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formulated by introducing the stochasticity to deterministic model by para-
metric perturbation technique which is a standard technique in stochastic

modeling and the second stochastic differential equation is formulated using
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sults for deterministic and stochastic models. We find that the sample path of

SI I, R—B stochastic differential equations model fluctuates within the

solution of the S/ / R—B ordinary differential equation model. Further-
more, we use extended Kalman filter to estimate the model compartments
(states), we find that the state estimates fit the measurements. Maximum li-
kelihood estimation method for estimating the model parameters is also
discussed.
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1. Introduction

It is well known that diseases have impacts on people’s health. Therefore, it is
necessary to study the mechanism by which the disease spread, conditions for
the disease to have minor or major outbreak and get the knowledge on how to
control the diseases such as cholera, Ebola, etc. In this study we are mainly con-
cern with cholera epidemic. Cholera is an infectious disease that causes severe
watery diarrhea, which leads to dehydration and even death if untreated. Ac-
cording to WHO report [1], about 1.4 to 4.3 million cases of cholera are reported
each year worldwide and more than 140,000 deaths per year are reported due to
cholera. As a result of this, several mathematical models have been developed to
model cholera epidemics, through these models one can predict the behaviour of
the disease and control the particular epidemic. Any epidemic of an infectious
disease can be modelled by using either deterministic or stochastic models. The
deterministic models are formulated as a system of ordinary different equations
and are preferred by many researchers since its analysis is simple compared to
stochastic models. However, the shortcomings of deterministic models are: they
give less information, rely on the law of large numbers, difficulty to do estima-
tion, when the population is very small it becomes difficult to do analysis and
also, experimentally the measured trajectories do not behave as predicted due to
some random effects that disturb the system [2].

Due to these limitations of ordinary differential equations in modelling infec-
tious diseases, stochastic modelling of infectious diseases in both heterogeneous
and homogeneous population emerged as an alternative to deterministic model
and alleviated some of the problems of deterministic models in modelling epi-
demic diseases. In reality many phenomena in nature are usually affected by
stochastic noise and the ordinary differential Equation (ODEs) models ignore
the stochastic effects [2]. The stochasticity can be added to the ODEs by includ-
ing the random terms or elements by parametric perturbation technique. This
technique introduces other parameters to the model known as noise intensities.

Many of the models that have been employed in water-borne settings have
been deterministic, thus ignoring the possible effects of randomness; see, e.g. [3]
[4] [5] [6] [7]. These models incorporate an environmental pathogen compo-
nent that is the concentration of the vibrios into a SIR (suscepti-
ble-infected-recovered) and SIZR (susceptible-symptomatic infected-asymptomatic
infected-recovered) epidemic framework. Some of these models only considered
compartment 7 as a single compartment (individuals with severe symptoms on-
ly) (e.g. [3] [4] [5] [6]) instead of splitting it into two heterogeneous groups that
are symptomatic and asymptomatic infected individuals to study the transmis-
sion dynamics of cholera epidemic. Also, some of these models considered only

direct transmission of disease ie., human to human and other models ignored
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the feedback loop from infected individuals to the environment reservoir. How-
ever, in their studies no stochastic models considered, so as to keep track where
the disease is at continuous time and not only at discrete time as shown in their
studies.

In [7] they developed deterministic model by extending the work by [6]. The
work in [6] considered infected individuals (/) as a homogeneous group that is
people with severe symptoms like vomiting and diarrhoea. Therefore, [7] di-
vided infected individuals (/) into symptomatic infected (/) and asymptomatic
infected (7)), in order to observe the contribution of concentration of Vibrio
cholerae in the environment through excretion from each compartment and
hence how it leads to the transmission dynamics of cholera epidemic.

In the stochastic modeling of cholera epidemic few papers emphasized on
cholera stochastic models. [8] developed a deterministic model and further, ex-
tended it stochastic differential equations, the limitations to their paper are: no
numerical analysis considered in their paper and compartment /is considered as
single compartment, it could be better to split it into two groups, individuals
with severe symptoms (symptomatic infected individuals) and those with mild
symptoms (asymptomatic infected individuals) so as to observe the contribution
of these two groups to the concentration of Vibrio cholerae through excretion.

[9] [10] developed a simple deterministic and stochastic model to discuss the
spread of cholera. In their paper, they described the spread of cholera by model-
ing the bacteria population in contaminated water and human interaction with
the bacteria in the water supply. The limitation to their paper is the absence of
enough theoretical and numerical analysis. In [11] proposed a deterministic
model that described the interaction among the two types of vibrios and viruses.
The deterministic model proposed was further extended to include the random
effects and from the stochastic model formulated it indicated that there is always
a positive probability of disease extinction within the human host.

In this paper, we extend the deterministic model developed in [7] by formu-
lating an equivalent stochastic differential Equation (SDEs). The formulated
stochastic differential Equation (SDEs) models will be analyzed theoretically us-
ing suitable Lyapunov functions, Itd formula and some stochastic techniques.
Numerical simulation will be carried using Euler-Maruyama scheme and ex-
tended Kalman filter. Also, maximum likelihood estimation method will be used
to estimate the model parameters.

In the next section, we present a deterministic cholera epidemic model with
water treatment, which is a model formulated by [7]. In Section 3, the corres-
ponding two different stochastic models are formulated using parametric per-
turbation technique and transition probabilities approach. In Section 4, the for-
mulated stochastic differential equations are analyzed by proving the existence
and positivity of solutions, stochastic boundedness, global stability in probabili-
ty, moment exponential stability, and almost sure convergence. In Section 5, the
numerical results from the deterministic and stochastic simulations are pre-

sented, discussed and compared. In Section 6, we provide a brief discussion to
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support our findings. Ultimately, the last section concludes our paper.

2. Cholera Deterministic Model

From the description of the dynamics of cholera as shown in Figure 1, we the

following set of ordinary differential equation system as in [7].
B
(), LEOSO)_ o
dt K+B(1)
dr,(¢) _ pBB(1)S(1)

(
det K+B(t)
(
)

—(utr+d)I (1),

dz, (1) _ qBB(1)S(1)

dt K+ B(t (u+n)1, (1), (1)
dgt)zrll (t)+n1, (t)-uR(2),

with suitable initial conditions. The total human population is given by
N, =S(t)+1 (¢t)+1,()+R(r).

From the model: S(¢), Z,(¢), 1,(¢), R(z) and B(t) refer to suscepti-
ble individuals, symptomatic infected individuals, asymptomatic infected indi-
viduals, recovered individuals and the pathogen concentration in the contami-
nated environment respectively. The model parameters are described as follows.

b is the birth rate or recruitment rate, B is rate of exposure to contaminated

water, & isthe concentration of Vibrio choleraein water, ¢, is the contribution

Sy (u+d) s [
bN, - pfi—Bég I ril R
A :353; rol,
I
B ) asl, L
(6+¢)B" pla”

Figure 1. The interaction of cholera epidemic transmission dynamics between compart-
ments is shown.
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of I (t) to the population of Vibrio cholerae through excretion, «, is the
contribution of 7,(¢) to the population of Vibrio cholerae through excretion,
d death rate due to cholera,  death rate of Vibrio cholerae due to water
treatment, ¢ is the mortality rate for bacteria including phage degradation, #
is the recovery rate of symptomatic infected individuals, r, is the recovery rate
of asymptomatic infected individuals, p is the prob. of new infected from S(¢)
to be symptomatic, g is the prob. of new infected S(7) to be asymptomatic ,
4 is the natural death rate.

The key parameter in epidemiology is the basic reproduction number, which
is defined as the average number of secondary infectious cases transmitted by a
single primary infectious cases introduced into a whole susceptible population
[12]. This parameter is useful because it helps determine whether an infectious
disease will spread within the population or not. To compute R, the next gen-
eration matrix approach is used as in [13]. It is obtained by taking the largest

(dominant) eigenvalue value (spectral radius) of

{am)}[auwo)}-‘,

ox, 04X,

where F, is the rate of appearance of new infection in compartment 5 ) is
the net transition between compartments, E, is the disease free equilibrium
and X, stand for the terms in which the infection is in progression Ze., I, (¢),
1, (t) and B(t) in the model (1). Hence, the basic reproduction number ob-

tained in [7] was as follows:

R | &Pup+onfar +afpr, +a,fdg+a,fug | bN, 2)
0 D, P >
where
D, = oxud + OK® + Sxur, + Skdr, + Okur, + Ok, + Skud
+ P’ + Kugr, + kpdr, + Kugr, + Kgnr,.
From Equation (2), when R, <1, the highly infectious vibrios will not grow
within human host and the environmental vibrios ingested into human body
will not cause cholera infection. But when R, >1 the human vibrios will grow

and persist, and hence leads to human cholera.

3. Stochastic Differential Equations

In this section we provide two approaches of formulating stochastic differential
equations from the deterministic model (1). These approaches are parametric

perturbation It6 SDEs and It6 SDEs from the transition probabilities.

3.1. Parametric Perturbation It6 SDEs

The idea of parametric perturbation is to choose a parameter of interest from the
deterministic model and change it to random variable [14] [15]. In this study we

introduce the randomness into the model by replacing parameters B and dby
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B> B+odN (1) and d > d+0,dW,(¢), where W and W, are two in-
dependent standard Brownian motions with the following properties:

) W=0 P as,

2) For all times 0<s<¢, the increment W —W is normally distributed
with zero mean and variance t—s;ie, W -W ~N(0,t-s),

3) For all times 0<¢ <1, <---<{,, the increments W ) ,--- W -W = of
the process are independent random variables,

4) All samples paths W(.,®):[0,00) > R,® € Q, are continuous P a.s.

Similarly, o, and o, are real constants, known as the intensities of the
stochastic environment.

From the deterministic model (1) we get the following system of stochastic

differential equations:

dso){we_M_ﬂs(z)}dt_ales(r)dwl(t)

E

K+ B(1) K+ B(1)

. (1) :{pﬂB(t)S(t) (aerd), (t)}dt_ o, pB(1)S (1) (1)

’ k+B(1) k+B(1)
o1, (1)dW (1),
t):[rll 1)+nl, (1)- ]dt

)=[el, (t)+ayd, (t)-(5+¢)B(t)]dt,

with suitable initial conditions. The technique of parameter perturbation intro-

duces another parameters o, and o, inamodel.

3.2.It0 SDEs with Transition Probabilities

This method was proposed by [16] [17], the stochastic differential equations fol-
low from the diffusion process. The nature of stochastic differential equation to

be formulated is in this form:
dx(r)= f(t,x(1);0)dr + G(t,x(¢);0)dWV(¢), (4)

where G(t,x(t);&) is a matrix satisfying GG' =X [16] [17], = is the
co-variance to order A¢, TAr is the approximate covariance matrix, W(t) is
the vector of independent Wiener process, @ is a vector of parameters and
f (t,x(t);&) is the drift part or deterministic part.

From Equation (1) we formulate an equivalent SDEs as

dx(¢) = Fdr+G,dW(1), (5)

B[ Ax(Ax)' |
’ . Clearly, x(r) is an Ito process,

where E:M and G =
At
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such that x(r) =[x, x,,%,,%,] . Then, x,x,,x,,x,, corresponds to the number
of individuals S(7),7,(¢),1,(¢),R(¢)€[0,N,] respectively and B(¢) the Vi-
brio cholerae concentration in the environment. However, B(¢) is nota com-
partment occupancy as the other one are so its transition is not considered in the
formulation of transitions.

In order to find the expectation E[Ax] and covariance matrix X, we need
to consider the transition probabilities as stated in Table 1. The transition
probabilities are formulated from Equation (1). From Table 1, the expectation
and variance co-variance matrix are computed as follows:

10

E[A]= 3P (Ax) = RAx + PAv, + RAY, + PAx, + PAx, + R,

i (6)
+ I)7Ax7 + 1)8Ax8 + })9Ax9 + IDIOAX:IO'
On substituting the values of P, Ax;, and
[X, %, %5, %, ]T = [S(t),ls (¢).1, (t),R(t)]T to Equation (6), we get
B(t)S(t
v PP
K+B (t)
B(t)S (¢
LZLIGLIO R
E[Ax]=| «+B(r) dr
B(t)S(t
apB(1)S( )_(ym),a(t)
Kk+B (t)
nl, (t) +nrl, (t) - UR (t)
and the co-variance matrix is given by
Table 1. Possible changes in the process for the SI /,R—B model.
Possible changes Probabilities
Ax, =[1,0,0,0]' B =bN At
A, =[-1,1,0,0] g:wm
Kk+B
Ax, =[-1,0,1,0] p =985
K+B
Ax, =[0,-1,0,0]' P, = dx,At
Ax, =[-1,0,0,0] P, = ux At
Ax, =[0,-1,0,1]' P, =nx,At
Ax, =[0,-1,0,0]' P, = ux,At
Ax, =[0,0,~-1,0]' P = ux,At
Ax, =[0,0,-1,1]' P, =rnx,At
Ax,, =[0,0,0,-1]' B, = px At
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T

I
s

(Ax)(Ax, )T + P, (A, )(Ax, )T + P, (Ax; ) (Ax,

b

)
R (Ax) (M) @)
+ P, (A%, ) (Ax,)" + B (Ax ) (Ax, )" + B (Ax, )(Ax, )

+ P, (Ax, )(Ax,)" + P (Axg ) (Axy)
+P10 (Axlo)(Axlo )T'

Also, by substituting the values of P, Ax, and
[X, %, %5, %, ]T = [S(t),ls (¢).1, (t),R(t)]T to Equation (7), we get

E[ Ax(av)']
o _pBB(1)S(1) qpB(1)S() 0 ]
! K+ B(1) K+ B(t)
pBB(1)S(1) )
| TR0 o ‘ UM
BB(1)S(1)
4 K+B(t) 0 o; nl, (t)
| 0 —nl (1) nl, (1) o; |

where

o; =nl (t)+nl, (t)+uR(1).

The It6 stochastic differential equation, where global Lipschitz conditions are

satisfied to ensure the existence and uniqueness of strong solution, can be writ-

ten as in Equation (4) as found in [14]. Hence by Equation (5), the Itd stochastic
differential equations become:

_BB(1)S(1)
K+ B(1)
B(t)S(t

DBy vay ()

dx(t)=| x+B() dr

e CACATND

RI () +nl, (1) -uR(t) |

bN,

—,uS(t)
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| p _pBB(1)S(r) aBB(1)S(2)
: K+B(t) K+B(l)
_p,BB(t)S(t) = T (1
| x+B(r) ? ° 1[5'()dw(t). (8)
BB(1)S (1) 5
: Kk +B(1) 0 \/g L. (1)
.0 L, (1) nl, () ol ]

Note thatif 7 (¢)=1,(t)=0 and B(¢)=0, then cholera epidemic stops.

4. Analysis of Parametric Perturbation It6 Stochastic
Differential Equation Model

In this paper, unless otherwise stated, we let (Q,]—' AR} ,]P’) be a complete fil-
tered probability space, with {F, }tzo satisfying the usual conditions (ie., in-

t

creasing and right continuous also F, contains all P -null sets). Let

bN,
- 4. e
A—{xeR+.x1+x2+x3+x4< ,

where

x =8(t),x,=1(t),x;=1,(t),x, =R(¢).

4.1. Global Existence and Uniqueness of Positive Solutions

Before proving the existence and uniqueness of positive solutions, let us state the
conditions that guarantee the existence and uniqueness of solution of Equation
(4).
Lemma 1. Assume that there exist two positive constants K and K such that
1) (Lipschitz condition) for all x,y € R" and ¢€[t,,T]

f ()= f ()] <R|x—»f
2) (Linear growth condition) for all
(1) € R x[t, T (o) < K (144,

Theorem 1. For any initial value (S(0),1,(0).7,(0),R(0),B(0))eR],
there is a unique solution x(t)=S(t),1,(t),1,(1),R(t),B(t) to system (3) for
all t>0, and the solution will remain in R’ with the probability 1, namely
x(1)eR], forall t>0 almost surely.

Proof. Since the coefficients of system (3) satisfy the local Lipschitz condition,
then for initial values (S(0),7,(0).7,(0),R(0),B(0)) e R}, there is unique lo-
cal solution S(¢),/,(),1,(¢),R(¢),B(t) on [0,v,], where v, is the first hit-
ting time or explosion time. In order to prove that the solution is global and pos-
itive, we need to show that v. = a.s. Let k, >0 be sufficiently large so

that $(0),7,(0),,(0),R(0),B(0) remain within the interval {ki’ko] For

0
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integer k>k,. Let v, :Q>[0,00] be any random variable (taking eventually
infinite value) on a filtered probability space (Q, FAFR} ,IP’) . We say that v, is
a stopping time for filtration F, if at each (deterministic) time >0, the event

t

[v, <t] isknownin . In this study we define
v, = inf{t e[0,v,):x (1) ¢ (%,k] for some 7,1 <i < 5}

Let & be empty set then the inf{J =oo. By definition v, increases as
k—o.Let v, =lim,_ v,,then v <v,  as. We need to show that v, =
a.s. Then v, = and x(¢)eR’. If this statement is false we say that, there
exist £€(0,1) and a constant 7 >0, such that P{v, <T}>e&. As a conse-
quence to this, there exist an integer &, >k, such that

P{v,<T}>e, Vk=k (9)

For t<v, andateach &

d(S+1,+I,+R)=[A—(S+I,+1,+R)u—dl |dt
(10)
<[A=(S+1,+1,+R)u]ds,
where A =bN,. Then
A if N, SA
S()+1,(6)+ 1, (1) + R(£) < i;z M, (11)
N, if Nyz2—
y7,
where
N, =S(0)+1,(0)+1,(0)+R(0),
and
M:maX{A,NO}.
Y7,
Define now C'? the Lyapunov function ¥ :R’ — R, by
V(S.,1,,1,,R,B)=(S—-1-InS)+ (I, —1-Inl )+(I, -1-1Inl,) (12)

+(R-1-InR)+(B-1-InB),

and S(t),1,(¢),1,(¢),R(t),B(t)€Q . Then V(x(t),t) is an Itd stochastic

>Ta

process with the SDEs given by
dv (x(¢),1)
:{Vt(x(t),t)-i-Vx(x(t),t) f(t)+%trace(gT(t)Vm(x(t),t)g(t))}dt (13)
+V,(x(1).t) g(1)dW(t),
which becomes

AV (x(t).0) =LVt +V, (x(¢).2) g (£)dW(2), (14)

where
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LV :(1—%) —ﬂ—y5+(l—iJM—(y+rI +d)1,
K

+B I ) xk+B
1 \gBBS 1
+ 1l-—— |———(u+nr), +|1—— |\l +rl, —uR
( IHJK+B (,U Z)a ( les K, —H
2 p2g2
B
+(1—ljalls+azla—(5+¢)3+ 12 J‘—Sz dr
B 287| (x+B)
2 2p2¢g2 2 2p2¢g2
B'S B°S
+L2 0'1]7—2_’_0_2213 df+L2 qu—z dt
2I7| (k+B) 2I;| (k+B)
Hence
LV <A+ B +,u+pﬁBS+,u+r1+d+@+y+rz+rlL
K+B K+ B K+ B )
ZBZ 2 2B2S2
il +ptoyl +o,l, +8+¢+— ~+ AP > (15)
2(k+B)" 2I}(x+B)
o, 8 oias
2 207 (k+B)
A .
From M =max|—,N, |, it follows that
7
B B B
LVSA+(£+£+V1 +r2+a1+a2jM+ i +0+¢
k+B «x+B xKk+B
2 p2 2.2p2 2 2 2 2 2p2
B B*M B
+ -4 v 2+O-—2+4,u+r2+rl+a’+&2O-lq—2 (16)
2(x+B) 21*(xk+B) 2 21; (x+B)
=K,

where K is a positive constant independent of variables S,/ ,/ ,R,B and

shgodygs

time ¢. Then we obtain

Bd Bd
stKdt—[i—iJalp Wile) s o W(t)—odez(t), (17)
I, p K+ B 1, K+ B

let v, AT =min{v,,T}. Introduce integral to Equation (17)

'[OVkATdV(S(S)’IS (S),Ia (S),R(S),B(s))
[ELJM
0 I, p K+B

vy AT vanT S UqudW (S)
-7 e d(s)- ], T reE

_ J-ka/\TKdS_ (18)

Introducing the expectation to Equation (18) and by the Gronwall inequality,
leads to

BV (S(vi AT) L, (v AT), 1, (vy AT),R(v AT),B(v; AT))]<C+KT, (19)

where C=V(5(0),7,(0).7,(0),R(0),B(0)) . Since the mean of stochastic

integral equals zero [18]. Then let Q, = {vk < T},‘v’k >k, from inequality (9),

we have P(€Q,)>e¢.Thenforall we Q,, there must exist at least one of
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S(ve,T). L, (v, T), 1, (v, T),R(v;.T),B(v.T),

which can take either % or k. Hence we have
V(S(vioT) A (v T)o 1, (v T). R(v4. T). B(v,..T))

2[k—l—log(k)]/{%—l—log(%ﬂ,

again define the indicator function on €, denoted by }¥ be defined for all

(20)

weQ, by
1 ifweQ,
0 otherwise

Fa(o)-

From Equation (19) and by Bienayme Chebyshev inequality we have
C+KT 2 B[ Ky S(veuT), 1, (v, T), 1, (viuT), R(v,T), B(v.T) ]

21)
> {k—l—log(k)/\%—l—log(%n,

when £k — +o0, this leads to contradiction as
0>V (5(0),1,(0),1,(0),R(0),B(0))+ KT =

a

Therefore, we conclude that for the solution S(7),7,(¢),1,(¢),R(¢),B(t) of
cholera model not to explode at finite time with probability 1, we need to have
v, = as. This completes the proof. O

Theorem 1 shows that the solution of model (3) will remain in Ri. Next, we
give the definition of stochastic ultimate boundedness [19], which is very im-
portant in population dynamics.

Definition 1. The solution x(t)=(S(t).1,(¢).1,(t),R(t).B(t)) ofmodel (3)
are said to be stochastically ultimately bounded, if for any €< (0,1), there is a
positive constant & = & (¢) , such that for any initial value
X, = (S(O),IS (0).1, (0),R(0),B(O)) eR?, the solution x(t) to Equation (3)

has a property that
}ggsup]?{‘,/x(t)‘ > 5} <e

Theorem 2. The solutions of system (3) are stochastically ultimately bounded
for any initial value x, € R’ .
Proof. From Theorem 1, we showed that S(r),7 (¢),1,(¢),R(1),B(t) re-
mainin R’,forall >0 almost surely.
Let V, V, and V, be lyapunov functions stated as
V,=¢'S’, V,=¢1° V,=¢'l’ where 6>1. (22)
Taking their derivatives with respectto @ we get

_0e's’ _oe'1! ge'1’

K=" vo)="" we ne)=%% e
Using It6 formula we get
t Qb
ar :LVldt—O-lHBe S dV\{(t),
K+B
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Bt 9
av, = Lv,a - 2P98eS dW(t)—o-ﬁe‘IdeVz (1), (24)
xKk+B
t Qb
av, :LI@dt—O-Ique S7dwW (t)’
Kk+B
but
ov, 1
Ln :6_;"‘Vw’f(t)"'Etrace(glT (t)Vi008: (t))’
ov; 1
LV, :6_t2+ Vzgf(t)+5trace(g2T (1)V20085 (t)), (25)
oV, 1
Ly, za—;—i-wa(t)-i-Etrace(g}T (t)Vs008s (t))’
where
0(6-1)e's’ 0(0-1)e'1’ 0(0-1)e'1’
Vioo :%» 26’9:%’ 360 ( 12) ., (26)
-0,BS o,pBS 0,9BS
& (t) |:K‘+B }gZ(t) { K+B 7ol ,g3(t) K+B 27)
Therefore
_ tQl __2pnp2
Lm=e’59[1+9(§— SB _ﬂj}l@(e l)eSZG‘B :
2,2p2g2 “1e'1?
LVZ:e’If{HH(—pﬂBS —,u—rl—dﬂ—irlo-lp 2S o9 2)e ;
I(x+B) 2 I (x+B) (28)
+%0'226’(49—1)e’lf,
2 2p2q2 1\l 70
LV —e’| 146 q’B—BS—,u—rz +loquS 0(6 zl)elg
1,(x+B) 2 I*(x+B)
There exists positive constants K,, K, and K, such that
LV, <K', LV,<K,e' and LV, <K' (29)
It follows that
E(S’(¢))-B(S°(0))<K,, B(1/(r))-E(1!(0))<K,
(30)
and E(1!(t))-E(1!(0))<K,.
Then
. 0 . o
}LrgsupE[S (t)} <K, <o, th_}rgsupE[Is (t):'S]K2 <o o

. 0
and }LrgsupE[la (t)} <K, <.

For x(t)=(S(¢).1,(¢).1,(t))e R} and consider the case of 0<6<3.

Then from the holders inequality we have
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|x(t)|9 = (82 (0)+12(2)+1] (t))g < 3g maX{SH (¢).10(¢).,1¢ (t)}

3 {S‘g ()+17(0)+1° (z)}

consequently we have

(32)

IA

4
limsup B|x(¢)| <3°K,, (33)

t—w

where K, >0 isa suitable constant.

There exists a positive constants ¢, such that

i <
}ggsup]E‘,/x(t) <4,
2
Given €>0 andlet &= f—'z , then by Bienayme Chebyshev inequality
E|/x(?)

J&

P{|x(t)| > 5} < (34)

Hence

=E€.

S,
li Pllx(t)|> o} <~
timsup P (1) > 6} < <
This completes the proof as required. U

4.2. Moment Exponential Stability

The moment exponential stability of the equilibrium solutions of stochastic
differential Equation (3) are established from the idea of Lyapunov function
[20].
Lemma 2. Consider a function C'? (R” x [t,oo];R+) satistying these inequa-
lities:
M, |x|p SV (x,t)<M, |x|p
and

LV (x,t)<—M;|x

7, 120,V (x,1)eR" x[t,0]

where M,,M,,M, and p are positive constants. Then the equilibrium solution
of Equation (3) is pth moment exponentially stable. When p =2, it is usually
said to be exponentially stable in mean square and the DFE is globally asymptot-
ically stable.

Lemma 3. When p>2 and x,y,e>0. Then

ex? _ »
x”’lys—(p Dex +le"”y‘” and x‘”’zyzs—(p 2)ex +£y”e(2"’)/2.

p p p p
Theorem 3. If Ry <1 and p=>2, the disease free equilibrium of the model
system (3) is pth moment exponentially stable in A .
Proof. Given that (5(0),7,(0),Z,(0),R(0),B(0))e A, as from Theorem 1
the solution of the system remains in A. Set p>2, then consider Lyapunov

P P
function V:A[A—SJ +[L+/131ap + A,R? + A,B” , we have
M p
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PR (S Y. T SN
u u u

K+ B
1 A N7 o2BS* . (p.BBS
- 1) —=-8| L+ d)l,
+2ﬂ1p(p )(y j (K+B)2+A [K’-ﬁ-B (pri+ )Aj
1 va-IBSZ 2 1(QﬁB )
+=(p-1)17? | 2—t 0?1 |+ A pI” +7 (35)
e e K vt
+ A, pR" (11, + 11, — uR)+ AspB*™" (41 + a,1, — 5B — $B)

2 p2gQ2
ia %p( )pZM.

(k+B)

In A, we have S(O),IX(O),I(I(0),R(O),B(O)E(A,O,O,O,O], such that
U

<l,as Be [0,1] , there exists 7 e [0,1]

S< A , then from the fact that B
K+B

U
2

A
> (x2 +y° ) < 8°x""'y?, Then LVbecomes

such that

LVS—ApA(A—Sjp +(ﬂ+y)ﬂ1p£[£—5jp
H H\H

-2
A(A Y A
+— Ap( )ﬂal—z(——SJ +p =1 —(u+n+d)I!
w\ u
1 A? 1 A
+—(p-Dnpplct—=—I"*+—c(p-1I"+ ! (36)
2(p )np; R S(p-1I ﬂgqpﬂy ;
—ﬂ,jp(,u+rz)lp+ﬂ4pr11 R’H+/14pr21 R"™ = A, upR” + Aa, pl B
A2
+Asa,pl B"" = A p(5+¢)B” +— ,gp( Vno'q® ﬂzlf‘z.

Applying the idea of Lemma 3, we can formulate some of the inequalities as

follows

R <P e o Lo,

p p
p-2 _ P 2-p
[f(A—Sj <P ze[ﬁ—sj Lo, (37)
H p H p
p-l P
NB(A—SJ Sp_lc(A—SJ +l61’pNep.
H p Hu p

On substituting these inequalities in Equation (19), we get

LVS—@b(p—l)e(%—Sjp +(ﬂ+ﬂ)%z1 (p_l)e(%_s]

P

2p u
—(y+r1+d—%(p—l) jmz( )eR” + 4, (p=1)rscR”

1 (A Y P (A Y
- ~1)(p-2)no} —¢e| —=S| +=(p-1)(p-2)no} —e| —-S8
+2ﬂq(p )(p—2)n0o; #ze(ﬂ ] +—=(p-1)(p-2)no; #6( J

taa, (p—1)eB” + asa (p—1)eB” + Lo (p-1) gL err
p 7
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A
+/13‘](P_1),3;df—ﬂgp(ﬂ+rz)lf—ﬂ4prp

1 v (ALY
A p(5+8)B” +=4 (p-1)(p-2)noiqg* =n| =-§
p(6+¢)B" += 4 (p=1)(p=2)no qun(/u j )

2
+$(p —1)(p —2)77pr12 %df +l4rlel”’lj’ +/I4r261”’[f

I-pyp I-pyp
+Aone I+ Asa,e TID.

a

Hence

1 P
LV <~ d-—=(p-1)o’ +=(p-1)—
[u+n+ 2(1!7 )65+p(p )ﬂﬂe
1 b*

_g(p—l)(p—Z)nprf75_,14,,161% —150!161"}[;"

_[’”1 +r2 1)+,up:|ﬁ4eR"

_[p(5+¢)+al(p—1)e+a2 (P—l)e}/lsB”
—H(p 1) poeL s p(pr, )]ﬂg — A ? - zsafw} I
u

{ (,u+,3);—%(p 2o z F}ﬂq(p—l)e(é—sjp

U

2 P
2

—{/llbel" (ﬁ+,u) e’ —-(p 1)770'122 A (39)

By
——f—e np;oy —zet —F N

2—
P.yﬂb l—p_p_l 2 zb2 r :|Np,
p H

2 ) 2.2 42
Psz (p-2)nob’ +—ﬂ,3 (p=2)novq b—2 and
2 24 U

2p
2

where F =
2

F, = ﬂgqﬂ—el P+ 4 (p-Ynolq’ b—e . If we choose € sufficiently very
u

small, then we can choose 4,,4,,4;,4,,4; positive such that the coefficients
A P

(——S] 7,17 R?,B? ,N? become negative.
U

Hence, according to Lemma 2 the proof is complete. U

4.3. Almost Sure Convergence

Theorem 4 If R <1, then I (t),1,(t),R(t) converge almost surely expo-
nentially fo (0, 0, 0).

Proof. Let (S(O) ,(0),7,(0),R(0 ))eA. As R, <1, define the lyapunov
function as ¥ (7,,1,,R)=In(Z, (t)+1,(r)+wR(r)), such that w>0. Using Ito

formula we get
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_ 1 pPBS
Vo (t)+wR(t)|: B

+qﬁBS
K+B

—(p+r+d)]I,

—(p+n)l, +w(nl +nl, —yR)}dt

22322 22322
- ! (zp S-H#ﬂ+fﬁL—%-m (40)

2(1,()+1,()+wr()) | (x+BY 7" (x+B
. o,pBSAN (1) - o,1,dW, (1)
L (t)+1,(t)+wR(t)(x+B) I .(t)+1,(¢)+wR(t)
o,qBSAWN (1)

e+ BYL (1) + 1, (1) + wR(1)’

But p+q =1, also by dropping some of the negative terms in Equation (40)

we obtain

1
O (t)+wR(t)[

s

pBS
K+B

o, pBSdW

—(p+nr+d) —(pu+n),

+w(rl +nl, —,uR)}dt+ (x+B)I,(1)+1,(t)+wR(t)

o,1.dW, 0,gBSAW (1)

I(t)+1,(¢t)+wR(t) (x+B)I (¢)+1,(t)+wR(t)

1 { BBS
I (t)+1,(t)+wR(t) x+B
1
1)+ 1, (¢)+wR(t)
N o, pBSdW N o, .dW,
(x+B)I (t)+1,(t)+wR(t) I,(t)+1,(1)+wR(¢)

o,qBSAW (1)
(x+B)I (t)+1,(¢)+wR(t)

—(p+r, +d—wr1)ls}dt

+

[—(,u+r2 —wny )1, —wyR]dt

When R, <1, then disease die out and hence B =0. Therefore

! - ,u+r1+d—wr1)ls]dt

I(t)+1,(1)+ wR(t)[ (

dr <

+

u+r—wn)l, —w,uR}dt

1
1,(6)+1, (1) +wR(t) [
o,1.dW,
+ .
I(t)+1,(t)+wR(t)
Let @=min(u+r +d—wr,u+r, —wr,wu). It follows that
O-led)/vZ

I(t)+1,(t)+wR(t)

Introducing integral both sides from 0 to #to Equation (44) we get

dV <-0dt+

(41)

(42)

(43)

(44)
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In(Z (t)+1,(t)+wR(t))

<In(1,(0)+1,(0)+wR(0))- 01+ || ; (0 1,(s)dW(s) (45)

s;+la (s)+wR(s)’

Then from the strong law of large number for local martingale we have
Lo oyl (s)dW(s)

fl—?':_ 01 (s)—i—[a (s)+wR(s) =0 as. (46)

Hence, from Equation (45) and Equation (46) we have that

limsup%ln(ls (6)+1, (¢)+ wR(t)) <=0 <0.

t—w©

This completes the proof. O
1 2

Theorem 5. If 50'2 >ﬁ— , then the disease free equilibrium E’ is almost
Y7,

surely stable in A .

Proof. Define a Lyapunov function as follows

vV :m[[é—5j+la +R+B}.
y7i

Applying the It6 formula to function Vabove we get

dv = ! (—A+ﬁBS+,uS+qﬁBS—(,u+rz)Ia
K+B

(A—S]+IG+R+B K+B
7

+nrl, +nl, —ij—i—

(47)

~ 1 (o—fstz o—fquZSZJ
2 2 2
B B
ZKA—S)+IH+R+B} (K+ ) (K+ )
u

o, BSAW () o,qBSAWN (1)

s [Aosorres] (eon][Dos)ervnes]

u u

From Equation (47)let g=1 and p=0,then

1 28BS

dv = 1 [—A+ 2
(—SJ+IH+R+B K

u

,u(S—I

a

—R)+nl +ayl,

1 207 B°S?

T (x+BY’

+a,l, —(§+¢)B)dt— dt (48)

(A—Sj+la +R+B
U

20,BSdW (1)

(K+B)KA—SJ+IQ+R+B]

7]

+
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dv = ! (2ﬂBS—A—,u(S—Ia—R)—i—rlls+alls

[A—SJ+IG +R+B K+ B
U

20, B*S’

(K+B)2KA—SJ+IH+R+BT

u

+a,l, —(5+¢)Bjdt— dr (49)

20,BSdW (1)

(K+B)KA—SJ+I‘,+R+B}’

u

+

let
BS

(K+B)K2_sj+za+ze+3]

Y =

Then, dV becomes

A+pS—pul, —puR-rl -l —a,1, +(5+¢)B

dV =| 267> +28Y - A t(so)
(—SJ+I{I +R+B
u
+20,YdW (t),
Then, dV deduce to
dV <(-207Y? +2BY — p)dt + 20,YdW (1), (51)
since
gY 28 -uc’
—262Y? +2BY — = 207 (Y——ZJ TRt
G] O-l
we have
2B — ot
dV < =———1+20,YdW)(1). (52)
o
Applying integration from 0 to ¢both sides to Equation (52), we get
A
In[[——S(t)j+1a (t)+R(t)+B(t)J
y
A
< In[(——S(O)J—i—Ia (0)+R(0)+B(0)J (53)
y

+(M}+L§20}Y($)dw ()-

0

Then, for all time ¢ e [O,T ] , the quadratic variation of the It6 integral process

I(Y), is deterministic integral over [0,¢] of Y? ie,

UOY(S)dW (S)l =[¥(s)ds<cr, (54)
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where Cis a constant. Then by strong law of large number for local martingales,

we have

lim [[Y(s)dni(s)=0 as. (55)

t%wt 0

From Equation (54) and (55), we conclude that

2

1imsupInK%—S(t)j+la (t)+R(t)+B(t)} R il i)

t—o© O-l
This completes the proof 5. (]
Theorem 6. If R, <1, then S(t),I,(t),1,(¢),R(¢),B(t) converge almost
surely to

N
[b—e,0,0,0,0j in A.
U
Proof. We are required to show that

lim(bNe —S(t)JzO as.

t—0 /J

Consider the first equation of model system (3), let A =bN, . Using Itd for-

d(A—SJ:[_y[A—S]+ﬂB;Jdl+GIBSdW(t), (56)
7

7 K+ x+B

mula we have

Applying integration both sides from 0 to #to Equation (56), we get
BS(s)ds BS(s)d
B0 20y [ PECI 1 Ao fas [ LI
7

>

7 7] " x+B 0 0 K+B

From the fact that <1 and from Theorem 4, we havein A that
K+
¢ fBBS(s)ds . ~Das
i g < 1m [, A5 (s)ds < D™ <0 7
Hence
AN
hm(——S(r)) <o as. (58)
t—>0 /u
Also
ot [ A
}Lrgj‘ou(;—S(s)st<oo a.s. (59)

Combining Equation (57) and (59), we get
1imj’(§—s(s)jds=j°°(§—s(s)jds<oo as. (60)
t—0v0 7] 0 Y7,

If S(¢) does not converge almost surely to A , there is Q, e Q such that
U

the P(€,)>0, thenforall weQ, it follows that
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liminf[A -5(t, a))] >0 as.
t—w lu

Then, there exists, 7 >0 such that

[A-S(w)j >%p(a)), Vi T.

u
We have

snforffsees s
S

(61)

Then, as ), < Q,, where

Q, = {w,j:(%—s(s,w)jds = oo}.

It implies that P(Q)>0. But from Equation (57), we see that P(Q)=0.
This leads to contradiction.

Hence,
. [ A
hm(—— S(t)j =0 as.
t—o0 /j
This completes the proof of Theorem 6. U

5. Numerical Results

In this section, we numerically solve the ordinary differential Equation (ODEs)
model (1) and stochastic differential Equation (SDEs) model (3) and (8) by
fourth order Runge-Kutta and Euler-Maruyama scheme respectively. The beha-
viour of individuals sample path of the stochastic differential equation models
are compared to the deterministic solution. Initially, one infective is introduced
into a population. The time step is A7 =0.01 and the time axis is the number of
time steps, e.g., Time = 100 means 100 time steps and thus, an actual total time
of 100A¢ =1. The Euler-Maruyama scheme is one of the numerical methods for
computing the sample paths of SDEs (3) and (8) [21]. This method is a finite

difference approximation
x(t+Ar)=x(0)+ f(x(2),0)At+G(x(2),1) p/AL, (62)

From Equation (62), the vector p:( Prsts pj) is j independent standard
normal random numbers p, € N(0,1). Also, ¢=0,At,2A¢t,---, and Ar is
chosen sufficiently very small to ensure good convergence. The sample path of
the SI I, R—B stochastic differential equations is shown in Figure 6. It is ob-
served that the sample path is continuous but not differentiable (a Wiener
process property).

Maximum likelihood estimation method is used to estimate the unknown pa-
rameters ¢ of a SDE (8) by maximizing the likelihood [16].
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Let p(,,x, |t,_,,x._;;6) be the transition probability density of (7,_,,x,)
given vector €. Suppose that the density of the initial state is p, (x,|8), in
maximum likelihood estimation of & [16], the joint density

D(H) = Do (xO | H)ﬁp(tk,xk |tk—1=xk-|39)» (63)

k=1
is maximized over @ € R”. The value of @ that maximizes D(H) will be de-
noted by 6, e R”. For simplicity, it is more convenient to minimize the func-
tion

L(H) = —ln(po (xO |0))_ZN:1n(p(tk’xk |tk—l’xk—];&))a (64)

k=1
where, p(t,,x, |t,_,,x,_,;0) is computed recursively by extended Kalman filter
and its approximation is

n(6)= Zl:%ln|2nSj|+%§:(yj —h(m;’t))T s (yj —h(m;,t))—lnp(e), (65)

Jj=1
where

Sy =H,(m; ) p H} (m))+ 2,

J

K. :p;HXT(m;,t)S;l, (66)

J
m; =m;+Kj<yj—h(m;)),
p;=p; —K,;S,Kj,

H, (x,t) is the Jacobian matrix of h(x,t), y, = h(x(tj ))+zj , y; is the
measurement at time 7, x(tj) is the state at time #;, @ is the vector of pa-
rameter to estimated, Z; is the covariance matrix of the measurement error at
t;. However, at £, the state is assumed to have the prior distribution. For more
details on EKF (see [22]).

The estimated parameters by MLE are shown in Table 2. It is observed that
the estimates are close to the true parameter values. Figures 2-5 show the ex-
tended Kalman filter estimates together with the true solution from ODE, mea-
surements and states. Here black line, blue line and green line represents ODE
solution, measurements and states realizations respectively. It is observed that
the extended Kalman filter fits the states, which means states
(S(t),[s (¢).1,(¢),R(t)) can easily be estimated. The stochastic model (3) can

be re-written in the following discretization equations:

B.S B .S, NAtZ
Se =S, 4{[7]\]6 _&_#Sk}m_w,

K+B, K+B,

B.S B, S NAZ
Ly =1, +{M—(/ﬁn +d)lxk}At—M—azlxk JALzZ,,

K+ B, K+B,
B, S B, S, NAtZ
Iak+1 :Iak + qﬂ e _(/I+r2)1ak At_o-lq — R s (67)
K+B, K+ B,
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Days

Figure 2. The sample path of § (t) for SDE (8) and deterministic solution for § (t)

graphed with extended Kalman filter estimates.

x10°
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Recovered individuals
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Days

Figure 3. The sample path of R (t) for SDE (8) and deterministic solution for R (t)
graphed with extended Kalman filter estimates.
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Asymptomatic infected individuals
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Days
Figure 4. The sample path of Ia(t) for SDE (8) and deterministic solution for I, (t)

graphed with extended Kalman filter estimates.
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Is

Symptomatic infected individuals
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0 20 40 60 80 100 120 140
Days
Figure 5. The sample path of I, (l) for SDE (8) and deterministic solution for I (t)

graphed with extended Kalman filter estimates.

R =R, +(rl]sk +7d, — LR, )At:
B,, =B, +(a115k +a,l, —(5+¢)B, )At,

where Z, (k=1,2,---,n) is the Gaussian random variables N(0,1). The Eu-
ler-Maruyama scheme is used to simulate the sample paths of stochastic diffe-
rential Equation (3) and the result is graphed in Figure 6. From Figure 6, we
observe that the susceptible proportion eventually converges to zero; the entire
population becomes infected, and later they recover from the disease. Also, the
sample path of S/ /[ R—B stochastic differential equations is continuous but
not differentiable (a property of Wiener process).

The sample path of S/ I R—B stochastic differential equations model to-
gether with the solutions of ordinary differential equations is graphed in Figure
7. From Figure 7, we find that the sample path of S/ [, R—B stochastic diffe-
rential equations model fluctuates within the solution of the S/ /, R—B ordi-

nary differential equation model.

6. Discussion

We have proposed a new modeling framework for the dynamics of cholera using
both deterministic and stochastic models. Our focus is on the interaction of en-
vironmental vibrios to human (which causes the transformation from the envi-
ronmental vibrios to human) and the infected individuals shedding bacteria into
the environment. For deterministic model, we derived the basic reproduction
number R;. The basic reproduction number is a critical parameter for disease
dynamics. In the deterministic model, the value of the basic reproduction num-
ber R, determines the persistence or extinction of the disease. If R, <1, the
disease is eliminated, whereas if R, >1, the disease persists in the population.
From the deterministic model we have formulated two stochastic differential

equations using parametric perturbation and transition probabilities methods.
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We have proved the existence and uniqueness of positive solution, we showed
that the solution of stochastic model are stochastically ultimately bounded, we
derived that when R <1, then the infected compartments and bacteria goes to
extinction. We carried out numerical simulation using Euler-Maruyama scheme
to simulate the sample paths of stochastic differential Equation (3). Our results
show that, the sample paths are continuous but not differentiable (a property of
Wiener process) Also, we carefully compared the numerical simulation results
for deterministic and stochastic models. We find that, the sample path of
SI I,R—B stochastic differential equations model fluctuates within the solu-
tion of the S/ I,R—B ordinary differential equation model as seen in Figure 7.
However, the model parameters of SDEs are estimated by maximum likelihood
estimation method. It is shown that the estimates are close to the true parameter
values as seen in Table 2. Also, we used extended Kalman filter to estimate the
states (compartments) of stochastic model (8) by recursively computing the
transition probability density. It is observed that the state estimates fit the mea-
surements as seen in Figures 2-5. Hence, we find that both models that are de-
terministic and stochastic models are very useful in understanding the dynamics
of cholera epidemic. Nevertheless, Stochastic differential equation models are
more important than deterministic models since they incorporate random ef-
fects such as environmental stochasticity and this enables us to model different
quantities such as probability of extinction, probability of distributions and va-

riances which cannot be captured in deterministic models.

7. Conclusions

In this paper, two stochastic differential equations models are formulated from
the deterministic model using two different approaches: parametric perturbation
and Transition probabilities. For deterministic model, the basic reproduction
number R, determines whether the disease is eliminated or persists in the giv-
en population.

For stochastic model, the perturbed stochastic differential equation is first
analyzed by proving the existence and positivity of the solutions. Secondly, we
looked at the stability aspect of the model; we proved that the number of symp-
tomatic infected, asymptomatic infected and bacteria tends to asymptotically to
zero exponentially almost surely. Also, we showed that the equilibrium solution
of the SDEs is pth moment exponentially stable and it is usually said to be expo-
nentially stable in mean square. Numerical simulations are carried to simulate

the sample paths of stochastic models by Euler-Maruyama scheme and the

Table 2. Estimated model parameters for cholera epidemic by MLE.

Parameter b B K a, a, d S @ n r P q H
True value 0.000072 0.35 10° 1.5 0.1 0.00065 0.05 0.025 0.14 0.5 0.7 0.3 0.000044
Source (23] [26] [26] [23]  [23] [25] [7] [23] [23] [23] (7] (7] [23] [24]

Estimates 0.00007169  0.3479  855,526.77 1.48 0.088 0.000556 0.046 0.022 0.134 0.51 0.66 0.268 0.0000442
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solutions of deterministic model by fourth order Runge-Kutta method. It is ob-
served that the sample paths are continuous but not differentiable (a property of
Wiener process) and the sample paths of stochastic differential equations models
fluctuate within the solutions of deterministic model. However, the model pa-
rameters of SDEs are estimated by maximum likelihood estimation method. It is
shown that the estimates are close to the true parameter values. Also, extended
Kalman filter is used to estimate the states of stochastic model by recursively
computing the transition probability density. It is observed that the state esti-
mates fit the measurements. So, we can say that cholera transmission dynamics
can be modeled using stochastic differential equations. It is clear that real world
problems such as disease are not deterministic in nature so including random
effects to the model gives us a more realistic way of modeling cholera epidemics
and other epidemic diseases. For example, using stochastic differential equation
model we managed to examine the limiting asymptotic distribution of the num-

ber of symptomatic infected, asymptomatic infected and bacteria.
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