatic, q is the prob. of new infected ( )S t  to be asymptomatic , 
µ  is the natural death rate. 

The key parameter in epidemiology is the basic reproduction number, which 
is defined as the average number of secondary infectious cases transmitted by a 
single primary infectious cases introduced into a whole susceptible population 
[12]. This parameter is useful because it helps determine whether an infectious 
disease will spread within the population or not. To compute 0R , the next gen-
eration matrix approach is used as in [13]. It is obtained by taking the largest 
(dominant) eigenvalue value (spectral radius) of  

( ) ( ) 1
0 0 ,i i

i i

E E
−

   ∂ ∂
   ∂ ∂   

 
 

 

where i  is the rate of appearance of new infection in compartment i, i  is 
the net transition between compartments, 0E  is the disease free equilibrium 
and i  stand for the terms in which the infection is in progression i.e., ( )aI t , 

( )aI t  and ( )B t  in the model (1). Hence, the basic reproduction number ob-
tained in [7] was as follows:  

1 2 1 1 2 2 2
0 ,e

n

bNp qr pr dq qR
D

α βµ α β α β α β α βµ
µ

 + + + +
=  
 

       (2) 

where  
2

1 2 2 1 2
2

1 2 2 1 2 .
nD d r dr r r r

r dr r r r

δκµ δκµ δκµ δκ δκµ δκ δκµφ

φκµ κµφ κφ κµφ κφ

= + + + + + +

+ + + + +
 

From Equation (2), when 0 1R < , the highly infectious vibrios will not grow 
within human host and the environmental vibrios ingested into human body 
will not cause cholera infection. But when 0 1R >  the human vibrios will grow 
and persist, and hence leads to human cholera.  

3. Stochastic Differential Equations 

In this section we provide two approaches of formulating stochastic differential 
equations from the deterministic model (1). These approaches are parametric 
perturbation Itô SDEs and Itô SDEs from the transition probabilities. 

3.1. Parametric Perturbation Itô SDEs 

The idea of parametric perturbation is to choose a parameter of interest from the 
deterministic model and change it to random variable [14] [15]. In this study we 
introduce the randomness into the model by replacing parameters β  and d by 
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( )1 1d tβ β σ+   and ( )2 2dd d tσ+  , where 1  and 2  are two in-
dependent standard Brownian motions with the following properties:  

1) 0 0=    a.s,  
2) For all times 0 s t≤ < , the increment t s−   is normally distributed 

with zero mean and variance t s− ; i.e., ( )0,t s N t s− −   ,  
3) For all times 1 20 nt t t< < < < , the increments 

1 2 1
, , ,

n nt t t t −
−     of 

the process are independent random variables,  
4) All samples paths ( ) [ )., : 0, ,ω ω∞ → ∈Ω , are continuous   a.s.  
Similarly, 1σ  and 2σ  are real constants, known as the intensities of the 

stochastic environment. 
From the deterministic model (1) we get the following system of stochastic 

differential equations:  
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( ) ( ) ( ) ( )1 2d d ,s aR t r I t r I t R t tµ= + −    

( ) ( ) ( ) ( ) ( )1 2d d ,s aB t I t I t B t tα α δ φ= + − +    

with suitable initial conditions. The technique of parameter perturbation intro-
duces another parameters 1σ  and 2σ  in a model.  

3.2. Itô SDEs with Transition Probabilities 

This method was proposed by [16] [17], the stochastic differential equations fol-
low from the diffusion process. The nature of stochastic differential equation to 
be formulated is in this form:  

( ) ( )( ) ( )( ) ( )d , ; d , ; d ,x t f t x t t G t x t tθ θ= +             (4) 

where ( )( ), ;G t x t θ  is a matrix satisfying TGG = Σ  [16] [17], Σ  is the 
co-variance to order t∆ , tΣ∆  is the approximate covariance matrix, ( )t  is 
the vector of independent Wiener process, θ  is a vector of parameters and 

( )( ), ;f t x t θ  is the drift part or deterministic part. 
From Equation (1) we formulate an equivalent SDEs as  

( ) ( )d d d ,t tx t F t G t= +                      (5) 

where [ ]
t

x
F

t
∆

=
∆


 and 

( )T

t

x x
G

t

 ∆ ∆ =
∆


. Clearly, ( )x t  is an Itô process,  
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such that ( ) [ ]T1 2 3 4, , ,x t x x x x= . Then, 1 2 3 4, , ,x x x x , corresponds to the number 
of individuals ( ) ( ) ( ) ( ) [ ], , , 0,s a eS t I t I t R t N∈  respectively and ( )B t  the Vi-
brio cholerae concentration in the environment. However, ( )B t  is not a com-
partment occupancy as the other one are so its transition is not considered in the 
formulation of transitions. 

In order to find the expectation [ ]x∆  and covariance matrix Σ , we need 
to consider the transition probabilities as stated in Table 1. The transition 
probabilities are formulated from Equation (1). From Table 1, the expectation 
and variance co-variance matrix are computed as follows: 

[ ] ( )
10
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and the co-variance matrix is given by 
 
Table 1. Possible changes in the process for the s aSI I R B−  model.  

Possible changes Probabilities 
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4 0, 1,0,0x∆ = −  4 2P dx t= ∆  
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5 1,0,0,0x∆ = −  5 1P x tµ= ∆  
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6 0, 1,0,1x∆ = −  6 1 2P r x t= ∆  
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7 0, 1,0,0x∆ = −  7 2P x tµ= ∆  
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8 0,0, 1,0x∆ = −  8 3P x tµ= ∆  

[ ]T

9 0,0, 1,1x∆ = −  9 2 3P r x t= ∆  

[ ]T

10 0,0,0, 1x∆ = −  10 4P x tµ= ∆  
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Also, by substituting the values of iP , ix∆  and  
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1 2 3 4, , , , , ,s ax x x x S t I t I t R t=     to Equation (7), we get  
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The Itô stochastic differential equation, where global Lipschitz conditions are 
satisfied to ensure the existence and uniqueness of strong solution, can be writ-
ten as in Equation (4) as found in [14]. Hence by Equation (5), the Itô stochastic 
differential equations become:  
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Note that if ( ) ( ) 0s aI t I t= =  and ( ) 0B t = , then cholera epidemic stops.  

4. Analysis of Parametric Perturbation Itô Stochastic  
Differential Equation Model  

In this paper, unless otherwise stated, we let { }( ), , ,tΩ    be a complete fil-
tered probability space, with { } 0t t≥

  satisfying the usual conditions (i.e., in-
creasing and right continuous also 0  contains all  -null sets). Let  
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4.1. Global Existence and Uniqueness of Positive Solutions  

Before proving the existence and uniqueness of positive solutions, let us state the 
conditions that guarantee the existence and uniqueness of solution of Equation 
(4).  

Lemma 1. Assume that there exist two positive constants K̂  and K such that  
1) (Lipschitz condition) for all , nx y∈  and [ ]0 ,t t T∈   

( ) ( ) 2 2ˆ, ,f x t f y t K x y− ≤ −  

2) (Linear growth condition) for all  

( ) [ ] ( ) ( )2 2
0, , , 1 .nx t t T f x t K x∈ × ≤ +  

Theorem 1. For any initial value ( ) ( ) ( ) ( ) ( )( ) 50 , 0 , 0 , 0 , 0s aS I I R B +∈ , 
there is a unique solution ( ) ( ) ( ) ( ) ( ) ( ), , , ,s ax t S t I t I t R t B t=  to system (3) for 
all 0t ≥ , and the solution will remain in 5

+  with the probability 1, namely 
( ) 5x t +∈ , for all 0t ≥  almost surely.  
Proof. Since the coefficients of system (3) satisfy the local Lipschitz condition, 

then for initial values ( ) ( ) ( ) ( ) ( )( ) 50 , 0 , 0 , 0 , 0s aS I I R B +∈ , there is unique lo-
cal solution ( ) ( ) ( ) ( ) ( ), , , ,s aS t I t I t R t B t  on [ ]0, εν , where εν  is the first hit-
ting time or explosion time. In order to prove that the solution is global and pos-
itive, we need to show that ν = ∞  a.s. Let 0 0k >  be sufficiently large so  

that ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0s aS I I R B  remain within the interval 0
0

1 ,k
k
 
 
 

. For  
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integer 0k k≥ . Let [ ]: 0,kν Ω ∞  be any random variable (taking eventually 
infinite value) on a filtered probability space { }( ), , ,tΩ   . We say that kν  is 
a stopping time for filtration t  if at each (deterministic) time 0t ≥ , the event 
[ ]k tν ≤  is known in t . In this study we define  

[ ) ( ) 1inf 0, : , for some ,1 5k k it x t k i i
k

ν ν  = ∈ ∉ ≤ ≤  
  

 

Let ∅  be empty set then the inf ∅ = ∞ . By definition kν  increases as 
k →∞ . Let limk kν ν∞ →∞= , then εν ν∞ ≤  a.s. We need to show that ν∞ = ∞  
a.s. Then εν = ∞  and ( ) 5x t +∈ . If this statement is false we say that, there 
exist ( )0,1ε ∈  and a constant 0T > , such that { }Tν ε∞ ≤ > . As a conse-
quence to this, there exist an integer 1 0k k>  such that  

{ } 1,k T k kν ε≤ ≥ ∀ ≥                      (9) 

For kt ν≤  and at each k,  

( ) ( )
( )

d d

d ,
s a s a s

s a

S I I R S I I R dI t

S I I R t

µ

µ

 + + + = Λ − + + + − 
 ≤ Λ − + + + 

       (10) 

where ebNΛ = . Then  

( ) ( ) ( ) ( )
0

0 0

if
: ,

if
s a

N
S t I t I t R t

N N

µ µ

µ

Λ Λ ≤+ + + ≤ = Λ ≥


        (11) 

where  

( ) ( ) ( ) ( )0 0 0 0 0 ,s aN S I I R= + + +  

and  

0max , .N
µ
 Λ

=  
 

  

Define now 1,2  the Lyapunov function 5:V + +→   by  

( ) ( ) ( ) ( )
( ) ( )

, , , , 1 In 1 In 1 In

1 In 1 In ,
s a s s a aV S I I R B S S I I I I

R R B B

= − − + − − + − −

+ − − + − −
     (12) 

and ( ) ( ) ( ) ( ) ( ), , , ,s aS t I t I t R t B t ∈Ω . Then ( )( ),V x t t  is an Itô stochastic 
process with the SDEs given by  

( )( )

( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )

T

d ,

1, , trace , d
2

, d ,

t x xx

x

V x t t

V x t t V x t t f t g t V x t t g t t

V x t t g t t

 = + +  
+ 

  (13) 

which becomes  

( )( ) ( )( ) ( ) ( )d , d , d ,xV x t t LV t V x t t g t t= +              (14) 

where  
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( )

( )

( )
( )

( )

1

2 1 2

2 2 2
1

1 2 2 2

2 2 2 2 2 2
2 21 1
22 2 2

1 11 1

1 11 1

1 11 d
2

1 1d
2 2

s
s

a s a
a

s a

s
s a

BS p BSLV S r d I
S B I B

q BS r I r I r I R
I B R

B SI I B t
B S B

p B S q BI t
I IB

β βµ µ
κ κ

β µ µ
κ

σ
α α δ φ

κ

σ σ
σ

κ

  = − Λ − − + − − + +   + +   
   + − − + + − + −   +   

  + − + − + +   
  +  

 
+ + + 

+   ( )

2 2

2 d
S t

Bκ

 
 

+  

 

Hence 

( ) ( )

( )

1 2 1

2 2 2 2 2 2
1 1

2 1 2 2 22

2 2 2 22
2 1

2 2

2 2

,
2 2

s

a s a
s

a

B p BS q BSLV r d r r I
B B B

B p B Sr I I I
B I B

q BS
I B

β β βµ µ µ
κ κ κ

σ σ
µ α α δ φ

κ κ

σ σ
κ

≤ Λ + + + + + + + + + +
+ + +

+ + + + + + + +
+ +

+ +
+

    (15) 

From 0max , N
µ
 Λ

=  
 

 , it follows that  

( ) ( ) ( )

1 2 1 2

2 2 2 2 2 2 2 2 2 22
1 1 2 1

2 12 2 22
4

2 2 22
: ,

as

p B q B BLV r r
B B B

B p B q Br r d
B II B B

β β βα α δ φ
κ κ κ

σ σ σ σ
µ

κ κ κ

 ≤ Λ + + + + + + + + + + + + 

+ + + + + + + +
+ + +

=



 



 (16) 

where   is a positive constant independent of variables , , , ,s aS I I R B  and 
time t. Then we obtain  

( ) ( ) ( )1 1 1 1
2 2

d d1d d d ,
s a

pB t qB tS SV t t
I p B I B

σ σ
σ

κ κ
 

≤ − − − −  + + 


 
     (17) 

let { }min ,k kT Tν ν∧ = . Introduce integral to Equation (17)  

( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )

0

1 1
0 0

1 1
2 20 0

d , , , ,

d1d

d
d .

k

k k

n n

T
s a

T T

s

T T

a

V S s I s I s R s B s

pB sSs
I p B

qB sSs
I B

ν

ν ν

ν ν

σ
κ

σ
σ

κ

∧

∧ ∧

∧ ∧

 
= − −  + 

− −
+

∫

∫ ∫

∫ ∫







           (18) 

Introducing the expectation to Equation (18) and by the Gronwall inequality, 
leads to  

( ) ( ) ( ) ( ) ( )( ), , , , ,k s k a k k kV S T I T I T R T B T C Tν ν ν ν ν ∧ ∧ ∧ ∧ ∧ ≤ +    (19) 

where ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0s aC V S I I R B= . Since the mean of stochastic 
integral equals zero [18]. Then let { } 1,k k T k kνΩ = ≤ ∀ ≥  from inequality (9), 
we have ( )kΩ ≥  . Then for all kω∈Ω , there must exist at least one of  
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( ) ( ) ( ) ( ) ( ), , , , , , , , , ,k s k a k k kS T I T I T R T B Tν ν ν ν ν  

which can take either 1
k

 or k. Hence we have  
( ) ( ) ( ) ( ) ( )( )

( )

, , , , , , , , ,

1 11 log 1 log ,

k s k a k k kV S T I T I T R T B T

k k
k k

ν ν ν ν ν

  ≥ − − ∧ − −        

        (20) 

again define the indicator function on kΩ  denoted by   be defined for all 

kω∈Ω  by  

( )
1 if
0 otherwisek

kω
ωΩ

∈Ω
= 


  

From Equation (19) and by Bienayme Chebyshev inequality we have  

( ) ( ) ( ) ( ) ( )

( )

, , , , , , , , ,

1 11 log 1 log ,

k k s k a k k kC T S T I T I T R T B T

k k
k k

ν ν ν ν νΩ + ≥  
  ≥ − − ∧ − −  

  

  


  (21) 

when k → +∞ , this leads to contradiction as  

( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0s aV S I I R B T∞ > + = ∞  

Therefore, we conclude that for the solution ( ) ( ) ( ) ( ) ( ), , , ,s aS t I t I t R t B t  of 
cholera model not to explode at finite time with probability 1, we need to have 
ν∞ = ∞  a.s. This completes the proof.                                □ 

Theorem 1 shows that the solution of model (3) will remain in 5
+ . Next, we 

give the definition of stochastic ultimate boundedness [19], which is very im-
portant in population dynamics.  

Definition 1. The solution ( ) ( ) ( ) ( ) ( ) ( )( ), , , ,s ax t S t I t I t R t B t=  of model (3) 
are said to be stochastically ultimately bounded, if for any ( )0,1∈ , there is a 
positive constant ( )δ δ=  , such that for any initial value  

( ) ( ) ( ) ( ) ( )( ) 5
0 0 , 0 , 0 , 0 , 0s ax S I I R B += ∈ , the solution ( )x t  to Equation (3) 

has a property that  

( ){ }limsup .
t

x t δ
→∞

> <   

Theorem 2. The solutions of system (3) are stochastically ultimately bounded 
for any initial value 5

0x +∈ .  
Proof. From Theorem 1, we showed that ( ) ( ) ( ) ( ) ( ), , , ,s aS t I t I t R t B t  re-

main in 5
+ , for all 0t ≥  almost surely. 

Let 1V , 2V  and 3V  be lyapunov functions stated as  

1 2 3e , e , e where 1.t t t
s aV S V I V Iθ θ θ θ= = = >          (22) 

Taking their derivatives with respect to θ  we get  

( ) ( ) ( )1 2 3
e ee , and .

t tt
s a

s a

I ISV V V
S I I

θ θθ θ θθθ θ θ′ ′ ′= = =       (23) 

Using Itô formula we get  

( )1 1
1 1

e d
d d ,

tB S t
V LV t

B

θσ θ
κ

= −
+

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( ) ( )1 1
2 2 2 2

e d
d d e d ,

t
t

s

p B S t
V LV t I t

B

θ
θσ θ

σ θ
κ

= − −
+


         (24) 

( )1 1
3 3

e d
d d ,

tq B S t
V LV t

B

θσ θ
κ

= −
+


 

but  

( ) ( ) ( )( )T1
1 1 1 1 1

1 trace ,
2

VLV V f t g t V g t
t θ θθ

∂
= + +

∂
 

( ) ( ) ( )( )T2
2 2 2 2 2

1 trace ,
2

VLV V f t g t V g t
t θ θθ

∂
= + +

∂
          (25) 

( ) ( ) ( )( )T3
3 3 3 3 3

1 trace ,
2

V
LV V f t g t V g t

t θ θθ
∂

= + +
∂

 

where  

( ) ( ) ( )
1 2 32 2 2

1 e 1 e 1 e
, , ,

t t t
s a

s a

S I I
V V V

S I I

θ θ θ

θθ θθ θθ

θ θ θ θ θ θ− − −
= = =   (26) 

( ) ( ) ( )1 1 1
1 2 2 3, , .s

BS pBS qBSg t g t I g t
B B B

σ σ σ
σ

κ κ κ
−     = = − =     + + +     

   (27) 

Therefore  

( )
( )

2 2
1

1 2

1 e1e 1 ,
2

t
t S BBLV S

S B B

θ
θ θ θ σβθ µ

κ κ

− Λ  = + − − +  +  + 
 

( )
( )

( )

( )

2 2 2 2
1

2 1 22

2
2

1 e1e 1
2

1 1 e ,
2

t
st

s
s s

t
s

p B S Ip BSLV I r d
I B I B

I

θ
θ

θ

σ θ θβθ µ
κ κ

σ θ θ

   −
= + − − − +   + +   

+ −

 (28) 

( )
( )

( )

2 2 2 2
1

3 2 22

1 e1e 1 .
2

t
at

a
a a

q B S Iq BSLV I r
I B I B

θ
θ σ θ θβθ µ

κ κ

   −
= + − − +   + +   

 

There exists positive constants 1 , 2  and 3  such that  

1 1 2 2 3 3e , e and e .t t tLV LV LV< < <              (29) 

It follows that  

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

1 2

3

0 , 0

and 0 .

s s

a a

S t S I t I

I t I

θ θ θ θ

θ θ

− ≤ − ≤

− ≤

     

  
      (30) 

Then  

( ) ( )

( )
1 2

3

limsup , limsup

and limsup .

st t

at

S t I t

I t

θ θ

θ

→∞ →∞

→∞

   ≤ < ∞ ≤ < ∞   

  ≤ < ∞ 

   

 
     (31) 

For ( ) ( ) ( ) ( )( ) 3, ,s ax t S t I t I t += ∈  and consider the case of 0 3θ< < . 
Then from the holders inequality we have  
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( ) ( ) ( ) ( )( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

2 2 2 22

2

3 max , ,

3

s a s a

s a

x t S t I t I t S t I t I t

S t I t I t

θθ
θ θ θ θ

θ
θ θ θ

= + + ≤

≤ + +

  (32) 

consequently we have  

( ) 2
4limsup 3 ,

t
x t

θ

→∞
≤                       (33) 

where 4 0>  is a suitable constant. 
There exists a positive constants 1δ  such that 

( ) 1limsup .
t

x t δ
→∞

≤  

Given 0>  and let 
2

1
2

δ
δ =


, then by Bienayme Chebyshev inequality  

( ){ }
( )

.
x t

x t δ
δ

> ≤


                    (34) 

Hence  

( ){ } 1limsup .
t

x t δ
δ

δ→∞
> ≤ =   

This completes the proof as required.                               □ 

4.2. Moment Exponential Stability 

The moment exponential stability of the equilibrium solutions of stochastic 
differential Equation (3) are established from the idea of Lyapunov function 
[20].  

Lemma 2. Consider a function [ ]( )1,2 , ;n t +× ∞    satisfying these inequa-
lities:  

( )1 2,p pM x V x t M x≤ ≤  

and  

( ) 3, pLV x t M x≤ − , ( ) [ ]0, , ,nt x t t≥ ∀ ∈ × ∞  

where 1 2 3, ,M M M  and p are positive constants. Then the equilibrium solution 
of Equation (3) is pth moment exponentially stable. When 2p = , it is usually 
said to be exponentially stable in mean square and the DFE is globally asymptot-
ically stable.  

Lemma 3. When 2p ≥  and , , 0x y > . Then  

( ) ( ) ( )2 21 1 2 21 21 2and e .
p p

pp p p p pp x p x
x y y x y y

p p p p
−− − −− −

≤ + ≤ +
 

  

Theorem 3. If 0 1R <  and 2p ≥ , the disease free equilibrium of the model 
system (3) is pth moment exponentially stable in ∆ .  

Proof. Given that ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0s aS I I R B ∈∆ , as from Theorem 1 
the solution of the system remains in ∆ . Set 2p ≥ , then consider Lyapunov  

function 1 3 4 5

p p
p p ps

a
I

V S I R B
p

λ λ λ λ
µ

 Λ
= − + + + + 

 
, we have  
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( )
( )

( )

( )
( )

( )

1 1 1
1

1 1

2 2 2 2
11

1 12

2 2 2 2
2 2 2 11

3 22

4

1 1
2

1 1
2

p p p

p
p s
s s

p ps
s s a a

p

p BSLV p S S p S S
B

p BSB Sp p S I r d I
BB

p B S q BSp I I pI r I
BB

pR

λ β
λ λ µ

µ κ µ µ
βσ

λ µ
µ κκ

σ βσ λ µ
κκ

λ

− − −

−
−

− −

−

     Λ Λ Λ
= − Λ − + − + −     +     

 Λ  + − − + − + +   + + 
    + − + + − +   + + 

+ ( ) ( )

( )
( )

1 1
1 2 5 1 2

2 2 2 2
2 1

3 2

1 1 .
2

p
s a s a

p
a

r I r I R pB I I B B
q B Sp p I

B

µ λ α α δ φ
σ

λ
κ

−

−

+ − + + − −

+ −
+

 (35) 

In ∆ , we have ( ) ( ) ( ) ( ) ( )0 , 0 , 0 , 0 , 0 ,0,0,0,0s aS I I R B
µ

 Λ
∈ 
 

, such that 

S
µ
Λ

≤ , then from the fact that 1B
Bκ
≤

+
, as [ ]0,1B∈ , there exists [ ]0,1η ∈  

such that ( )
2

2 2 2 1 2
2

nx y S x yη
µ

−Λ
+ ≤ , Then LV becomes  

( )

( ) ( )

( ) ( )

( )

1 1

1 1

22
2 1

1 1 12

2
2 2 2 2 1

1 2 32

1 1 1
3 2 4 1 4 2 4 5 1

5 2

1 1
2
1 11 1
2 2

p p

p
p p

s s s

p p p
s s s a

p p p p p
a s a s

LV p S p S

p p S p I r d I

p p I p I qp I

p r I pr I R pr I R pR pI B

λ β µ λ
µ µ µ

λ ησ β µ
µ µµ

η σ σ λ β
µµ

λ µ λ λ λ µ λ α

λ α

− −

−
−

− −

− − −

   Λ Λ Λ
≤ − Λ − + + −   

   
 Λ Λ Λ

+ − − + − + + 
 

Λ Λ
+ − + − +

− + + + − +

+ ( ) ( )
2

1 2 2 2
5 3 1 2

1 1 .
2

p p p
a apI B p B p p q Iλ δ φ λ ησ

µ
− −Λ
− + + −

 (36) 

Applying the idea of Lemma 3, we can formulate some of the inequalities as 
follows  

1 11 1 ,p p p p
s s

pI R R I
p p

− −−
≤ +   

2 2
2 22 2 ,

p p p
p

s s
pI S S I

p pµ µ

− −   Λ − Λ
− ≤ − +   

   
              (37) 

1
11 1 .

p p
p p

e e
pN S S N

p pµ µ

−
−   Λ − Λ

− ≤ − +   
   

   

On substituting these inequalities in Equation (19), we get  

( ) ( ) ( )

( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1 1

22 2
2 2

1 1 12

2
1 2 4 1 4 2

5 2 5 1

1 1

1 1 2 1 2
2 2

1 1 1 1
2

1 1 1

p p

p P
s

p p p
s

p p ps
s

bLV b p S p S

pb bp p S p p S
p

r d p I p r R p r R

p
p B p B p I

p

λ β µ λ
µ µ µ

λ ησ ησ
µ µ µµ

µ σ λ λ

λ α λ α β
µ

   Λ Λ
≤ − − − + + − −   

   
   Λ Λ

+ − − − + − − −   
   

 − + + − − + − + − 
 

Λ
+ − + − + −

 

 

 

  
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( ) ( )

( ) ( )( )

( )( )

3 3 2 4

2
2 2

5 3 1 2

2
2 2 1 1

1 4 1 4 22

1 1
5 1 5 2

1

1 1 2
2

1 1 2
2

.

p p p
a a

p
p

p p p p p
s s s a

p p p p
s a

q p I p r I pR

bp B p p q S

bp p p I r I r I
p

I I

λ β λ µ λ µ
µ

λ δ φ λ ησ η
µµ

η σ λ λ
µ

λ α λ α

− −

− −

Λ
+ − − + −

 Λ
− + + − − − 

 

+ − − + +

+ +



  

 

             (38) 

Hence  

( ) ( )

( )( )

( ) ( )

( ) ( ) ( )

( ) ( )

2
1

2
2 2 1 1

1 4 1 5 12

1 2 4

1 2 5

1 1
2 3 4 2 5 2

1 1 1
2

1 1 2
2

1 1

1 1

1

s
s

p p p
s s

p

p

p p p
a

p
LV r d p p

p

bp p p r I
p

r p r p p R

p p p B

qp b p r r I

µ σ β
µ

η σ λ λ α
µ

µ λ

δ φ α α λ

β µ λ λ λ α
µ

− −

− −

 Λ
≤ − + + − − + −




− − − − − 



− − + − +  

− + + − + −  

  
− − + + − −  

  



  



 

  

 

( ) ( ) ( )

( ) ( )

2
2
1 1 12

22
1 1 2 2

1 1 1 12

22
1 2 2 2

1 22

1 2 1
2

1

1 ,

p

p
p p

p
p ps

s e

b bb p F p S

b bb p

p b p bp F N
p p

µ β ησ λ
µ µµ

λ β µ λ ησ η λ
µ µ

β η σ
µ µ

−
− −

−
−

   Λ
− − + − − − − −   

  


− − + − −


−
− − − 





 

 

 (39) 

where ( ) ( ) 2 22 2
3 12 2

1 12 2
11

2
2

22
s p qp bF p b

p
λ ησ

ησ
λµ λ µ

−
= − +  and  

( )
22

1 2 2 2
2 3 3 1 21

p
pb bF q p qλ β λ ησ

µ µ

−
−= + −  . If we choose   sufficiently very 

small, then we can choose 1 2 3 4 5, , , ,λ λ λ λ λ  positive such that the coefficients 

, , , , ,
p

p p p p p
s a eS I I R B N

µ
 Λ

− 
 

 become negative. 

Hence, according to Lemma 2 the proof is complete.                   □ 

4.3. Almost Sure Convergence  

Theorem 4 If 0 1R < , then ( ) ( ) ( ), ,s aI t I t R t  converge almost surely expo-
nentially to (0, 0, 0). 

Proof. Let ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0s aS I I R ∈∆ . As 0 1R < , define the lyapunov 
function as ( ) ( ) ( ) ( )( ), , Ins a s aV I I R I t I t wR t= + + , such that 0w > . Using Itô 
formula we get  
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( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( ) ( )

( )
( ) ( ) ( )( )

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1

2 1 2

2 2 2 2 2 2 2 2
2 21 1
22 2 2

1 1 2 2

1 1

1d

d

1 d
2

d d

d
.

s
s a

a s a

s

s a

s

s a s a

s a

p BSV r d I
I t I t wR t B

q BS r I w r I r I R t
B

p B S q B SI t
B BI t I t wR t

pBS t I t
I t I t wR t B I t I t wR t

qBS t
B I t I t wR t

β µ
κ

β µ µ
κ

σ σ
σ

κ κ

σ σ
κ

σ
κ

= − + ++ + +

+ − + + + − + 

 
 − + +
 + ++ +  

+ +
+ + + + +

+
+ + +

 



 (40) 

But 1p q+ = , also by dropping some of the negative terms in Equation (40) 
we obtain  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1 2

1 1
1 2

1 12 2

1d

d
d

dd
.

s a
s a

s a
s a

s

s a s a

BSV r d I r I
I t I t wR t B

pBSw r I r I R t
B I t I t wR t

qBS tI
I t I t wR t B I t I t wR t

β µ µ
κ

σ
µ

κ

σσ
κ

≤ − + + − ++ + +


+ + − + + + +

+ +
+ + + + +





   (41) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1 1

2 2

2 21 1

1 1

1d d

1 d

dd

d
.

s
s a

a
s a

s

s a s a

s a

BSV r d wr I t
I t I t wR t B

r wr I w R t
I t I t wR t

IpBS
B I t I t wR t I t I t wR t

qBS t
B I t I t wR t

β µ
κ

µ µ

σσ
κ

σ
κ

 ≤ − + + − + + + 

+ − + − −  + +

+ +
+ + + + +

+
+ + +





    (42) 

When 0 1R < , then disease die out and hence 0B = . Therefore  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

2 2

1d d

1 d

d
.

s
s a

a
s a

s

s a

V r d wr I t
I t I t wR t

r wr I w R t
I t I t wR t

I
I t I t wR t

µ

µ µ

σ

≤ − + + −  + +

+ − + − −  + +

+
+ +



     (43) 

Let ( )1 1 2 2min , ,r d wr r wr wθ µ µ µ= + + − + − . It follows that  

( ) ( ) ( )
2 2d

d d .s

s a

I
V t

I t I t wR t
σ

θ≤ − +
+ +


              (44) 

Introducing integral both sides from 0 to t to Equation (44) we get  
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( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

2 2
0

In

d
In 0 0 0 ,

s a

t s
s a

s a

I t I t wR t

I s s
I I wR t

I s I s wR s
σ

θ

+ +

≤ + + − +
+ +∫

     (45) 

Then from the strong law of large number for local martingale we have  

( ) ( )
( ) ( ) ( )

2 2
0

d1lim 0 a.s.
t s

t
s a

I s s
t I s I s wR s

σ
→∞

=
+ +∫


              (46) 

Hence, from Equation (45) and Equation (46) we have that  

( ) ( ) ( )( )1limsup In 0.s at
I t I t wR t

t
θ

→∞
+ + ≤ − <  

This completes the proof.                                         □ 

Theorem 5. If 
2

21
2

βσ
µ

> , then the disease free equilibrium fE  is almost 

surely stable in ∆ .  
Proof. Define a Lyapunov function as follows  

In .aV S I R B
µ

  Λ
= − + + +  

  
 

Applying the Itô formula to function V above we get  

( )

( )( )

( ) ( )

( )

( )

2

1 2 1 2

2 2 2 2 2 2 2
1 1

2 2 2

1 1

1d

1 d

1 d

2

d

a

a

s a s a

a

a

a

BS q BSV S r I
B BS I R B

r I r I R I I t
S I R B

B S q B S t
B B

S I R B

BS t

B S I R B

β βµ µ
κ κ

µ

µ α α δ φ

µ

σ σ
κ κ

µ

σ σ

κ
µ

= −Λ + + + − + + + Λ − + + + 
 

+ + − + + − +  Λ − + + + 
 

 
 − +
 + +  Λ  − + + +  

  

+ +
  Λ

+ − + + +  
  

 ( )

( )

1 1d
,

a

qBS t

B S I R Bκ
µ

  Λ
+ − + + +  

  



  (47) 

From Equation (47) let 1q =  and 0p = , then  

( )

( )
( )

( )

( )

1 1

2 2 2
1

2 2 2

1 1

1 2d

21d d

2 d
,

a s s

a

a

a

a

BSV S I R r I I
B

S I R B

B SI B t t
B

S I R B

BS t

B S I R B

β µ α
κ

µ

σ
α δ φ

κ
µ

σ

κ
µ

= −Λ + − − − + + + Λ − + + + 
 

+ − + −
 +  Λ

− + + +  
  

+
  Λ

+ − + + +  
  



   (48) 
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( )

( )
( )

( )

( )

1 1

2 2 2
1

2 2
2

1 1

1 2d

2
d d

2 d
,

a s s

a

a

a

a

BSV S I R r I I
B

S I R B

B SI B t t

B S I R B

BS t

B S I R B

β µ α
κ

µ

σ
α δ φ

κ
µ

σ

κ
µ

= −Λ − − − + + + Λ − + + + 
 

+ − + −
   Λ

+ − + + +  
  

+
  Λ

+ − + + +  
  



   (49) 

let  

( )
.

a

BSY
B S I R Bκ

µ

=
  Λ

+ − + + +  
  

 

Then, dV  becomes 

( )

( )

1 1 22 2
1

1 1

d 2 2 d

2 d ,

a s s a

a

S I R r I I I B
V Y Y t

S I R B

Y t

µ µ µ α α δ φ
σ β

µ

σ

 
 Λ + − − − − − + + = − + −
  Λ

− + + +  
  

+ 

(50) 

Then, dV  deduce to  

( ) ( )2 2
1 1 1d 2 2 d 2 d ,V Y Y t Y tσ β µ σ≤ − + − +              (51) 

since  
2 2 2

2 2 2 1
1 1 2 2

1 1

2
2 2 2 ,Y Y Y β µσβσ β µ σ

σ σ
  −

− + − = − − + 
 

 

we have  

( )
2 2

1
1 12

1

2
d 2 d .V Y tβ µσ

σ
σ
−

≤ +                  (52) 

Applying integration from 0 to t both sides to Equation (52), we get  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
2 2

1
1 12 0

1

In

In 0 0 0 0

2
2 d .

a

a

t

S t I t R t B t

S I R B

t Y s s

µ

µ

β µσ
σ

σ

  Λ
− + + +  

  
  Λ

≤ − + + +  
  

 −
+ + 
 

∫ 

            (53) 

Then, for all time [ ]0,t T∈ , the quadratic variation of the Itô integral process 
( )tI Y  is deterministic integral over [ ]0, t  of 2

sY  i.e.,  

( ) ( ) ( )10 0
d d ,

t

t
Y s s Y s s Ct  = ≤ ∫ ∫               (54) 
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where C is a constant. Then by strong law of large number for local martingales, 
we have  

( ) ( )10

1lim d 0 a.s.
t

t
Y s s

t→∞
=∫                   (55) 

From Equation (54) and (55), we conclude that  

( ) ( ) ( ) ( )
2 2

1
2
1

2
limsup In 0.at

S t I t R t B t β µσ
µ σ→∞

  − Λ
− + + + ≤ <  

  
 

This completes the proof 5.                                        □ 
Theorem 6. If 0 1R < , then ( ) ( ) ( ) ( ) ( ), , , ,s aS t I t I t R t B t  converge almost 

surely to  

,0,0,0,0 in .ebN
µ

 
∆ 

 
 

Proof. We are required to show that  

( )lim 0 a.s.e

t

bN
S t

µ→∞

 
− = 

 
 

Consider the first equation of model system (3), let ebNΛ = . Using Itô for-
mula we have  

( )1 1d
d d ,

BS tBSS S t
B B

σβµ
µ µ κ κ

    Λ Λ
− = − − + +     + +    


        (56) 

Applying integration both sides from 0 to t to Equation (56), we get  

( ) ( ) ( ) ( ) ( ) ( )1 1
0 0 0

d d
0 d ,

t t tBS s s BS s s
S t S S s s

B B
β σ β

µ
µ µ κ µ κ

 Λ Λ Λ
− = − + − − + + + 

∫ ∫ ∫


 

From the fact that 1B
Bκ
≤

+
 and from Theorem 4, we have in ∆  that  

( ) ( ) 2
10 0

d
lim lim d e .

t t D s

t t

BS s s
S s s D

B
β

β β
κ

−

→∞ →∞
≤ ≤ < ∞

+∫ ∫           (57) 

Hence  

( )lim a.s.
t

S t
µ→∞

 Λ
− < ∞ 

 
                    (58) 

Also  

( )
0

lim d a.s.
t

t
S s sµ

µ→∞

 Λ
− < ∞ 

 
∫                   (59) 

Combining Equation (57) and (59), we get  

( ) ( )
0 0

lim d d a.s.
t

t
S s s S s s

µ µ
∞

→∞

   Λ Λ
− = − < ∞   

   
∫ ∫           (60) 

If ( )S t  does not converge almost surely to 
µ
Λ , there is 1Ω ∈Ω  such that 

the ( )1 0Ω > , then for all ω∈Ω , it follows that  
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( )liminf , 0 a.s.
t

S t ω
µ→∞

 Λ
− > 

 
 

Then, there exists, 0T >  such that  

( ) ( )1, , .
2

S t t Tω ρ ω
µ

 Λ
− > ∀ ≥ 

 
 

We have  

( ) ( ) ( )

( )

0 0
, d , d , d

, d .

T

T

T

S s s S s w s S s w s

S s w s

ω
µ µ µ

µ

∞ ∞

∞

     Λ Λ Λ
− = − + −     

     
 Λ

≥ − = ∞ 
 

∫ ∫ ∫

∫
    (61) 

Then, as 1 2Ω ⊂ Ω , where  

( )2 0
, , d .S s sω ω

µ
∞  Λ

Ω = − = ∞  
  

∫  

It implies that ( ) 0Ω > . But from Equation (57), we see that ( ) 0Ω = . 
This leads to contradiction. 

Hence,  

( )lim 0 a.s.
t

S t
µ→∞

 Λ
− = 

 
 

This completes the proof of Theorem 6.                             □ 

5. Numerical Results 

In this section, we numerically solve the ordinary differential Equation (ODEs) 
model (1) and stochastic differential Equation (SDEs) model (3) and (8) by 
fourth order Runge-Kutta and Euler-Maruyama scheme respectively. The beha-
viour of individuals sample path of the stochastic differential equation models 
are compared to the deterministic solution. Initially, one infective is introduced 
into a population. The time step is 0.01t∆ =  and the time axis is the number of 
time steps, e.g., Time = 100 means 100 time steps and thus, an actual total time 
of 100 1t∆ = . The Euler-Maruyama scheme is one of the numerical methods for 
computing the sample paths of SDEs (3) and (8) [21]. This method is a finite 
difference approximation  

( ) ( ) ( )( ) ( )( ), , ,x t t x t f x t t t G x t t tρ+ ∆ = + ∆ + ∆        (62) 

From Equation (62), the vector ( )1, , jρ ρ ρ= 
 is j independent standard 

normal random numbers ( )0,1k Nρ ∈ . Also, 0, , 2 ,t t t= ∆ ∆  , and t∆  is 
chosen sufficiently very small to ensure good convergence. The sample path of 
the s aSI I R B−  stochastic differential equations is shown in Figure 6. It is ob-
served that the sample path is continuous but not differentiable (a Wiener 
process property). 

Maximum likelihood estimation method is used to estimate the unknown pa-
rameters θ  of a SDE (8) by maximizing the likelihood [16]. 
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Let ( )1 1, | , ;k k k kp t x t x θ− −  be the transition probability density of ( )1 1,k kt x− −  
given vector θ . Suppose that the density of the initial state is ( )0 0 |p x θ , in 
maximum likelihood estimation of θ  [16], the joint density  

( ) ( ) ( )0 0 1 1
1

| , | , ; ,
N

k k k k
k

D p x p t x t xθ θ θ− −
=

= ∏              (63) 

is maximized over mθ ∈ . The value of θ  that maximizes ( )D θ  will be de-
noted by *

mθ ∈ . For simplicity, it is more convenient to minimize the func-
tion  

( ) ( )( ) ( )( )0 0 1 1
1

ln | ln , | , ; ,
N

k k k k
k

L p x p t x t xθ θ θ− −
=

= − −∑        (64) 

where, ( )1 1, | , ;k k k kp t x t x θ− −  is computed recursively by extended Kalman filter 
and its approximation is  

( ) ( )( ) ( )( ) ( )
T 1

1 1

1 1ln 2π , , ln ,
2 2

N N

j j j j j j
j j

S y h m t S y h m t pη θ θ− − −

= =

= + − − −∑ ∑  (65) 

where  

( ) ( )T ,j x j j x j jS H m p H m Z− − −= +  

( )T 1, ,j j x j jK p H m t S− − −=                     (66) 

( )( ) ,j j j j jm m K y h m− −= + −  

T ,j j j j jp p K S K−= −  

( ),xH x t  is the Jacobian matrix of ( ),h x t , ( )( )j j jy h x t z= + , jy  is the 
measurement at time jt , ( )jx t  is the state at time jt , θ  is the vector of pa-
rameter to estimated, jZ  is the covariance matrix of the measurement error at 

jt . However, at 0t  the state is assumed to have the prior distribution. For more 
details on EKF (see [22]). 

The estimated parameters by MLE are shown in Table 2. It is observed that 
the estimates are close to the true parameter values. Figures 2-5 show the ex-
tended Kalman filter estimates together with the true solution from ODE, mea-
surements and states. Here black line, blue line and green line represents ODE 
solution, measurements and states realizations respectively. It is observed that 
the extended Kalman filter fits the states, which means states  

( ) ( ) ( ) ( )( ), , ,s aS t I t I t R t  can easily be estimated. The stochastic model (3) can 
be re-written in the following discretization equations: 

1
1 ,k k k k k

k k e k
k k

B S B S tZ
S S bN S t

B B
β σ

µ
κ κ+

  ∆
= + − − ∆ − + + 

 

( ) 1
1 1 2 ,k k k k k

sk sk sk sk k
k k

p B S pB S tZ
I I r d I t I tZ

B B
β σ

µ σ
κ κ+

  ∆
= + − + + ∆ − − ∆ + + 

 

( ) 1
1 2 ,k k k k k

ak ak ak
k k

q B S qB S tZ
I I r I t

B B
β σ

µ
κ κ+

  ∆
= + − + ∆ − + + 

       (67) 
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Figure 2. The sample path of ( )S t  for SDE (8) and deterministic solution for ( )S t  

graphed with extended Kalman filter estimates. 
 

 

Figure 3. The sample path of ( )R t  for SDE (8) and deterministic solution for ( )R t  

graphed with extended Kalman filter estimates. 
 

 

Figure 4. The sample path of ( )aI t  for SDE (8) and deterministic solution for ( )aI t  

graphed with extended Kalman filter estimates. 
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Figure 5. The sample path of ( )sI t  for SDE (8) and deterministic solution for ( )sI t  

graphed with extended Kalman filter estimates. 
 

( )1 1 2 ,k k sk ak kR R r I r I R tµ+ = + + − ∆  

( )( )1 1 2 ,k k sk ak kB B I I B tα α δ φ+ = + + − + ∆  

where ( )1,2, ,kZ k n=   is the Gaussian random variables ( )0,1N . The Eu-
ler-Maruyama scheme is used to simulate the sample paths of stochastic diffe-
rential Equation (3) and the result is graphed in Figure 6. From Figure 6, we 
observe that the susceptible proportion eventually converges to zero; the entire 
population becomes infected, and later they recover from the disease. Also, the 
sample path of s aSI I R B−  stochastic differential equations is continuous but 
not differentiable (a property of Wiener process). 

The sample path of s aSI I R B−  stochastic differential equations model to-
gether with the solutions of ordinary differential equations is graphed in Figure 
7. From Figure 7, we find that the sample path of s aSI I R B−  stochastic diffe-
rential equations model fluctuates within the solution of the s aSI I R B−  ordi-
nary differential equation model. 

6. Discussion 

We have proposed a new modeling framework for the dynamics of cholera using 
both deterministic and stochastic models. Our focus is on the interaction of en-
vironmental vibrios to human (which causes the transformation from the envi-
ronmental vibrios to human) and the infected individuals shedding bacteria into 
the environment. For deterministic model, we derived the basic reproduction 
number 0R . The basic reproduction number is a critical parameter for disease 
dynamics. In the deterministic model, the value of the basic reproduction num-
ber 0R  determines the persistence or extinction of the disease. If 0 1R < , the 
disease is eliminated, whereas if 0 1R > , the disease persists in the population. 
From the deterministic model we have formulated two stochastic differential 
equations using parametric perturbation and transition probabilities methods.  
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Figure 6. The sample path of ( ) ( ) ( ) ( ), , ,s aS t I t I t R t  for SDE model (3) when 0.01t∆ = , 

1 0.2σ =  and 2 0.1σ = . 

 

 

Figure 7. The sample path of ( ) ( ) ( ) ( ), , ,s aS t I t I t R t  for SDE model (3) are graphed 

with the deterministic solutions (dashed curve) when 0.01t∆ = , 1 0.2σ =  and 

2 0.1σ = . 
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We have proved the existence and uniqueness of positive solution, we showed 
that the solution of stochastic model are stochastically ultimately bounded, we 
derived that when 0 1R < , then the infected compartments and bacteria goes to 
extinction. We carried out numerical simulation using Euler-Maruyama scheme 
to simulate the sample paths of stochastic differential Equation (3). Our results 
show that, the sample paths are continuous but not differentiable (a property of 
Wiener process) Also, we carefully compared the numerical simulation results 
for deterministic and stochastic models. We find that, the sample path of 

s aSI I R B−  stochastic differential equations model fluctuates within the solu-
tion of the s aSI I R B−  ordinary differential equation model as seen in Figure 7. 
However, the model parameters of SDEs are estimated by maximum likelihood 
estimation method. It is shown that the estimates are close to the true parameter 
values as seen in Table 2. Also, we used extended Kalman filter to estimate the 
states (compartments) of stochastic model (8) by recursively computing the 
transition probability density. It is observed that the state estimates fit the mea-
surements as seen in Figures 2-5. Hence, we find that both models that are de-
terministic and stochastic models are very useful in understanding the dynamics 
of cholera epidemic. Nevertheless, Stochastic differential equation models are 
more important than deterministic models since they incorporate random ef-
fects such as environmental stochasticity and this enables us to model different 
quantities such as probability of extinction, probability of distributions and va-
riances which cannot be captured in deterministic models.  

7. Conclusions 

In this paper, two stochastic differential equations models are formulated from 
the deterministic model using two different approaches: parametric perturbation 
and Transition probabilities. For deterministic model, the basic reproduction 
number 0R  determines whether the disease is eliminated or persists in the giv-
en population. 

For stochastic model, the perturbed stochastic differential equation is first 
analyzed by proving the existence and positivity of the solutions. Secondly, we 
looked at the stability aspect of the model; we proved that the number of symp-
tomatic infected, asymptomatic infected and bacteria tends to asymptotically to 
zero exponentially almost surely. Also, we showed that the equilibrium solution 
of the SDEs is pth moment exponentially stable and it is usually said to be expo-
nentially stable in mean square. Numerical simulations are carried to simulate 
the sample paths of stochastic models by Euler-Maruyama scheme and the  
 

Table 2. Estimated model parameters for cholera epidemic by MLE. 

Parameter b β  κ  1α  2α  d δ  φ  1r  2r  p q µ  

True value 0.000072 0.35 106 1.5 0.1 0.00065 0.05 0.025 0.14 0.5 0.7 0.3 0.000044 

Source [23] [26] [26] [23] [23] [25] [7] [23] [23] [23] [7] [7] [23] [24] 

Estimates 0.00007169 0.3479 855,526.77 1.48 0.088 0.000556 0.046 0.022 0.134 0.51 0.66 0.268 0.0000442 
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solutions of deterministic model by fourth order Runge-Kutta method. It is ob-
served that the sample paths are continuous but not differentiable (a property of 
Wiener process) and the sample paths of stochastic differential equations models 
fluctuate within the solutions of deterministic model. However, the model pa-
rameters of SDEs are estimated by maximum likelihood estimation method. It is 
shown that the estimates are close to the true parameter values. Also, extended 
Kalman filter is used to estimate the states of stochastic model by recursively 
computing the transition probability density. It is observed that the state esti-
mates fit the measurements. So, we can say that cholera transmission dynamics 
can be modeled using stochastic differential equations. It is clear that real world 
problems such as disease are not deterministic in nature so including random 
effects to the model gives us a more realistic way of modeling cholera epidemics 
and other epidemic diseases. For example, using stochastic differential equation 
model we managed to examine the limiting asymptotic distribution of the num-
ber of symptomatic infected, asymptomatic infected and bacteria.  
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