
Journal of Software Engineering and Applications, 2019, 12, 101-126
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.125008 May 23, 2019 101 Journal of Software Engineering and Applications

Transformation of User Interface to Activity
Models and Assessing Performance of WA/WS

Ch. Ram Mohan Reddy , D. Evangelin Geetha, R. V. Raghvendra Rao, T. V. Suresh Kumar

1B.M.S College of Engineering, Bengaluru, India
2Ramaiah Institute of Technology, Bengaluru, India

Abstract

Quality of Service is an important attribute of a software system. In retros-
pect, performance assessment based on user interaction with the system has
given a better understanding of underlying disciplines of the product. In this
paper, we capture user interaction with the prototype/User Interface (UI). An
approach for developing activity model from the user interface model is pre-
sented using workflows and functional elements. A methodology is proposed
to transform UI into activity diagram. The approach is validated by an expe-
rimental setup using Amazon service. The performance of Amazon service is
assessed using activity based performance prediction methodology, and the
simulation results are obtained using SMTQA.

Keywords

Web Services, Software Performance Engineering, Web Applications,
Software Size Estimation, Activity Based Performance Prediction, Unified
Modeling Language

1. Introduction

Web services are software components that provide flexibility to operate be-
tween different applications through the Internet [1]. Performance plays a sig-
nificant role in achieving the Quality of Services (QoS) of web services. Every
aspect in the analysis, design, code, and deployment of web services has an im-
pact on its performance. Hence, it is difficult to understand the complexity at a
given point in time. Performance is an essential attribute to be assessed for web
applications/web services (WA/WS) of all the other quality attributes. The cus-
tomers or users of the software expect the web services to respond fast as they
don’t want to wait for a long time.

How to cite this paper: Ram Mohan Red-
dy, Ch., Evangelin Geetha, D., Raghvendra
Rao, R.V. and Suresh Kumar, T.V. (2019)
Transformation of User Interface to Activ-
ity Models and Assessing Performance of
WA/WS. Journal of Software Engineering
and Applications, 12, 101-126.
https://doi.org/10.4236/jsea.2019.125008

Received: February 25, 2019
Accepted: May 20, 2019
Published: May 23, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.125008
http://www.scirp.org
https://orcid.org/0000-0003-0768-0224
https://doi.org/10.4236/jsea.2019.125008
http://creativecommons.org/licenses/by/4.0/

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 102 Journal of Software Engineering and Applications

The poor performance of service from the user point of view may generate
customer dissatisfaction and damage the external image of the company, leading
to loss of business. To prevent this kind of dissatisfaction, it is imperative to look
for methods to assess performance in various aspects of Software Development
Life Cycle (SDLC) and also from the user point of view.

To identify the optimal web services, QoS is important in the service compu-
ting field based on the user's request by considering both functional and
non-functional requirements. Increased in a number of web services, it will be
difficult for users to identify the relevant web service that satisfies both function-
al and non-functional specifications. It is most critical to anticipate the perfor-
mance of applications under development. However, we exploited these tech-
niques in our methodology to assess performance with respect to the user point
of view. User interaction based studies of WA/WS are done in [2] [3] [4].

In practical terms, this implies that we can estimate performance early (pro-
totype) with a user point of view based on activities. The primary purpose of ac-
tivity models of UML is to interpret the activities of a user in association with
the WA/WS system, as a means of uncovering functional requirements to be
supported by the system. This approach has techniques that can be applied in
any phase of software development. Unified Modeling Language (UML) [5] is
the leading modeling language in the field of systems engineering and has gained
much tool support.

Categorizing the requests into a number of activities and modeling of these
activities helps in estimating performance. The models we offer to address this
situation are the activity based size models as discussed in [6]. Different activities
are associated with requests for documents of different sizes.

Building a prototype of applications during the analysis phase of the software
development life cycle is a usual industry practice. The graphical user interface
has become predominant, and the design of the visible or external system [7] has
acquired increasing importance. This has derived attention being given to usa-
bility aspects of an interactive system and a need for evolution of tools to aid in
the design of the external system [8], [9], [10]. Models and notations are in-
volved to describe user tasks and to map these tasks with the User Interface (UI)
of Web Applications (WA)/Web services (WS). This gives the Web Service Us-
ers (WSU)/Web Service Developers (WSD)/Web Application Developers
(WAD)/Web Applications Users (WAU) a guideline in selecting the web appli-
cation/web service. An approach that helps to transform user interface into ac-
tivities is proposed in this paper.

2. Related Work

In the literature, quite a significant amount of attention has been paid to utilize
the flexibility of user interface design in the implementation and analysis of web
applications/web services.

Software Performance Engineering (SPE) is a methodology helps to achieve
the performance goal of software systems [11] [12]. Applying SPE in different

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 103 Journal of Software Engineering and Applications

aspects to the development process requires that SPE process be tightly inte-
grated with the software development methods. For any application, SPE is vital
to ensure that the architecture and design are appropriate for meeting perfor-
mance objectives before implementation begins. SPE models [12] help to eva-
luate the software architecture, the technical architecture, and the implementa-
tion choices for the web services. Performance prediction can be accomplished
through the performance models.

The software performance engineering to the web service based infrastructure
to support Clinical Decision Support System (CDSS) is applied in [13]. System
Performance Validation is a mechanism by which the e-commerce systems try n
keep up to reach its performance imperatives by employing performance engi-
neering procedures at the system development phase. A case study has been
presented, which deals with the transformation of the UML models to software
execution models to replicate the performance prediction by implying functio-
nalities of UML 2.0 for e-commerce systems [14].

Three use case representations are compared by reviewing the use case mod-
eling from the viewpoints of its suitability as input to the graphical UI design
and are presented in [15]. It provides a tabular representation independent of
the user interface style of identifying the use case elements to support User In-
terface (UI) design within the framework of Unified Development Process as
this provides an alternative notation to specify the behavior of the use case in
[16]. This article sets up a panel to discuss the features needed to extend UML to
support system engineering and investigate the advisability and feasibility of the
extensions with respect to audience’s opinion as they have diverse engineering
system experience. The design and implementation of a prototype web service
for performance modeling tools are implemented in a plug and play manner. It
is used for analysis by reviewing information about web services and previous
works on XML based performance model by demonstrating the experiment re-
sult to show the viability of the model [17]. It is interesting to use UML in vari-
ous stages of the web services development process. Also, the non-functional
requirements also can be modeled using UML. In [18], the authors presented a
survey, mapping UML concepts with web services and classify various UML
based approaches that are used to model web services.

To define the complexity of the system using use case narrative is very diffi-
cult as it is incomplete and validating requires lengthy narrative texts. Hence, a
study supplements each use case into activity diagram during requirement ga-
thering and analysis, which is complete and has a high degree of validity using
validation mechanism and its quality, which is not affected by the complexity
but rather improved is described in [19]. Though the UML Activity Diagram
(AD) proposed can be used for system flow in the system analysis phase, it lacks
support for the simulation process. A methodology is proposed by transforming
activity diagram into Associative Petri Nets (APN) in [20]. It supports all the
drawbacks by controlling the flow dimension of workflows. A case study is illu-

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 104 Journal of Software Engineering and Applications

strated by using a dynamic travel recommended system.
The usage of web widgets has been speedily growing on the mobile devices

and desktops. Web widgets give access to the activities, and the details are also
accessible from different sources on the web. With the increasing supporting
widgets, supervising widgets and looking appropriate widgets becomes tedious.
Hence, the behavior of the users is analyzed using the user interfaces. An explo-
ratory analysis which is based on the user interfaces of web widgets regarding
the workflow analysis and state diagramming techniques were given in [21]. The
functional flows to execute the given tasks in every website are being presented
in the workflow diagrams, where each of these is built to visually and systemati-
cally to study their detailed pattern usage. From the exploratory analysis results,
the authors have extended instructions for thorough usefulness and the accessi-
ble interface design of web widgets.

To address the high level performance issues from the initial specification of
the system which is incomplete and embodies use case and identifies the se-
quence of responsibilities which are incomplete is presented in [22]. It also ad-
dresses the use of a specification designed primarily for software design. The in-
crease in performance and utilization of adaptive user interface by increasing
predictability and accuracy to improve satisfaction study is shown in [23]. The
results say that accuracy affects the user performance, utilization and satisfaction
of adaptive user interface than predictability. A simple, user-friendly tool to
evaluate the best applicable design of software performance attributes at design
level using a UML diagram to reduce cost is presented in [24].

In the following literature, [25] [26] [27] [28], methodologies are given to
generate User Interface from UML models. The objective of the authors is to
develop a prototype from UML models that can be coded easily. The goal of
these papers is developing functionalities of the system.

Nowadays, developing UML models is not a mandatory activity within the
industry, whereas designing GUI is the common industry practice. Our objective
is to assess the performance of WA/WS. Methodologies to predict the perfor-
mance from UML models are available through the literature. The proposed
methodology helps to generate UML models from the user interface.

The following literature, [29]-[35], methodologies to assess the performance
from UML models are presented. Performance prediction from GUI is not ad-
dressed in the literature. The proposed methodology provides an approach to
assess the performance from the given User Interface. Numerical Results related
to performance of Amazon are not discussed within the literature to have a
comparative study.

Based on the review discussed in the available literature, the observations are
1) Interactive systems, 2) GUI behavior for web services. 3) In summary, there
are research gaps in implementing user interfaces with respect to web services.
We present a methodology to transform the user interfaces to activity models
and to improve the performance in higher utilization in the behavior of web ser-

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 105 Journal of Software Engineering and Applications

vices. First, developing user interface as a prototype is an industry practice, and
moreover, the user interface plays an important role in the implementation and
analysis of web services. Second, methodologies are available to predict the per-
formance from UML diagrams. Hence, identifying a methodology to transform
the user interface design into UML models can ease the prediction process [36].

In this paper, we propose a methodology to transform the user interface de-
sign into the activity model. The methodology is illustrated with the help of an
Amazon service prototype model. Furthermore, the performance assessment of
the model is done using the Activity Based Performance Prediction (ABPP) ap-
proach, and the environment is simulated using SMTQA tool.

In this paper, an approach for implementing the user interface model to Ac-
tivity model is presented, and the approach is illustrated through an experimen-
tal setup of Amazon service. Using Activity models, the performance of Amazon
service are assessed and compared with the results of experimental setup. Two
types of UML diagrams are used a). Use case diagrams are used to capture the
requirements of the Web service application and to derive the services, which are
provided by the Web service, b). The activity diagrams represent the Web ser-
vice architecture and showing the flow of control from activity to activity of the
services.

For performance assessment, we have used a tool SMTQA, which is validated.
A simulation tool, Simulation of Multi-Tier Queuing Applications (SMTQA) to
predict the performance of software systems is described in [37]. It provides full
visualization of model structure, parameters, and output reporting. The tool si-
mulates the behavior of the servers with replicas. The performance metrics av-
erage response time, average waiting time, average service time, the probability
of idle server and the probability of dropping of requests are obtained. The tool
also supports the probability distributions, exponential, normal and Weibull for
obtaining the inter-arrival time between the requests, and the service time re-
quired to process the applications.

The structure of the paper is organized as follows. In Section 2, we discuss the
basic concepts and the proposed methodology. Section 3 illustrates the algo-
rithm for transformation of UI into the activity diagram. The illustration of the
methodology is presented using a case study on Amazon service in Section 4. In
Section 5, the simulation aspect of the case study is discussed with validated re-
sults. Finally, Section 6 concludes the paper and proposes directions for future
research.

3. Concepts and Methodology

3.1. Basic Concepts

Web Services: A web service is an independent component that communi-
cates with other applications using standard protocols over the network. An
example of the general form of Web Services is shown in [38].

Use Case Diagram: Use case diagram defines the interaction between the sys-

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 106 Journal of Software Engineering and Applications

tem and the user (actor). In a particular environment, a set of possible sequences
and interactions is created between systems and actors. As an example, the use
diagram is presented in [35] describes the various interactions between the users,
service consumer, service provider and service registry for web applications.

Activity Diagram: An activity diagram is nothing but a flowchart that
represents the flow from one activity to another. They are graphical representa-
tions of workflows that will show the step by step activities and actions. It exhi-
bits the object flow or flow of control with significance of the conditions and se-
quence of flow [39]. An example of an activity diagram that represents the inte-
raction between the service consumer, service provider, and service registry is
presented in [35]. The activity diagram represented shows the visual flow of
tasks in a particular time sequence along with the condition under which they
occur. The round angles in the diagram define the process. The process includes
operation with one incoming and, at least, one outgoing edge. There can be
more than one outgoing edge based on the operation and tagging with guard
condition sometimes defining parallelism. The activity diagram shows the inte-
raction clearly. The activity diagram is very appropriate for the complex process
of server exception flows as it provides a visual description of the alternate paths.

Workspace: Workspace is defined as an environment which helps the pro-
grammer to work in task duration.

Workflows: Workflows are a series of tasks that are carried out to produce a
desirable outcome. It usually involves several procedures, multiple participants,
and several stages in an organization. An example of the workflow of Business
Process Management is presented in [16].

Main flow: Main flow is the set of paths of sequence flow that originates from
an event. For example, it explains the sequence of flow that happens during the
placement of online order using mailing address and credit card information.

Sub-flow: Sub flows are data flows that can be reused by other data flows. The
parent workflow will trigger the sub-flow, and wait for the sub flow to complete
before continuing as shown in [16]. An example of creating a new account for
application is the sub flow of the main flow Login activity of an application.

Exception flow: The set of paths of sequence flow that generate from an in-
termediate event which is attached to the boundary of activity is an exceptional
flow. Example: Initialization Exception explains the flow of how the exception
occurred during the initialization handled.

User Interface (UI) elements: The UI elements are the workspaces and func-
tional elements. These are required to assist the user and system tasks which
perform for each use case. For example, user details will be in workspaces and
buttons represent the functional elements. The workspaces are an email address
and password whereas functional elements are Sign In using a secure server.

Prototype: It is a model of information system or a product which is usually
built in a section of the development process. A prototype of the Login page of
Amazon Service is an example, and it is shown in Figure 1.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 107 Journal of Software Engineering and Applications

Figure 1. Screenshot of login page of Amazon.com.

3.2. Methodology

The methodology proposed in this paper provides guidelines for generating ac-
tivity models from user interfaces with the help of workspaces. As developing
user interface prototype is the industry’s normal practice, it is considered as a
base for performance assessment. This helps us in perusing activity model from
the user point of view. Moreover, assessment of performance in various aspects
of software development is supported by the Activity Based Performance Predic-
tion (ABPP) approach [6]; this is followed in order to predict the performance.
The steps involved in the process are:

1) Consider the prototype of a web service
The prototype defines a model based upon which the system is developed. The

prototype defines the physical user interface design of the system. The possible
workspaces can be identified from the chosen prototype.

2) Identify User Interface (UI) elements in the selected prototype
UI elements are identified in the form of workspaces and functional elements.

For a given prototype, the UI elements are identified which defines the mode of
supporting the user tasks and functionalities of the prototype representing the
system tasks. Each workspace has one functional element.

3) Generate the UI elements Cluster
The UI elements cluster for the prototype is developed based on the interac-

tions between the workspaces, and the functional elements belong to the identi-
fied UI elements. This shows how UI elements in the workspace are grouped in
the form of visual interface and spaces allocated in the screen with physical ar-
rangements and the interaction styles. The overlapping of workspaces implies
that they can share space.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 108 Journal of Software Engineering and Applications

4) Develop the flow diagram of the UI elements
For each UI cluster, identify the functional elements, and in turn, the main

flows, sub-flows, and exception flows. For all the UI elements defined in the
prototype, develop the flow diagram and understand how the system behaves for
the activities mentioned in the flow diagram.

5) Generate the activity model from the flow diagram
Develop the activity model from the flow diagram as follows: Each UI element

will become a high level activity of the activity model. By elaborating on the ac-
tivities that are implicitly available in the workspace, the low level activities can
be developed. The activity model should have a definite start and end to ensure
end-to-end activity.

6) Generate use case model for the functionalities identified from the flow
diagram of UI elements

Generate the use case model for each UI element cluster. All the UI elements
that represent the main flow of the flow diagram become the primary use cases.
The secondary use cases are developed from the UI elements that represent the
sub flow and exception flow. The use cases derived from sub flow elements will
be related to primary use cases by the relationship includes or uses whereas the
use cases derived from exception will be related by extending the relationship.
Each use case should describe the single functionality of the service. The use case
model should also represent the actors interacting with the functionality
represented as a use case.

7) Refine and iterate the developed models
The prototype model defines the concept of refinement of the model, based on

either a change in requirement or fault in the design. Hence, the final step in the
methodology allows for refinement of the model that has been developed for the
identified functionalities either to accommodate new requirements or to consid-
er the requirements that were earlier ignored, based on the priority.

8) Assess the performance of the system using activity based performance
prediction approach

Once the refined activity model is obtained, the model will be solved to obtain
the response time using the ABPP approach.

9) Solve the system model in SMTQA tool
Simulation of the performance model helps to identify the behavior of the

hardware resources as well as the bottleneck resources. The model environment
will be simulated using the simulation tool, SMTQA.

4. Algorithm

See Algorithm 1.

5. Experimental Study

The proposed methodology is illustrated with data collected from Amazon Ser-
vice, and the results are validated.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 109 Journal of Software Engineering and Applications

Algorithm 1. User interface to activity model.

5.1. Prototype of Amazon Service

To elucidate the proposed methodology, the Amazon.com website is considered,
and the algorithm is applied to the module Login for illustration. The prototype
of the Login page is presented in Figure 1. The prototype expects the developer
to develop an interface for the new user to create an account and for the existing
user to login to the secured server of Amazon. After entering into the server, it
has to allow the user access to any of the following activities: search for an item,
shopping cart, online payment, wish list and such other workspaces and to func-
tional elements such as Add to cart, Proceed to checkout, etc. The GUI of the
Login page consists of the UI elements: input controls that are available for bet-
ter user interaction with the UI screen and the functional elements, namely,
Create Account and Sign in Using Secure Server in the form of buttons.

5.2. Identification of UI Elements for Login

From Figure 1, the buttons Create Account and Sign in Using Secure Server are
identified as the functional elements, since they are required to support the user
tasks. Four corresponding workspaces (W1- W7) are identified and presented
along with the functional elements in Figure 2. There are two sub-flows in Fig-
ure 10, and one exception flow following invalid user input. In each workspace,
the information to be displayed is presented. The workspace supports various
user and system activities. Each workspace defines the amount of information to
be displayed on the login Screen, which can be analysed from the knowledge of
domain objects and its interactions.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 110 Journal of Software Engineering and Applications

Figure 2. UI element cluster of the login.

The workspace W1 and W2 share space and hence they are overlapped. The
functional elements are identified to support user tasks. Based on this informa-
tion, the sequential flow of tasks can be represented using the main flow and the
flow of tasks for different conditions can be represented using the exception flow
diagrams. The sub-flow for the main flow can be created by analysing the UI
Element Cluster. This UI Element Cluster is the primary support to identify the
performance of the activities for the designers.

5.3. Developing the Flow Diagram

5.3.1. Main Flow
The main flow represents the activities based on time sequence which is sup-
ported by the UI elements in the workspace. The first workspace, W1 provides
the flexibility to enter the Name, Email id, Phone number and Password for
creating an account and similarly W2 for Sign In using a secure server. For any
new user, the flow starts with the functional element Create account along with
the workspace W1.

After creating the account successfully, the control goes to workspace W2 that
shows the data to be provided by the user to login, i.e., Email-id and password. If
Email-id and password are correct, then it enters in a secure server. The UI ele-
ment represents the secure server, and it consists of four workspaces (W4 - W7)
with corresponding functional elements. This UI element shows the functionali-
ties accessible while entering into the system. The main flow of “Login”, derived
from Figure 10 is presented in Figure 3.

5.3.2. Sub Flows
The identified sub flow events are print and log out. These sub flows are used to
print the details of the content page and to exit from the web page respectively,
and they are presented in Figure 4.

5.3.3. Exception Flow
The data represented in Figure 5, the workspace W3 shows exception handling
when the user is logging in. If Email-id or password or both are incorrect, then

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 111 Journal of Software Engineering and Applications

Figure 3. Main flow of login.

Figure 4. Sub flow of login.

Figure 5. Exception flow of login.

the control goes to W3 instead of W2. The exception flow represents the activity
supported by workspace W3.

5.3.4. Generation of Activity Model
The activity model is generated for the Login module from the main flow, sub
flow and exception flow of the flow diagrams. The flow diagrams from Figures
3-5 are considered for activity model generation. Initially, the high level activi-
ties of the activity model are developed by mapping the functional elements of
the UI elements into activities. Hence, the UI functionalities Create account,
Sign in Secure Server, Add to cart and Proceed to Checkout are mapped to gen-
erate corresponding high level activities of the activity model as shown in Figure
6. The Exceptional flow displays that the user id and password are invalid. In the
algorithmic approach, Exceptional flow occurs subject to conditions. So, Excep-
tional Flow is mapped to the decision box of an activity model. Sub flow ele-
ments are not mandatory to execute. Anyone of these elements will execute
based on the user requirement. Therefore, these UI elements are modeled as ac-
tivities connected by Fork of the activity model (Figure 7).

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 112 Journal of Software Engineering and Applications

Figure 6. High level activity model for login.

Figure 7. Detailed activity model for login.

When the user wants to enter into the system, in case he is a new user then he
has to fill in all the details, in order to enter into the system, i.e., workspace W1
and with the help of functional element Submit button. If he is an existing user,
then he has to enter the email id and password and login into the system. That is

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 113 Journal of Software Engineering and Applications

workspace W2 and with functional element Sign In button. If the authentication
fails, then he has to re-enter the details. The incorrect id/password is workspace
W3. The workspace W4 is open user form which contains other workspaces like
the Search for an item, Shopping cart, Online payment, Wishlist, etc. with the
functional elements.

5.3.5. Use Case Diagram
The use case diagram for Login is shown in Figure 8. A single actor (user) inte-
racts with the system. For a new user, the user should enter the credentials and
then the system redirects the user to the web page. If it is an already existing us-
er, the user enters and submits his/her Username and password. The System va-
lidates and authenticates the user Information. The System re-directs the user to
the web page.

The UI Elements and Activity models for the remaining web pages of Amazon
Service, such as Search, shopping cart, online payment, and Wishlist are ob-
tained in a similar way.

5.4. Performance Prediction for Amazon Service

The methodology, Activity-Based Performance Prediction (ABPP) for Software
Systems is applied to estimate the response time of the activities in Web Appli-
cations (WA)/Web Services [6]. Activity based performance prediction for
WA/WS is about assessing the response time of each activity involved in the web
application/web services, Activity based performance estimation is a method of
assessing the performance of software systems, considering the type of the users,
activities of the web services, technical factors and environmental factors that are
available with feasibility study data or preliminary design phase data. For this
activity, models are to be developed. The assessment is based on quantifying the
amount of resources (efforts) required to execute each activity in the software
system [6].

Figure 8. Use case model for login.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 114 Journal of Software Engineering and Applications

The technical and environmental factors, the type of users and the activities
involved in the software components are useful in categorizing the various types
of the software such as they contain the inherent characteristics of the applica-
tion. The combinations of rates for technical factors help to represent the cate-
gory or complexity of the software systems. For example, the technical factors,
namely distributed system, response or throughput performance objectives,
complex internal processing and concurrent help to represent the protocols used
for communicating between the components of the proposed software or be-
tween different software systems to be assessed.

The weighting factor for Actor and weights for activities and the technical
factors distributed system includes security features, provides access to third
parties help to represent the category and complexity of the proposed software
system. For instance, if we consider a web application, the actors may be the us-
ers (person interacting with a GUI or web page). In the case of web services, the
actors will be the users as well as the service providers since, in web services, the
web service is, in fact communicating with the service providers via, the applica-
tion programming interface (API).

5.4.1. Use Case Model for Amazon
The use case diagram of the Amazon Service is shown in Figure 9, with the fol-
lowing multiple functionalities: Registering and login to the Amazon Web site,
Searching for a product of interest, Viewing the details of the product, Adding
the product to cart for further purchase, Adding the product to wishlist, Viewing
the cart to proceed for payment, Editing the quantity of selected product, Delet-
ing the product from cart, Confirming or Cancelling the order, Making order.

Figure 9. Use case model for Amazon.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 115 Journal of Software Engineering and Applications

5.4.2. Activity Model for Amazon
The flow of activities of Amazon Service is presented in the activity diagram as
shown in Figure 10. The customer logs into the Amazon website with his Email
Id and password. When the home screen is displayed, the customer selects the
category of the product and searches for the product. Once the customer views
the product features, it is either added to the cart or the wish list. The customer
can also edit the item in the cart by changing the quantity of the product or de-
lete the item in it. The product is placed for order by providing the delivery ad-
dress and other required details. There are various ways of payment made for
the product purchase like Credit or Debit Card, Gift card, Cash on Delivery, etc.

5.4.3. Estimation of Response Time Using Activity Point Calculation
For illustration purpose, the ABPP methodology is applied to the activities of the
use case payment. The rates for the technical and environmental factors of the
activities involved in the payment use case are shown in Table 1 and Table 2
respectively. The size of the use cases and the corresponding response time are
estimated using the ABPP approach [6], and the results are tabulated in Table 3.

Table 1. Technical factors for activities involved in payment use case.

Factors Description
Select

payment
mode

Enter card
credentials

Validate
credentials

Process
payment

Generate
bill

Sum

T1 Distributed system 0.5 0.5 2 1 1 5

T2
Response or throughput
performance objectives

1 1 1 1 1 5

T3 End-user efficiency 1 1 0 0 1 3

T4
Complex internal

processing
0.5 0.5 2 1 1 5

T5 Reusable code 0.6 0.6 0.6 0.6 0.6 3

T6 Easy to install 0.6 0.6 0.6 0.6 0.6 3

T7 Easy to use 0.6 0.6 0.6 0.6 0.6 3

T8 Portable 1.5 1.5 0.5 0.5 1 5

T9 Easy to change 0.6 0.6 0.6 0.6 0.6 3

T10 Concurrent 0 1.5 1.5 1 1 5

T11
Includes

security features
1 1 1 1 1 5

T12
Provides access
for third parties

0.5 0.5 2 1 1 5

T13
Special user training
facilities are required

1 1 0 0 0 2

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 116 Journal of Software Engineering and Applications

Figure 10. Activity model for Amazon.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 117 Journal of Software Engineering and Applications

Table 2. Environmental factors for activities involved in payment use case.

Factors Description
Select

payment
mode

Enter card
credentials

Validate
credentials

Process
payment

Generate
bill

Sum

E1
Familiar with Rational

Unified Process
0.6 0.6 0.6 0.6 0.6 3

E2 Application experience 0.6 0.6 0.6 0.6 0.6 3

E3 Object-oriented experience 0.6 0.6 0.6 0.6 0.6 3

E4 Lead analyst capability 0.4 0.4 0.4 0.4 0.4 2

E5 Motivation 0.6 0.6 0.6 0.6 0.6 3

E6 Stable requirements 0.6 0.6 0.6 0.6 0.6 3

E7 Part – time workers 0 0 0 0 0 0

E8
Difficult

programming language
0.6 0.6 0.6 0.6 0.6 3

Table 3. Size and response time of use cases.

Amazon Service

Use Case Size (KB) Response Time (Sec)

Wish list 97.2228 0.5716233

Search for an item 90.65022 0.675812

Online payment 85.18046 0.944773

Login 76.87286 0.463656

Shopping cart 72.9651 0.456658

Confirm purchase 61.5171 0.096425

Remove item from cart 59.05578 0.386392

View Item 58.27581 0.501496

Add to shopping cart 42.65231 0.33254

The overhead matrix representing the resource usage used for the calculation of
the response time is given in Table 4. If we consider Amazon as a web applica-
tion, the request will be given by a human user and the authentication is done by
the user. In case, the request is received by Amazon from another program or
website, the user is a program, and the authentication is verified for that pro-
gram and the communication between both the programs is done through Ap-
plication Programming Interface (API).

From Table 3, it can be observed that the response time of the use cases is not
proportional to the size, and that is due to the varying processing speed of the
hardware resources.

5.4.4. Simulation Results
The behaviour of the hardware resources is to be analyzed so that the hindrances
to achieving the performance goal can be identified. Simulating the environment

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 118 Journal of Software Engineering and Applications

Table 4. Overhead matrix/processing speed of the hardware resources.

Devices CPU Disk INet Delay LAN

Service Units Sec Phys I/O KBytes Sec Msgs

Input 0.00006 1

DBAccess 0.00005 0.025 1

LocalDB 0.0001 2

Pagesz 0.00005 1

Datasz 0.00005 1 1

Service Time 1 0.0003 0.00174 1 0.00008

helps to identify the bottleneck resources. Hence, the simulation is carried out
using the simulation tool, SMTQA to obtain the performance metrics taking into
consideration the overhead matrix given in Table 4 [40]. The five parameters of
SPE approach, namely performance goal, workload specification, software ex-
ecution structure, execution environment, and resource usage are supported by
the tool. The tool helps to generate the arrival rate of the requests using the
probability distribution. It also facilitates to get the size of activities to be ex-
ecuted by the user as the workload for the system which is one of the five para-
meters of the SPE approach. As a further simplification, the activities involved in
the Login use case are considered for simulation. The size of the activities that
are given in Table 3 is used as the input workload for the simulation. The arrival
rate of the requests is considered as 0.05 following an exponential distribution.
The flow of activities can be given in the tool to specify the software execution
structure. The performance metrics obtained in the simulation are presented in
Table 5. The observations that are made from the values of the performance
metrics are:
 The average waiting time and the probability of the dropping of sessions on

the internet are 0.005 seconds and 0.007 respectively.
 The average waiting time and the probability of dropping of sessions in

dbdisk are 0.023 seconds and 0.155 seconds respectively.
 It is due to the low processing speed of Internet and dbdisk. As a conse-

quence of dropping more requests in dbdisk, the robability of idle for other
hardware resources are closer to 1.

5.4.5. Sensitivity Analysis
To identify the behavior of the hardware resources, sensitivity analysis is carried
out. To improve the performance of the dbcpu, its processing speed is increased
to 50 access/sec. The improved results are given in Table 6. The average re-
sponse time is reduced from 0.099 to 0.071. Moreover, the dropping of sessions
also is reduced from 0.155 to 0.059.

To identify the impact of the arrival rate of the requests, the performance me-
trics are obtained by changing the arrival rate as 0.01 following an exponential
distribution. The obtained performance metrics are tabulated in Table 7. Due to

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 119 Journal of Software Engineering and Applications

Table 5. Performance metrics of Internet speed 575 KBps with Arrival distribution is 0.05; dbdisk is 40.

S. No Layer name
Arrival

distribution
Processing

speed
Average

Response time
Average

Service Time
Average

waiting Time
Probability of

Idle server
Probability of

dropping sessions

1 Client 0.05 17000 0.001 0.001 0.000 0.988 0.000

2 Internet 575 0.026 0.021 0.005 0.661 0.007

3 WS-wscpu 20000 0.001 0.001 0.000 0.991 0.000

4 WS-wsdbcpu 10000 0.001 0.001 0.000 0.991 0.000

5 WS-wsdbdisk 3333 0.001 0.001 0.000 0.996 0.000

6 LAN 12500 0.001 0.001 0.000 0.995 0.000

7 Database-Dbcpu 20000 0.000 0.000 0.000 0.994 0.000

8 dbdisk 40 0.099 0.077 0.023 0.457 0.155

Table 6. Performance metrics of Internet speed 575 KBps with Arrival distribution is 0.05; dbdisk is 50.

S. No. Layer name
Arrival

distribution
Processing

speed
Average

Response time
Average

Service Time
Average

waiting Time
Probability

of Idle server
Probability of

dropping sessions

1 Client 0.05 17,000 0.001 0.001 0.000 0.991 0.000

2 Internet 575 0.023 0.020 0.003 0.746 0.000

3 WS-wscpu 20,000 0.001 0.001 0.000 0.993 0.000

4 WS-wsdbcpu 10,000 0.001 0.001 0.000 0.995 0.000

5 WS-wsdbdisk 3333 0.001 0.001 0.000 0.997 0.000

6 LAN 12,500 0.467 0.001 0.466 0.996 0.426

7 Database-Dbcpu 20,000 0.000 0.000 0.000 0.995 0.000

8 Dbdisk 50 0.071 0.060 0.011 0.616 0.059

Table 7. Performance metrics of Internet speed 575 KBps with Arrival distribution is 0.01; dbdisk is 40.

S. No Layer name
Arrival

distribution
Processing

speed
Average

Response time
Average

Service Time
Average

waiting Time
Probability

of Idle server
Probability of

dropping sessions

1 Client 0.01 17,000 0.001 0.001 0.000 0.962 0.000

2 Internet 575 0.042 0.020 0.021 0.085 0.261

3 WS-wscpu 20,000 0.001 0.001 0.000 0.971 0.000

4 WS-wsdbcpu 10,000 0.001 0.001 0.000 0.978 0.000

5 WS-wsdbdisk 3333 0.001 0.001 0.000 0.988 0.000

6 LAN 12,500 0.121 0.001 0.120 0.984 0.247

7 Database-Dbcpu 20,000 0.000 0.000 0.000 0.974 0.000

8 Dbdisk 40 0.132 0.078 0.054 0.011 0.669

the increase in the arrival rate, there is an increase in the response time of
internet (0.042 secs) and also the dropping of sessions. Similarly, the dropping of
sessions in LAN and dbdisk is high compared to the corresponding results while
arrival rate is 0.05.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 120 Journal of Software Engineering and Applications

The results are observed by changing the processing speed of dbdisk and pre-
sented in Table 8. From the results, we can observe that the probability of drop-
ping of sessions in dbdisk, LAN, and the internet is reduced compared to the
earlier configuration. But still, it is 0.606 in the case of dbdisk, i.e., the higher
value. This might be the consequence of high processing speed of dbcpu where
the average response time is 0, and the probability of idle server is 0.975. Hence,
we have decided to reduce the processing speed of dbcpu and increase the speed
of dbdisk. The obtained performance matrix for the updated configuration is
presented in Table 9. The probability of sessions in dbdisk is reduced. However,
it still is 0.563, and as a result, the probability of dropping sessions on the Inter-
net is increased to 0.338. Hence, the processing speed of both the hardware re-
sources is improved, and the results are given in Table 10.

The graphs generated for the performance metrics tabulated in Table 10 are
presented in figures, from Figures 11-15. From Figure 11, it is observed that the
response time of Client CPU is gradually increasing up to the arrival rate of 50
and after that, it is fluctuating. The response time of Internet as given in Figure
12 increases gradually up to arrival rate of 50 and fluctuating up to 75, and up-
ward of that, it remains constant.

Table 8. Performance metrics of internet speed 575 KBps with arrival distribution is 0.01; dbdisk is 50.

S. No Layer name
Arrival

distribution
Processing

speed
Average

Response time
Average

Service Time
Average

waiting Time
Probability of

Idle server
Probability of

dropping sessions

1 Client 0.01 17,000 0.001 0.001 0.000 0.963 0.000

2 Internet 575 0.041 0.020 0.020 0.106 0.240

3 WS-wscpu 20,000 0.001 0.001 0.000 0.972 0.000

4 WS-wsdbcpu 10,000 0.001 0.001 0.000 0.978 0.000

5 WS-wsdbdisk 3333 0.001 0.001 0.000 0.989 0.000

6 LAN 12,500 0.134 0.001 0.133 0.985 0.379

7 Database-Dbcpu 20,000 0.000 0.000 0.000 0.975 0.000

8 Dbdisk 50 0.094 0.058 0.036 0.044 0.606

Table 9. Performance metrics of internet speed 575 KBps with arrival distribution is 0.01; dbdisk is 50, dbcpu 15,000.

S. No Layer name
Arrival

distribution
Processing

speed
Average

Response time
Average

Service Time
Average

waiting Time
Probability

of Idle server
Probability of

dropping sessions

1 Client 0.01 17,000 0.001 0.001 0.000 0.959 0.000

2 Internet 575 0.046 0.021 0.025 0.056 0.338

3 WS-wscpu 20,000 0.001 0.001 0.000 0.968 0.000

4 WS-wsdbcpu 10000 0.001 0.001 0.000 0.966 0.000

5 WS-wsdbdisk 3333 0.001 0.001 0.000 0.982 0.000

6 LAN 12,500 0.001 0.001 0.000 0.973 0.000

7 Database-Dbcpu 15,000 0.001 0.001 0.000 0.975 0.000

8 dbdisk 50 0.093 0.058 0.035 0.082 0.563

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 121 Journal of Software Engineering and Applications

Table 10. Performance metrics of internet speed 675 KBps with arrival distribution is 0.01; dbdisk is 75, dbcpu 15,000.

S. No. Layer name
Arrival

distribution
Processing

speed
Average

Response time
Average

Service Time
Average

waiting Time
Probability

of Idle server
Probability of

dropping sessions

1 Client 0.01 17,000 0.001 0.001 0.000 0.958 0.000

2 Internet 675 0.036 0.018 0.017 0.110 0.260

3 WS-wscpu 20,000 0.001 0.001 0.000 0.966 0.000

4 WS-wsdbcpu 10,000 0.001 0.001 0.000 0.966 0.000

5 WS-wsdbdisk 3333 0.001 0.001 0.000 0.982 0.000

6 LAN 12,500 0.001 0.001 0.000 0.984 0.000

7 Database-Dbcpu 15,000 0.001 0.001 0.000 0.967 0.000

8 dbdisk 75 0.062 0.040 0.022 0.104 0.439

Figure 11. Client CPU-average response time vs. arrival time.

Figure 12. Internet-average response time vs. arrival time.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 122 Journal of Software Engineering and Applications

Figure 13. WScpu-average response time vs. Arrival time.

Figure 14. WSdbcpu-average response time vs. arrival time.

Figure 15. WSdbdisk-average response time vs. arrival time.

https://doi.org/10.4236/jsea.2019.125008

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 123 Journal of Software Engineering and Applications

But, the response time of WScpu observed in Figure 13 gradually reduces up
to the arrival rate of 50 and then it starts fluctuating, higher than the initial re-
sponse time. This is a consequence of low processing speed of the Internet. It is
interesting to note that similar behaviour can be observed in WSdbcpu, which is
presented in Figure 14. Figure 15 shows that the response time is constant
throughout the simulation.

6. Conclusion

Developing graphical user interface as a prototype is an industry practice. Most
of the performance prediction methodologies use UML models as performance
models. Hence, in this paper, we have presented a mechanism to transform the
user interface into UML activity models using workspaces. The approach is illu-
strated with the Amazon web service prototype model. The response time of ac-
tivities is estimated using the ABPP approach. Moreover, performance models
are obtained by simulation using SMTQA and simulation is carried out to obtain
the performance metrics, average response time, average waiting time, the
probability of idle server and probability of dropping of sessions. The sensitivity
analysis is carried out to identify the suitable configuration for capacity plan-
ning.

Significance Statement

This paper presents a methodology to transform the user interfaces to activity
models using workflows and functional elements and to improve the perfor-
mance in higher utilization of the behaviour of WA/WS. This approach gives a
new support who wants to assess the performance from the given User interface.

Acknowledgements

I wish to express my heartfelt and deep debt of gratitude to my dissertation ad-
visor, Prof. Dr. T V Suresh Kumar and Dr. D. Evangelin Geetha, Ramaiah Insti-
tute of Technology, for devoting their precious time and knowledge throughout
this work. They gave me excellent professional guidance and valuable advice on
the subject matter of my work. Also I would like to extend my sincere thanks to
MR. R.V. Raghavendra Rao for his effort to this work.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References

[1] Ferris, C. and Farrell, J.A. (2001) What Are Web Services? Communications of the
ACM, 46, 31. https://doi.org/10.1145/777313.777335

[2] Kang, G., Liu, J., Tang, M. and Cao, B. (2015) An Effective Web Service Ranking
Method via Exploring User Behavior. IEEE Transactions on Network and Service

https://doi.org/10.4236/jsea.2019.125008
https://doi.org/10.1145/777313.777335

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 124 Journal of Software Engineering and Applications

Management, 12, 554-564. https://doi.org/10.1109/TNSM.2015.2499265

[3] Liu, X. and Fulia, I. (2015) Incorporating User, Topic, and Service Related Latent
Factors into Web Service Recommendation. 2015 IEEE International Conference on
Web Services, New York, 27 June-2 July 2015, 185-192.
https://doi.org/10.1109/ICWS.2015.34

[4] Badr, Y., Abraham, A., Biennier, F. and Grosan, C. (2008) Enhancing Web Service
Selection by User Preferences of Non-Functional Features. 4th International Con-
ference on Next Generation Web Services Practices, Seoul, 20-22 October 2008,
60-65. https://doi.org/10.1109/NWeSP.2008.39

[5] Arlow, J. and Neustadt, I. (2005) UML 2 and the Unified Process. 2nd Edition, Ad-
dison-Wesley, Boston, MA.

[6] Reddy, C.R.M., Evangelin Geetha, D., Kumar, T.V.S. and Rajani Kanth, K. (2015)
Activity Based Performance Prediction for Software Systems. Technical Report,
Department of Computer Applications, M. S. Ramaiah Institute of Technology,
Bangalore.

[7] Collins, D. (1995) Designing Object-Oriented User Interfaces. Benjamin/Cummings
Publishing Company, Redwood City, CA.

[8] Farooq, M.U. and Dominick, W.D. (1998) A Survey of Formal Tools and Models
for Developing User Interfaces. International Journal of Man-Machine Studies, 29,
479-496. https://doi.org/10.1016/S0020-7373(88)80007-5

[9] Guindon, R. (1990) Designing the Design Process: Exploiting Opportunistic
Thoughts. Human-Computer Interaction, 5, 305-344.
https://doi.org/10.1207/s15327051hci0502&3_6

[10] Kemp, E.A. and Phillips, C.H.E. (1998) Extending Support for User Interface De-
sign in Object-Oriented Software Engineering Methods. Proceedings of HCI’98,
Sheffield, September 1998, 96-97.

[11] Smith, C.U. and Williams, L.G. (1993) Software Performance Engineering: A Case
Study Including Performance Comparison with Design Alternatives. IEEE Transac-
tions on Software Engineering, 19, 720-741.
https://doi.org/10.1109/32.238572

[12] Smith, C.U. and Williams, L.G. (2000) Building Responsive and Scalable Web Ap-
plications. Research Report, Software Engineering Research and L&S Computer
Technology, Inc.

[13] Catley, C., Petriu, D.C. and Frize, M. (2004) Software Performance Engineering of a
Web Service-Based Clinical Decision Support Infrastructure. In: Proceedings of the
4th International Workshop on Software and Performance, ACM, New York,
130-138.

[14] Geetha, D.E., Reddy, C.R.M., Kumar, T.V.S. and Kanth, K.R. (2007) Performance
Modeling and Evaluation of e-Commerce Systems Using UML 2.0. 8th ACIS Inter-
national Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing, Qingdao, 30 July-1 August 2007, 1135-1140.
https://doi.org/10.1109/SNPD.2007.535

[15] Phillips, C., Kemp, E. and Kek, S.M. (2001) Extending UML Use Case Modelling to
Support Graphical User Interface Design. Proceedings 2001 Australian Software
Engineering Conference, Canberra, 27-28 August 2001, 48-57.
https://doi.org/10.1109/ASWEC.2001.948497

[16] White, S., Cantor, M., Friedenthal, S. and Kobryn, C. (2003) Extending UML from
Software to Systems Engineering. Proceedings of the 10th IEEE International Con-
ference and Workshop on the Engineering of Computer-Based Systems, Huntsville,

https://doi.org/10.4236/jsea.2019.125008
https://doi.org/10.1109/TNSM.2015.2499265
https://doi.org/10.1109/ICWS.2015.34
https://doi.org/10.1109/NWeSP.2008.39
https://doi.org/10.1016/S0020-7373(88)80007-5
https://doi.org/10.1207/s15327051hci0502&3_6
https://doi.org/10.1109/32.238572
https://doi.org/10.1109/SNPD.2007.535
https://doi.org/10.1109/ASWEC.2001.948497

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 125 Journal of Software Engineering and Applications

AL, 7-10 April 2003, 1-3.

[17] Lladó, C.M., Puigjaner, R. and Smith, C.U. (2005) A Performance Model Web Ser-
vice.

[18] Reddy, C.R.M., Rao, R.V.R., Geetha, D.E., Kumar, T.V.S. and Kanth, K.R. (2014)
Survey on UML Based Modeling for Web Services. NCSE’14 Conference Proceed-
ings. International Journal of Engineering Research & Technology, 57-65.

[19] Bolloju, N. and Sun, S.X.Y. (2012) Benefits of Supplementing Use Case Narratives
with Activity Diagrams—An Exploratory Study. Journal of Systems and Software,
85, 2182-2191. https://doi.org/10.1016/j.jss.2012.04.076

[20] Lai, C.-Y., Shih, D.-H., Chiang, H.-S. and Chen, C.-C. (2010) A Study of Informa-
tion Systems Model for Activity Diagram Analysis. Recent Advances in Business
Administration, 104-109.

[21] Han, M. and Park, P. (2009) A Study of Interface Design for Widgets in Web Ser-
vices through Usability Evaluation. In: Proceedings of the 2nd International Confe-
rence on Interaction Sciences: Information Technology and Human Culture, ACM
Digital Library, New York, 1013-1018. https://doi.org/10.1145/1655925.1656109

[22] Petriu, D. and Woodside, M. (2002) Analysing Software Requirements Specifica-
tions for Performance. In: Proceedings of the 3rd International Workshop on Soft-
ware and Performance, ACM Digital Library, New York, 1-9.
https://doi.org/10.1145/584370.584371

[23] Gajos, K.Z., Everitt, K., Tan, D.S., Czerwinski, M. and Weld, D.S. (2008) Predicta-
bility and Accuracy in Adaptive User Interfaces. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM Digital Library, New
York, 1271-1274. https://doi.org/10.1145/1357054.1357252

[24] Bharathi, B. and Kulanthaivel, G. (2011) Towards Developing a Performance Eva-
luator for Component Based Software Architectures. Indian Journal of Computer
Science and Engineering, 2, 136-142.

[25] Kovacevic, S. (1999) UML and User Interface Modeling. In: Bézivin, J. and Muller,
P.A., Eds., The Unified Modeling Language. UML’98: Beyond the Notation. UML
1998. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-48480-6_20

[26] Tick, J. (2005) Software User Interface Modelling with UML Support. 3rd Interna-
tional Conference on Computational Cybernetics, 2005. Mauritius, 13-16 April
2005, 325-328.

[27] Elberkawi, E.K. and Elammari, M.M. (2015) Producing Graphical User Interface
from Activity Diagrams. International Journal of Computer and Information Engi-
neering, 9, 667-672.

[28] Shatnawi, A. and Shatnawi, R. (2016) Generating a Language-Independent Graphi-
cal User Interfaces from UML Models. The International Arab Journal of Informa-
tion Technology, 13, 291-296.

[29] Cortellessa, V. and Mirandola, R. (2000) Deriving a Queueing Network Based Per-
formance Model from UML Diagrams. In: Proceedings of the 2nd International
Workshop on Software and Performance, ACM Digital Library, New York, 58-70.
https://doi.org/10.1145/350391.350406

[30] Alsaadi, A. (2004) A Performance Analysis Approach Based on the UML Class Dia-
gram. In: Proceedings of the 4th International Workshop on Software and Perfor-
mance, ACM Digital Library, New York, 254-260.
https://doi.org/10.1145/974044.974084

https://doi.org/10.4236/jsea.2019.125008
https://doi.org/10.1016/j.jss.2012.04.076
https://doi.org/10.1145/1655925.1656109
https://doi.org/10.1145/584370.584371
https://doi.org/10.1145/1357054.1357252
https://doi.org/10.1007/978-3-540-48480-6_20
https://doi.org/10.1145/350391.350406
https://doi.org/10.1145/974044.974084

Ch. Ram Mohan Reddy et al.

DOI: 10.4236/jsea.2019.125008 126 Journal of Software Engineering and Applications

[31] Youn, H., Jang, S. and Lee, E. (2007) Deriving Queuing Network Model for UML
for Software Performance Prediction. 5th International Conference on Software
Engineering Research, Management and Applications, Busan, 20-22 August 2007,
125-131. https://doi.org/10.1109/SERA.2007.70

[32] Jasmine, K.S. and Vasantha, R. (2009) Derivation of UML Based Performance Mod-
els for Design Assessment in a Reuse Based Software Development Approach.
Anale: Seria Informatică, 7,163-180.

[33] Becker, S., Koziolek, H. and Reussner, R. (2009) The Palladio Component Model for
Model-Driven Performance Prediction. Journal of Systems and Software, 82, 3-22.
https://doi.org/10.1016/j.jss.2008.03.066

[34] Jagannatha, S., Vijaya, S. and Reddy, P. (2012) Simulation and Analysis of Perfor-
mance Prediction in Distributed Database Design Using OO Approach. 2013 3rd
IEEE International Advance Computing Conference, Ghaziabad, 22-23 February
2013, 1324-1329. https://doi.org/10.1109/IAdCC.2013.6514420

[35] Reddy, C.R.M., Geetha, D.E., Srinivasa, K.G., Kumar, T.V.S. and Kanth, K.R. (2011)
Prototype Based Performance Prediction of Web Services. In: Nagamalai, D., Re-
nault, E. and Dhanuskodi, M., Eds., Advances in Digital Image Processing and In-
formation Technology. Communications in Computer and Information Science,
Springer, Berlin, Heidelberg, 346-354.
https://doi.org/10.1007/978-3-642-24055-3_35

[36] Geetha, D.E., Kumar, T.V.S., Singh, M.P. and Kanth, K.R. (2014) Simulation of
Multi-Tier Queuing Applications. Technical Report. Department of Computer Ap-
plications, M. S. Ramaiah Institute of Technology, Bangalore.

[37] Guruge, A. (2004) Web Services: Theory and Practice. Digital Press.

[38] Reddy, C.R.M., Geetha, D.E., Srinivasa, K.G., Kumar, T.V.S. and Kanth, K.R. (2011)
Early Performance Prediction of Web Services. International Journal on Web Ser-
vice Computing, 2, 31-41. https://doi.org/10.5121/ijwsc.2011.2303

[39] Unified Modeling Language (2015) http://www.uml.org/

[40] Evangelin, G.D., Kumar, T.V.S. and Kanth, K.R. (2011) Predicting the Software
Performance during Feasibility Study. IET Software, 5, 201-215.
https://doi.org/10.1049/iet-sen.2010.0075

https://doi.org/10.4236/jsea.2019.125008
https://doi.org/10.1109/SERA.2007.70
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1109/IAdCC.2013.6514420
https://doi.org/10.1007/978-3-642-24055-3_35
https://doi.org/10.5121/ijwsc.2011.2303
http://www.uml.org/
https://doi.org/10.1049/iet-sen.2010.0075

	Transformation of User Interface to Activity Models and Assessing Performance of WA/WS
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Concepts and Methodology
	3.1. Basic Concepts
	3.2. Methodology

	4. Algorithm
	5. Experimental Study
	5.1. Prototype of Amazon Service
	5.2. Identification of UI Elements for Login
	5.3. Developing the Flow Diagram
	5.3.1. Main Flow
	5.3.2. Sub Flows
	5.3.3. Exception Flow
	5.3.4. Generation of Activity Model
	5.3.5. Use Case Diagram

	5.4. Performance Prediction for Amazon Service
	5.4.1. Use Case Model for Amazon
	5.4.2. Activity Model for Amazon
	5.4.3. Estimation of Response Time Using Activity Point Calculation
	5.4.4. Simulation Results
	5.4.5. Sensitivity Analysis

	6. Conclusion
	Significance Statement
	Acknowledgements
	Conflicts of Interest
	References

