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Abstract

The Agricultural Policy/Environmental eXtender (APEX) model has five dif-
ferent interfaces used to process and build simulation projects. These inter-
faces utilize different input databases that lead to different model default val-
ues. These values can result in different hydrologic, crop growth, and nutrient
flow model outputs. This study compared structural and input value differ-
ences of the ArcAPEX and Nutrient Tracking Tool (NTT) interfaces. Long-term,
water quality data from the Rock Creek watershed, located in Ohio were used
to determine the impact of the differences on computation time, parameter
sensitivity, and streamflow, total nitrogen (TN), and total phosphorus (TP)
simulation performance. The input structures were the same for both inter-
faces for all files except soils, where NTT assigns three soil files per field, ra-
ther than a single one in ArcAPEX. As a result, computation times were three
times as long for NTT as for ArcAPEX. There were twelve sensitive parame-
ters in both cases, but the order of sensitivity was different. Both interfaces
simulated streamflow well, but ARCAPEX simulated evapotranspiration, TN,
and TP better than NTT, while NTT simulated crop yields better than ArcA-
PEX. However, none of the models met all of the performance criteria for ei-
ther interface. Therefore, more work is needed to ensure models are properly
calibrated before being used for scenario analysis. While it is acceptable for
the values to be different from the SSURGO database, there is no documenta-
tion explaining the rationale for the modifications from the original source.
This is one of the examples that highlights lack of detailed documentation
that would be useful to model users. Overall, the results indicate that different
interfaces lead to different model simulation results and, therefore, the au-
thors recommend users specify the interface used and any modifications
made to the associated databases when reporting model results.
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1. Introduction

Nutrient transport to water ways is of great concern to proper land management
[1] [2]. Fertilizer application, usually a combination of nitrogen, phosphorus,
and potassium, is one of the important inputs in crop production [3]. However,
when nitrogen is overapplied or when the nitrogen use efficiency of a crop is
low, the excess of nitrogen is transported to waterbodies or leached into
groundwater, which can have far-reaching effects [1]. The effects include pollu-
tion such as water contamination and eutrophication of downstream sites, and
nitrogen loss from the field and hence reduced nitrogen use efficiency of crop,
and increased fertilizer costs to farmers [1] [4] [5]. Hydrologic and water quality
models such as the Soil and Water Assessment Tool (SWAT) [6] and the Agri-
cultural Policy/Environmental eXtender (APEX) [7] have been widely used to
quantify the impacts of various management systems on water resources [8] [9]
[10] [11] [12].

There are many studies comparing the impact of models [[12] [13], etc.], soil
[[13] [14] [15] [16] [17], etc.] and weather [[17] [18], etc.] data sources, evapo-
transpiration (ET) calculation methods [19], and digital elevation model (DEM)
resolutions [[20] [21], etc.] on model outputs, performance, and scenario results.
However, based on the literature review, there are no studies that report the im-
pact of the interfaces used to build models on model outputs and performance.
Interfaces developed for hydrologic and water quality models are mainly used to
pre-process data and create model input files for simulations [22] [23] [24].
However, different interfaces utilize different databases to derive model input.
This can result in different default parameter values, which can lead to a differ-
ent set of simulated outputs, conclusions, and recommendations. Model users
choose an interface based on accessibility and ease of use and could benefit from
a study that determines the potential impacts of the selected interface on model
outcomes.

Models and interfaces utilize regional or national DEM, soils, and crop data-
bases in order to provide default model input values for a given study area. Many
studies present the advantages, disadvantages, and best methods of using data-
bases in modeling [14] [15] [25] [26]. Some of these databases, such as soils and
crop, may be modified by the model and interface developers based on the struc-
ture and possible quality assurance/quality control procedures. Although the de-
velopers give the users the option to modify the inputs, in most cases, model users
don’t have measured data, especially at the watershed scale, to adjust the default

parameter values. Therefore, many studies use the default values obtained from
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these databases without modification [19] [21] [26] [27] [28] [29] [30].

The APEX [7] [8] model is a watershed simulation model used to assess the
impact of land management practices on water flow, sediment, and nutrients.
APEX is a direct extension of Environmental Policy Integrated Climate Model
(EPIC) [31]. There are five different interfaces used to process and build APEX
model projects, including ArcAPEX [32], iAPEX [33], WinAPEX [34], APEX for
Linux (https://epicapex.tamu.edu/model-executables/), and the Nutrient Track-
ing Tool (NTT) [35] [36]. Each of these interfaces have been used for different
applications [15] [20] [29]. Monks ef al. [15] used WinAPEX to compare the ef-

fects of different soil datasets on streamflow, surface runoff, and crop yields in

Washington state, while Nelson ef a/. used ArcAPEX to build projects to com-
pare the effect of the length of calibration period on hydrologic outputs [28] and
examining the need for soft data in the calibration process [29]. Tadesse et al
[19] used NTT to compare the different evapotranspiration (ET) formulas availa-
ble within the APEX model. One of the major structural differences between
NTT and ArcAPEX interfaces is that ArcAPEX uses only the predominant soil
for each subarea [37], while NTT assigns a maximum of three soils for every
subarea, representing the most predominant soils in the area of interest [38].
Because model computation time takes place at the subarea level, this implies
that a model built using NTT will require as much as three times the computa-
tion time to complete as one built by the ArcAPEX interface. However, one
would hypothesize that although a model built using NTT requires more com-
putation time, it should result in more realistic model outcomes because three
soils for each subarea capture the variability better relative to the single soil used
in ArcAPEX. However, none of the reported APEX literature presents the im-
pact of the interface used on model outcomes. Therefore, the objectives of this
study were to: 1) compare structure and input values of the ArcAPEX and NTT
interfaces, and 2) determine the impact of the differences on simulated hydrolo-
gy and water quality outputs, computation time, parameter sensitivity, and cali-

bration performance.

2. Methods

2.1. Interface Input Structure

ArcAPEX is an ArcGIS-based user interface that incorporates soil data, topo-
graphic, land use, and a built-in APEX-Parameters database to simulate hydro-
logic and agricultural processes over a field to basin scale drainage area [32]. The
NTT interface was developed to enable assessment of impacts of management
practices and to facilitate water quality trading. It is a web-based interface with
linkage to the APEX model [35].

The main APEX input files are CONTROL, PARM, Soils, and several man-
agement files (for operations, fertilizer, grazing, etc.). CONTROL and PARM
files contain global parameters, meaning that these parameters are general and

contain many coefficients used in different equations and the miscellaneous pa-
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rameters used. The values of these parameters can be adjusted based on the
crops, soils, and management practices representing the farming systems found
in different regions of US [35] [38]. While the ArcAPEX and NTT interfaces
utilize similar input files, there is a major structural difference with respect to the
soil databases. Differences in soil databases include how soil properties are orga-
nized by layers for APEX and, more significantly, the number of soils for each
subarea/or area of interest. In ArcAPEX, only the predominant soil is used for
each subarea [37]. A dominant soil is assigned to each subarea from the list of
soils in the study area (listed in the SOILCOM.DAT file). A file named file-
name.sol is used to describe each soil. The NTT interface allows users to verify,
modify or delete soils copied from the SSURGO soil database and add or edit
layers for the particular field selected in the field’s page. The NTT assigns a
maximum of three soils for every subarea, representing the most predominant

soils in the area of interest [38].

2.2. Interface Input Values

The values of the parameters in the Control, Parameter, and Soil files for the re-
spective interfaces were determined after the model was built (see details below).

Model building includes study area description, data sources, and model setup.

2.2.1. Study Area

Nelson et al [29] provide a detailed description of the study area; thus only a
summary is provided here. Rock Creek, located in northern Ohio, is a third or-
der tributary of the Sandusky River (Figure 1), which flows north through the
middle of Seneca County and drains into Lake Erie through Sandusky Bay [39]
[40] [41].

Rock Creek study area and subbasins

Ohio, United States N

ua P,
BN

—Reach
LongestPath
0 2 4 8Km [ ISubbasin

[ ] Seneca

Figure 1. APEX-defined subareas for Rock Creek watershed in northern Ohio.
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Rock Creek watershed is approximately 7500 ha and has nineteen identified
soil series, primarily from the Blount-Pewamo-Glynwood soil group [42]. These
soils are moderately well drained to very poorly drained, and are located on
slopes of 0% - 7%. Tile drainage occurs in ~90% of the agricultural fields, pri-
marily in areas with 3% or less slope. The depth of tile drainage is approximately
0.9 m [43].

Seneca County’s climate is typical of the temperate mid-continent region.
Rock Creek watershed is comprised of about 82% agricultural land, 13% forest
land, and 6% urban land. Of the croplands, 50% are soybean, 30% are corn, and
20% are wheat [42]. Corn-soybean and corn-soybean-wheat are the most com-

mon crop rotations.

2.2.2. Data Sources

Three GIS data layers are required for the APEX model: digital elevation model
(DEM), soils, and land use data. Sub-area parameters such as slope and slope
length were calculated using a 30-m DEM obtained from the USGS

(http://viewer.nationalmap.gov/launch/). The same DEM was used to define the

stream network. The parameters required for simulating streamflow, as well as
performing sediment yield using the MUSLE soil erodibility K factor, were pa-
rameterized within each interface using the Soil Survey Geographic (SSURGO;

http://websoilsurvey.nrcs.usda.gov). Streamflow simulation required soil chemi-

cal, physical, and hydraulic model inputs, including maximum rooting depth,
soil hydrologic group, moist bulk density, soil profile depth, saturated hydraulic
conductivity, available water capacity of the soil layer, and soil texture data (%
clay, sand, silt, and rock fragment content) (Figure 2). Surveys and reports on

the study area were used to obtain land use and land cover information as well as

Soil classes in Rock Creek
study area

o

Figure 2. SSURGO soil map for rock creek, Ohio.
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general land management data, including tillage types and dates, planting, ferti-
lization, and harvests for most fields [unpublished data, Heidelberg University;
[28] [29]]. Daily weather data (e.g. minimum and maximum temperature, and
rainfall) were obtained from the PRISM Climate Group, Oregon State University
[44].

The USGS monitors water quality at the outlet of Rock Creek, 0.8 km (0.5 mi)
from the confluence with the Sandusky River (USGS station 04197170) as part of
the Heidelberg Tributary Loading Program (HTLP). The station has been in op-
eration since 1982 [45] and is described in detail in Nelson et a/ [28]. Since the
two interfaces calculated slightly different areas for the watershed, the observed
values were adjusted according to each interface’s calculation of watershed area
(7576.54 ha for ArcAPEX and 7560.85 ha for NTT).

The APEX model was constrained with soft data, including the assurance that
simulated values were within 15% of the average annual evapotranspiration (ET)
and tile drainage (QDR) values of 524 mm [46] and 283 mm [43], respectively.
Soft data are information on processes within a budget that may not be directly
measured, including those found in literature, such as annual evapotranspiration
(ET), tile drainage, crop yields, or certain species of nutrients [47]. The annual
average yield + 35% for corn, winter wheat, and soybeans was used to constrain
crop yield data, which were taken from the Ohio Agricultural Statistics 2015
Annual Bulletin and 2009 Ohio Agricultural Statistics reports [48] [49].

2.2.3. Model Setup

The APEX model version 0806 [37] [50] was used in this study. It is important
to note that although the NTT interface states that it uses APEX 0806, the ex-
ecutable has been modified. However, the modifications are not documented.
ArcAPEX and NTT interfaces were each used to build one project. The APEX
project was built (delineated) into subareas along with the corresponding stream
network using ArcAPEX [32]. The subarea, APEX’s smallest modeling unit, is a
function of land use and soil type. An area upstream and contiguous to the out-
let at which the flow measurements were made was delineated using the auto-
matic subarea delineation feature on the DEM. The land use, soils, and slope de-
finition tool was used to define the categories appropriately. Using management
and land use data collected by study area personnel [51] to define the subareas
for creating files resulted in delineation of 29 subareas (Figure 1).

Because NTT cannot currently delineate subareas, the shapefile from the Ar-
cAPEX delineation was used to build an APEX project with the NTT interface
[35] [36]. Data on land use and management practices were populated using the
NTT interface subsequent to delineation and selection of soil and weather data
inputs. Management operations included, but were not limited to, crop type, til-
lage method, planting date, fertilizer type and amount, irrigation type and
amount, harvest date. Operations were the same as those entered in the ArcA-
PEX interface. Subareas were manually routed using the routing scheme adopted
from ArcAPEX.
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The model was run after creation of all subarea files, creating a default model
folder for each interface. The model folder includes all necessary input, control,
and executable files along with the output files. The parameterization process
was then used to edit and update input and control files. The drainage code
(IDR) was set to 900 mm [43] to assign tile drainage to subareas with predomi-
nantly crop coverage and slopes < 3% [52]. The Hargreaves [53] method was
used to estimate ET in both interfaces.

2.3. Model Evaluation

2.3.1. Sensitivity Analysis

Important model parameters for calibration were identified by performing a
global sensitivity analysis (GSA) [54] that used variance-based sensitivity analy-
sis to quantify the contribution of change in model parameters to the change in
model outputs. The GSA also provided a flexible water simulation platform for
incorporating different sets of model parameters. A GSA was implemented using
the APEXSENSUN software [27] which is designed for Monte Carlo-based un-
certainty analysis [55]. Defaults assigned by the respective interfaces were not
altered for parameters that were not being tested for sensitivity.

Forty-two parameters related to nutrients and streamflow (and defined in
[37]) were tested through 20,000 simulations (Ze. 20,000 parameter combina-
tions) for sensitivity. The standardized regression coefficient (SRC) was used as a
GSA metric for streamflow, total phosphorus (TP), and total nitrogen (TN) pre-
dictions in the APEX model. Parameters in which SRC > 0.05 were considered
sensitive. The sensitivity of parameters with an SRC > 0.05 for streamflow, TN,
and TP simulation was determined based on the percentage bias [PBIAS]; [56]
and Nash-Sutcliffe efficiency [NSE]; [57] performance measures. Sensitive pa-
rameters based on either NSE or PBIAS were selected and used during model ca-
libration and validation. The equations for all simulated components are de-
scribed in detail in the APEX model theoretical documentation (30).

2.3.2. Calibration and Model Evaluation

Previous [58] [59] and current literature review found that most studies used
only statistical performance measures to determine adequate calibration and va-
lidation. While Wang et al. [60] recommends that modelers obtain a correct wa-
ter balance that includes all hydrologic components (e.g. surface flow, subsurface
flow, percolation, evapotranspiration) and crop yields, with crop yields as the
absolute minimum criteria level if no measured water quantity data are available,
few of the ensuing peer reviewed papers follow this recommendation rigorously.
According to Nelson et al [29], it is important to utilize the soft data to obtain
realistic simulations of various management practices, thus ensuring one gets the
right answers for the right reasons [61]. In this study, model performance was
assessed using the NSE and PBIAS statistical performance measures calculated
with APEXSENSUN [27]. The criteria thresholds for NSE and PBIAS used in
this study were the same as those used by Nelson ef al [29]. Moriasi et al. [62]
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considered a model to be calibrated for streamflow if the NSE > 0.50 and PBIAS
< +15%, and for N and P if the NSE > 0.35 and PBIAS < +30%. In addition, the
model was constrained during calibration using soft data [47] value ranges for
ET, QDR, and crop yields described earlier. Long-term crop yield ranges (soft
data) used to bound the parameter values for corn, wheat, and soybean were 8.6
ton ha™ +35%, 4.0 ton ha™ +35%, and 2.9 ton ha™ +35%, respectively [48] [49].
The statistical performance measures and the soft data constraints together are
referred to as performance criteria throughout the rest of this paper. Compari-
sons on model simulation performance were made for each individual criterion.
According to Nelson ef al [29], models evaluated on a daily time step did not
meet the selected criteria when simulating daily streamflow. This could be attri-
buted to the precipitation and streamflow measurement cutoff at midnight for
each day and the lag time between a precipitation event and a streamflow surge.
In a study to determine the impact of length of the calibration period on model
performance, Nelson et al. [28] found that the model performed best at an an-
nual temporal scale when using long term (25 years) data to calibrate the model.
This study was performed in the same study area with the same 25 years of
measured data. Therefore, model performance was evaluated at an annual time

step.

3. Results and Discussion

3.1. Impact of Interfaces on Input Values

3.1.1. Soils Input Files
The ArcAPEX interface soil database has four soil types for the study area, which
include Pandora, Galen, Digby, and Blount, while the NTT database has three
soils. These include “Blount silt loam end moraine 0 to 2 percent slopes”,
“Blount silt loam end moraine 2 to 4 percent slopes”, and “Blount silt loam
ground moraine 2 to 4 percent slopes”. ArcAPEX assigns one soil per subarea
and creates one soil file per soil type, whereas NTT builds three soil files for each
subarea, leading to four soil files for ArcAPEX and 87 soil files for NTT. While
both file structures include values for the 19 soil parameters, the ArcAPEX file
includes an additional 23 lines of zeros in its formatting, perhaps due to pro-
gramming. The number of columns beginning at Line 4 indicates the number of
soil layers in each soil type, which show a key difference between the ArcAPEX
and NTT interfaces and the SSURGO database. Three of the four ArcAPEX soil
files had four soil layers, while one type (Pandora) had three. According to the
SSURGO database, Pandora has 3 layers, Galen has 3 layers, Digby has 5 layers,
and Blount has 4 layers. Each of the three NTT soil files had five soil layers.
Table 1 depicts a comparison of the soil input file values derived from the
SSURGO database by ArcAPEX and NTT interfaces, as well as the values from
the SSURGO database. Despite both the ArcAPEX and NTT interfaces stating that
they use the SSURGO database as their source for soils data, neither match all the
values found directly in the SSURGO database. For example, for the organic carbon
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concentration, ArcAPEX ranged from 1.45% to 2.03%, while NTT ranged from
1.16% to 1.45%, and SSURGO ranged from 2% to 3.5%. For texture, NTT used a
sand content of 22% for all three soil types, while ArcAPEX sand content ranged
from 18% for Pandora to 60% for Galen and SSURGO ranged from 9% for Dig-
by to 60% for Galen. While it is acceptable for the values to be different from the
SSURGO database, there is no documentation explaining the rationale for the
modifications from the original source. This is one of the examples that high-
lights lack of detailed documentation that would be useful to model users. Sa-
raswat ef al [63] recommend that “modifications, simplifications, or ‘data clean-
ing procedures used in preparing the input data, including any assumptions
made to acquire or process ... data to make it compatible’ be clearly docu-
mented. Such documentation is essential because these values affect different
processes. For example, soil texture affects infiltration and soil water holding
capacity [64] [65], as well as susceptibility of erosion [66], which in turn, affect
ET, drainage, and nutrients.

Other parameters that affect the hydrologic processes include the soil water
content values at “wilting point” (at 1500 KPa or —15 bars (m/m)) and “field ca-
pacity” (at 33 KPa or —1/3 bars (m/m)). While the SSURGO database has values
for these parameters, both NTT and ArcAPEX provided a zero in their place.
According to the APEX manual, zero is to be entered as a default integer when
the value is unknown [37]. However, the zero entered does not represent a value
of zero. Rather, the model takes the midpoint of the range given in the manual
and utilizes that median as the value in pertinent calculations or functions. For
example, for the soil water content at field capacity, the model will use 0.35, the
median value of the default range of 0.1 - 0.6. The soil water content levels at the
different pressures affect infiltration rates, and therefore calculations of runoff,

drainage, and streamflow.

3.1.2. CONTROL Input Parameters

There are 77 Control input file parameters, most of which are held constant for
all model runs, but only some of them are presented in Table S1. In this study,
only parameters related to the equations used, the processes simulated, and
where the parameter values were different between interfaces are presented. The
notes column in Table S1 provides more information about the parameters.
However, there was no description for some of the parameters either in the ma-
nual [37] or the theoretical documentation [30]. As noted from Table S1, there
are major differences in the default values used by each interface. Parameters
such as Return Flow/(Return Flow + Deep Percolation) (RFPO) and Number of
years of cultivation at start of simulation (RTNO) directly impact hydrologic
processes and nutrient availability. As discussed above, there is no detailed do-

cumentation explaining how these default parameter values were determined.

3.1.3. PARM Input Parameters

There are 98 Parameter (Parm) input file parameters that consist of mainly equ-
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ation coefficients, but only parameters where values were different between in-
terfaces are presented in Table S2. Lines 1 - 30 of the Parameter file consist of
two fields with one S-curve pair per line. Three of these parameters (Aeration
stress—root growth, which affects crop yields and ET values; the snowmelt func-
tion, which affects tile drainage and ET; and the plant water stress factor which
is based on soil water content and affects ET and crop yields) have different val-
ues between NTT and ArcAPEX. Other parameters that may impact on water
availability include: Reduces NRCS runoff CN retention parameter for frozen
soil, Water stress weighting coefficient, Hydrograph development parameter,
Estimates drainage system lateral hydraulic conductivity, Water table recession
coefficient, Limits daily water table movement, Water table recession, Subsurface
flow factor, and Flood evaporation limit parameters. Sediment routing travel
time coefficient and Partitions nitrogen flow from groundwater are examples of
parameters that affect nutrient movement. The two parameters relating to pest
damage (Pest damage moisture threshold and Pest damage cover threshold) may

impact crop yields and ET.

3.2. Impact of Different Input Values

3.2.1. Default Model Simulations

The results of the comparisons between observed and simulated outputs for the
two interfaces are presented in Table 2. The average area was used to compute
the observed values used for comparison. Both ArcAPEX and NTT simulated
streamflow and tile drainage within 30%. However, there were major differences
in simulated ET with ArcAPEX overpredicting ET by 15%, while NTT under-
predicted by 56%. In general, NTT simulated nutrients and crop yields better
than ArcAPEX, with crop yield errors ranging from 13% - 35% for NTT and
37% - 69% for ArcAPEX (Table 2). While NTT simulated total phosphorus bet-
ter than ArcAPEX, it should be noted that the ratios of the components that
form total P (the summation of YP = phosphorus loss in sediment, QP = phos-
phorus loss in surface runoff, QDRP = phosphorus loss in drainage, and QRFP =
phosphorus loss in quick return flow) are vastly different (Table 3). For exam-
ple, 4% of TP comes from tile drainage for NTT and 60% for ArcAPEX. King et
al. [43] reported that tile drainage accounted for 40% of the total P exported
from the watershed.

The differences in simulated total nitrogen could be explained by the soil
properties and the Number of years of cultivation at start of simulation (RTNO)
parameter (Table S1). ArcAPEX has soils listed as hydrologic group B with high
sand content, which have higher infiltration rates than the NTT soils, which are
listed as hydrologic group D with higher clay content (Table 1). This can lead to
higher nitrogen leaching for ArcAPEX soils, which explains the much higher
simulated total nitrogen compared to measured data and NTT simulated values.
The RTNO parameter is set at 150 years for ArcAPEX and 10 for NTT (Table S1).
This parameter affects the partitioning of nitrogen and carbon into the passive and

slow humus pools. The number of years of cultivation before the simulation starts
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Table 2. The average annual values using the default ArcAPEX and NTT parameter val-
ues. Evapotranspiration (ET), Drainage (QDR).

Simulated % difference from the measured mean
Components Measured

ArcAPEX NTT ArcAPEX NTT

Streamflow (mm) 368 318 325 -14 -12
ET (mm) 524 603 233 15 -56

QDR (mm) 283 202 206 -29 =27
Total Nitrogen (kg/ha) 42.9 74.9 27.6 75 -36
Total Phosphorus (kg/ha) 4.8 1.3 2.1 -73 -56

Corn (tn/ha) 8.6 5.4 9.7 -37 13
Wheat (tn/ha) 4.0 1.3 2.6 -69 -35
Soy (tn/ha) 2.9 1.3 2.5 -57 -15

Table 3. Annual averages for total phosphorus (TP) and nitrogen (TN) in kg/ha. YP =
phosphorus loss in sediment, QP = phosphorus loss in surface runoff, QDRP = phospho-
rus loss in drainage, QRFP = phosphorus loss in quick return flow, YN = nitrogen loss in
sediment, QN = nitrogen loss in surface runoff, QDRN = nitrogen loss in drainage,
QREFN = nitrogen loss in quick return flow, RSFN = nitrogen yield in return flow, SSFN =
nitrogen loss in lateral subsurface flow.

Components ArcAPEX % of total NTT % of total
YP 0.20 15.1 1.52 71.4
QP 0.33 254 0.52 24.3

QDRP 0.78 59.5 0.09 4.4
QRFP 0.00 0.0 0.00 0.0
TP 1.30 2.13
YN 1.27 1.7 6.05 21.9
QN 8.72 11.6 12.16 44.0
QDRN 64.70 86.3 9.18 333
QRFN 0.05 0.1 0.01 0.0
RSEN 0.20 0.3 0.20 0.7
SSEN 0.00 0.0 0.00 0.0
TN 74.94 27.59

is used to estimate the fraction of the organic N pool that is mineralizable. Mi-
neralization is more rapid from soil recently in sod. Also increasing the number
of years the field has been in cultivation increases the amount of C and N in the
passive pool. This means it will take longer for the carbon and nitrogen to be-
come available. The increased levels of nitrogen leaching and unavailability of
nitrogen from the organic pool as indicated by the number of years of cultiva-
tion at the start of simulation parameter may be the reason the crop yields are so

much lower in the ArcAPEX simulations.
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The comparison of simulated ET and crop yield results highlight a potential
issue. For NTT to have simulated crop yields better than ArcAPEX while pre-
dicting ET so poorly, and vice versa, indicates that there is a disconnect between
ET and crop yields within the model. In addition, the streamflow, drainage, and
surface runoff were comparable between ArcAPEX and NTT while simulated ET
values were quite different, raising the question of where that missing water in
the water budget is going. These differences in the outputs from the default val-
ues from the two interfaces lead us to provide two recommendations. Model de-
velopers need to take a look at the interactions between water, nitrogen, and
crop growth routines, while model users need to pay attention to the soils and
control parameter values prior to beginning sensitivity analyses and the calibra-

tion process that mainly focuses on the PARM file parameters.

3.2.2. Computation Times

To run the 20,000 model simulations for calibration and sensitivity analysis, the
computation time for the ArcAPEX was just over 6 days, while the NTT inter-
face took just under 17 days (Figure 3). As discussed above, this is attributed to
the utilization of three soil types per hydrologic subunit for NTT, whereas Ar-
cAPEX only assigns one.

3.2.3. Sensitivity Analysis

The rankings of the parameters found to be most sensitive for the two interfaces
using NSE and PBIAS are shown in Table 4. The same 12 parameters were
found to be most sensitive for streamflow, total nitrogen (TN), and total phos-
phorus (TP) for the ArcAPEX and NTT interfaces. The rankings for the Root
growth soil parameter had the same ranking for both the ArcAPEX and NTT
interfaces for streamflow and TP (NSE and PBIAS), and the Soil evapora-
tion-plant cover parameter had the same top ranking for streamflow (NSE and
PBIAS) and third ranking for TN (PBIAS only).

25000

20000

15000

10000

5000 ——NTT —e—ArcAPEX

Number of simulations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Days

Figure 3. Computation times for the ArcAPEX and NTT interfaces for 20,000 runs.
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Table 4. Sensitive parameters and their respective ranking based on PBIAS and NSE performance evaluation measures for the
ArcAPEX and NTT interfaces. APEX PARM file parameter numbers in parentheses [20]. NS = Parameter with <0.05 SRC. Total

nitrogen (TN), total phosphorus (TP).

Microbial decay rate coefficient (70)

Coefficient adjusts microbial activity function in the

top soil layer (69)

N fixation (7)

Nitrate leaching ratio (14)

Rainfall interception coefficient (50)

Root growth-soil strength (2)

parameter (15)

Runoff curve number initial abstraction (20)
RUSLE C-factor coefficient (46)

SCS curve number index coefficient (42)
Soil evaporation—plant cover factor (17)

Soluble phosphorus runoff coefficient (8)

Volatilization/nitrification partitioning coefficient

(72)

Water storage N leaching (4)

ArcAPEX NTT
Streamflow ™ TP Streamflow N TP

NSE PBIAS NSE PBIAS NSE PBIAS NSE PBIAS NSE PBIAS NSE PBIAS

7 4 10 5 7 NS NS NS 6 1 NS 7
3 9 NS 4 NS NS 4 4 5 NS 2
NS NS 5 2 NS NS NS NS 8 NS NS NS
NS NS 1 7 NS NS NS NS 2 2 NS NS
9 NS NS NS 8 6 4 3 NS NS NS 9
2 2 8 6 1 1 2 2 3 NS 1 1
3 NS 7 8 9 NS 5 NS NS NS 2 5
4 5 6 NS 2 3 3 NS 5 4 8 NS
NS NS NS NS 6 4 NS NS NS NS 5 3
6 NS NS NS 3 5 6 NS NS NS 3 4
1 1 3 3 10 NS 1 1 NS 3 4 8
NS NS NS NS 5 2 NS NS NS NS NS 6
NS NS 4 1 NS NS NS NS 7 NS 7 NS
8 NS 2 4 NS NS NS NS 1 NS 6 NS

3.2.4. Model Performance

The number and range of values of simulations that met individual performance
criterion are presented in Table 5. For streamflow and drainage, there was little
difference between ArcAPEX and NTT. However, ArcAPEX had over 12,500
models meet the criteria for ET, while NTT had zero. For corn and soybeans,
NTT had over 16,000 and 14,000 models meet the +35% target, while ArcAPEX
had over 2600 simulations that met the criteria for corn and zero for soybeans.
The ArcAPEX interface had three models that met all of the criteria except those
for the wheat and soy crop yield. For the NTT interface, over 5800 models met
all of the crop yield criteria, but no model met the criteria for ET. For those NTT
simulations that met the nutrient criteria, none met the drainage criteria. This
difference in model performance may lead users to choose an interface based on
the criteria in which they are most interested. However, as can be noted from the
results, none of the simulations from either interface met all of the criteria listed.
These results can be explained by the findings from the comparison of the out-
puts using the default values. Based on those results, it was noted that there is a
disconnect between ET and crop yields within the model. Also, the results of no
NTT model meeting the ET criteria are in line with the results of the default in-

put parameters where there were indications of issues with the water budgets.
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Table 5. The number of models and range of values that met the established performance
model criteria. Evapotranspiration (ET), Drainage (QDR).

ArcAPEX NTT
Target Value # Range # Range
NSE >0.50 15951 0.50-0.73 16,801 0.50 - 0.77
Streamflow
PBIAS (%) +15 8728 -15-15 9614  —15-15
ET (mm) 445-603 12623 445 - 603 0 NA
Water Budget
QDR (mm) 241 - 325 4192 241-325 6474  241-325
Total NSE >0.35 18 0.35-0.50 0 NA
Nitrogen PBIAS (%) +30 230 -30-30 8468  —30-30
Total NSE >0.35 1528 0.35-0.44 1 0.36
Phosphorus PBIAS (%) +30 8760  —11-30 1789  —30-30
Corn (tn/ha) 56-11.6 2613 56-86 16248 5.6-104
Crops Wheat (tn/ha) 2.6-54 10329 2.6-5 7197 2.6 -4.9
Soy (tn/ha) 1.9-3.9 0 NA 14264 1.9-25

This led us to recommend that the interaction between crop yields, water, and
nutrient routines be re-evaluated by the developers, while the users take note of
the soils and control parameter values before carrying out sensitivity analyses
and model calibration. This indicates more work is needed to ensure models that

have proper representation before being used for scenario analysis.

4. Conclusions

In this study, the structure and input values of the ArcAPEX and NTT interfaces
were compared and the impact of the differences on simulated water quality and
quantity outputs, computation time, parameter sensitivity, and calibration per-
formance was determined. There were major differences in the soils, PARM, and
CONTROL input values for the two interfaces that affect water budget compo-
nents, nutrient transport, and crop growth. It was also noted that the soils input
parameter values were different from those in the SSURGO database. While it is
acceptable for the values to be different from the SSURGO database, there is no
documentation explaining the rationale for the modifications from the original
source. Overall, there is a lack of detailed documentation on how these default
parameter values were determined that would be useful to model users. Such
documentation is essential because these values affect different processes.

ArcAPEX uses only the predominant soil for each subarea, while NTT assigns
a maximum of three soils for every subarea, representing the most predominant
soils in the area of interest. The differences in this structure of the soils input
files affected model simulation times, leading to a computation time three times
longer for NTT than for ArcAPEX project.

The comparison of simulated ET and crop yield results using the default input

parameter values for the two interfaces highlighted a potential issue. For exam-
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ple, NTT simulated crop yields better than ArcAPEX while predicting ET so
poorly, and vice versa, indicating a disconnect between ET and crop yields
within the APEX model. In addition, the streamflow, drainage, and surface ru-
noff were comparable between ArcAPEX and NTT while simulated ET values
were quite different, raising the question of where that missing water in the wa-
ter budget is going. These differences in the outputs from the default values from
the two interfaces lead us to provide two recommendations. Model developers
need to take a look at the interactions between water, nitrogen, and crop growth
routines, while model users need to pay attention to the soils and control para-
meter values prior to beginning sensitivity analyses and the calibration process
that mainly focuses on the PARM file parameters.

Sensitivity analysis results indicated that twelve sensitive parameters were the
same between the two interfaces, though the order of sensitivity was different.
Using the sensitive parameters, calibration results showed none of the models
met all of the criteria (statistical performance measures, water budget compo-
nents, and crop yields) for either interface. These results can be explained by the
findings from the comparison of the outputs using the default values. Therefore,
more work is needed to ensure models that have proper representation before

being used for nutrient and land management scenario analysis.
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Supplementary Materials

Parameter values from the Control input file from NTT and ArcAPEX interfaces, Table S2

Table S1

Parameter values from the Parameter input files from NTT and ArcAPEX interfaces.
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