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Abstract 

This study examines the behavior of trace- and rare-earth elements (REE) in 
different hydrothermal alteration facies (silicic, advanced argillic and argillic) 
of Cijulang high-sulfidation epithermal gold deposit, West Java, Indonesia. 
The results of the study indicate that remarkable differences in the behavior 
of trace elements and REE are observed in the studied alteration facies. All 
REE in the silicic facies are strongly depleted. In advanced argillic facies, 
Heavy rare-earth elements (HREE) are strongly depleted whereas light rare 
earth elements (LREE) are quite enriched. REE concentrations in the argillic 
facies show little or no variation with respect to fresh rock counterparts. A 
strong depletion of REE in the silicic facies is likely to be favored by the high-
ly acidic nature of the hydrothermal fluids, the abundance of complexing ions 
such as Cl−, F−, and 2

4SO −  in the hydrothermal solutions and the absence of 
the secondary minerals that can fix the REE in their crystal structures. An 
apparent immobility of LREE in advanced argillic facies is possibly due to the 
presence of alunite. The immobility of REE in the argillic facies suggests the 
higher pH of the fluids, the lower water/rock ratios and the presence of the 
phyllosilicates minerals.  
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1. Introduction 

In the past, REE and high-field strength elements have been accepted as rather 
immobile elements, unaffected by hydrothermal alteration process and meta-
morphism. Recently it has been realized that REE could be mobilized under cer-
tain conditions. The detailed descriptions of REE mobility in the hydrothermal 
fluids and hydrothermally-altered rocks of some mineralized systems have been 
discussed elsewhere ([1]-[16]). The mobility of REE in the hydrothermal fluids is 
significantly controlled by low pH, high water/rock ratios and the ability of 
complexing ions such as 2

3CO − , F−, Cl−, 3
4PO −  and 2

4SO −  ([1] [7] [17]). In 
particular, they are preferentially complexed by Cl− and 2

4SO −  in acid condi-
tions [18] [19]. HREE are favorably concentrated in later products of hydro-
thermal systems as they form more stable complexes with some ligands and exist 
in solution longer than LREE ([20] [21]).  

We examine the behavior of the trace and REE in the hydrothermal alteration 
of Cijulang high sulfidation epithermal gold deposit, West Java, Indonesia. The 
study on REE behavior was carried out in the alteration facies of silicic, ad-
vanced argillic, and argillic. The main objective of this study is to understand the 
physico-chemical conditions of hydrothermal fluids responsible for hypogene 
wall-rock alteration during the evolution of high-sulfidation epithermal system 
in the Cijulang area. 

2. Geological Setting 

The Islands of Java and Sumatra combined to form as a part of the Sunda-Banda 
magmatic arc which stretches from Aceh in the western part to Banda in the 
eastern part [22] (Figure 1). This magmatic arc, the longest of all magmatic arcs 
in Indonesia, has been created during Cenozoic due to the subduction of 
north-moving Indo-Australian Plate underneath the Southeast Asian Plate and 
tectonically active since Eocene ([23] [24]). The western segment which is lo-
cated to the west of the central Java was developed on the continental crust whereas  
 

 
Figure 1. Map showing the distribution of magmatic arcs in Indonesia [22]. 
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the eastern segment which is situated to the east of the central Java was built 
upon the thinner island arc crust [22].  

The Sunda-Banda magmatic arc constitutes volcanics and volcaniclastic rocks 
of Tertiary to Quaternary age. They are sometimes intruded by smaller plutonic 
masses with similar composition as volcanics. Numerous and still-active 
calc-alkaline magmatism occur throughout the magmatic arc [23]. The volcan-
ism of the entire Java arc has shifted from south to north over time ([25] [26]) 
which is evident by the E-W alignment of deeply dissected Miocene-Pliocene 
volcanic centers along the southern coast of Java and a parallel E-W alignment 
of juvenile and still active Quaternary volcanoes further north along the central 
Java. However, the magmatic affinities of the volcanics in the magmatic arc re-
mained calc-alkaline with time until recent time ([27] [28]). 

The Sunda-Banda Magmatic Arc served as a host for several hydrothermal 
deposits such as porphyry copper-gold, epithermal gold-silver, skarngold-copper, 
and volcanogenic massive sulfides. West Java is a well-known gold district in this 
magmatic arc and one of the most gold-producing areas in Indonesia. Present 
day operating gold mines are located in the three distinct regions of West Java: 
Bayah Dome Complex, Honje Igneous Complex and Southern Mountains. Re-
cently several occurrences of epithermal gold and base metals mineralization 
have also been reported. Hence, much attention has been paid to these regions as 
they still stand as districts of future potential mineral resources. Cijulang is one 
of the interesting areas located in the Southern Mountains ([29] [30]) of West 
Java. Southern Mountains is regarded as the present-day forearc between the 
Quaternary volcanic chain and the Java Trench. It is comprised of volcanic and 
volcaniclastic rocks of Tertiary to Quaternary age. 

Cijulang gold deposit was discovered by PT Aneka Tambang Tbk in 1996. 
Previous works ([31] [32]) indicated that gold mineralization in the Cijulang 
area shows typical features of high-sulfidation epithermal system by the presence 
of enargite-gold mineralization and accompanying acid sulfate alteration. Even 
though some researches and exploration works have been carried out in the Ci-
julang area, the behavior of REE and trace elements in different hydrothermal 
alteration facies and physico-chemical conditions of hydrothermal fluids during 
the evolution of high-sulfidation epithermal system have yet to be studied. Thus, 
the main objective of this study is to investigate the behavior of the REE and trace 
elements in the hydrothermal alteration facies of Cijulang area, West Java, Indonesia. 

The local geology of the Cijulang area consists of andesite lava, lapilli tuff with 
minor crystal-lithic tuff, andesite and andesitic breccias (Figure 2). Andesite la-
va is regarded as a part of the Upper Oligocene to Middle Miocene Jampang 
Formation whereas lapilli tuff is considered to be a member rock of the Upper 
Miocene Koleberes Formation. Andesite and andesitic breccias belong to Mt. 
Kendeng Lava (Pleistocene). Geological structure in the study area is dominated 
by NE-SW and N-S trending strike-slip faults. The Cikahuripan Fault, the N-S 
trending dextral fault, played a significant role in the development of high sulfi-
dation epithermal system in the research area (Figure 2). 
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Figure 2. Map showing the geology and hydrothermal alteration of the Cijulang area, 
West Java, Indonesia. 

3. Hydrothermal Alteration 

In Cijulang area, hydrothermal alteration is associated with pyrite-enargite-gold 
mineralization and covers over an area of approximately 2 km long and 1 km 
wide north-south trending elongate zone (Figure 2). Hypogene alteration pri-
marily occurs in lapilli tuff and andesite lava. Based on field investigation, pe-
trological, and mineralogical studies, four different hydrothermal alteration fa-
cies are identified: Silicic, advanced argillic, argillic, and propylitic. A characte-
ristic alteration sequence and zonation of advanced argillic, argillic and propy-
litic outward from silicic core has resulted from the progressive cooling and 
neutralization of hot acidic magmatic fluids [32].  

Silicic alteration occurs in the lapilli tuff (Figure 3(a)) and consists of both 
vuggy and massive quartz. This alteration is well-recognized by weath-
er-resistant bodies of quartz. Vuggy zone comprises residual silica remaining af-
ter removal of its reactive components such as primary minerals and fragments  
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Figure 3. Various hydrothermal alteration types in Cijulang area. (a) vuggy silica altera-
tion in lapilli tuff, (b) advanced argillic alteration in magmatic hydrothermal breccias, (c) 
argillic alteration in lapilli tuff, and (d) propylitic alteration in andesite lava. 
 
of the host rock by leaching of highly acidic magmatic vapor [9]. The vuggy sili-
ca core is generally formed by initial leaching by hot, extremely acidic magmatic 
fluids (temperature ~300˚C and pH < 2 [33]) with subsequent silica deposition 
and recrystallization in the vugs, open spaces and the matrix resulting massive 
quartz. Vugs are sometimes filled with clays (kaolinite, dickite, and pyrophyllite) 
(Figure 3(b)) and ores (pyrite and enargite). Silica zone often attains yellow or 
rusty color in places where oxidation of sulfides has taken place. 

Advanced argillic alteration is the most widespread alteration and occurs in 
lapilli tuff and hydrothermal breccias (Figure 3(c)). In an outcrop, this altera-
tion zone is strongly bleached and contains a variable amount of kaolinite, dick-
ite, pyrophyllite, diaspore, illite and pyrite. Pyrophyllite, kaolinite and dickite are 
the dominant minerals in the outcrops whereas alunite is major constituents in 
the drill core sample (Figure 3(d)). Advanced argillic alteration occurs as mas-
sive replacement, fractures and vugs fillings (Figure 3(d)) in the host rock and 
as matrix in the magmatic hydrothermal breccia. The dominant mineral assem-
blages are quartz-pyrophyllite-kaolinite, quartz-dickite-pyrophyllite, quartz-kaolinite, 
quartz-alunite-dickite-pyrite, and quartz-alunite-kaolinite-pyrite. 

Argillic alteration occurs as intermediate and discontinuous zones between 
advanced argillic and propylitic zones. It occurs in lapilli tuff and andesite lava. 
This zone is enriched in quartz and clay minerals such as kaolinite, illite, il-
lite-smectite, smectite, muscovite, and chlorite. This alteration is quite pervasive 
and generally white and soft (Figure 3(e)). The common mineral assemblages 
are quartz-illite-kaolinite-pyrite and quartz-illite-montmorillonite-pyrite. 

Propylitic alteration is the marginal facies of the hydrothermal alteration sys-
tem and hosted by lapilli tuff and andesite lava (Figure 3(f)). It is characterized 
by quartz, chlorite, epidote, illite, smectite, pyrite, hematite, goethite, carbonate, 
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and magnetite. In contrast to other alteration types, primary texture of the host 
rock is generally preserved. The common assemblage is quartz-chlorite-illite- 
epidote-calcite. 

4. Analytical Techniques 

A total of 75 samples, involving a spectrum of the least- to the most-altered 
rocks and fresh/un-altered rock from both surface and subsurface (drill cores 
section), were collected from several localities. Characteristics of the rocks such 
as lithology, mineralogy, and alteration of samples were examined in the field.  

Mineralogical studies were carried out by optical microscopy in combination 
with X-ray (powder) diffraction (XRD) analysis. Bulk-rock and clay fraction 
samples (<2 µm) were determined using a Rigaku RINT-2100 Diffractometer. 
The analysis was performed at a scan speed of 2˚/min with CuKα radiation (λ = 
1.542Å) from 2˚ to 65˚/2θ. Count data for the random powder mounts and clay 
fractions were collected from 2˚ to 65˚/2θ and 2˚ to 30˚/2θ respectively. Major 
and elemental compositions were determined by X-Ray Fluorescence (XRF) 
Spectrometer under pressed pellets using a RIGAKU RIX-3100 (Series VR 
25006). The X-ray machine is operated at 50 kV and 50 mA, Scanning speed: 
automatic and 4˚/min for the determination of the major element composition. 
For quality control, the standard sample JA-3 was used as standard sample.  

The mineral composition of alteration minerals was determined using 
SHIMADZU SS-550 Scanning Electron Microscope equipped with a Gene-
sis-2000 EDS Spectrometer. Analytical conditions were 15 kV accelerating vol-
tage, 10 mA beam current, and 3 μm beam diameter. XRD and XRF analyses 
were performed at the laboratory of Economic Geology, Department of Earth 
Resources Engineering, Kyushu University, Japan whereas SEM-EDS and EPMA 
analyses were carried out at The Center for Advanced Instrumental Analysis, 
Kyushu University, Japan. Analyses for trace elements and REE were carried out 
for 12 samples taken from three different alteration zones and un-altered pre-
cursor rock by instrumental neutron activation analysis (INAA), Inductively 
Coupled Plasma (ICP) and Inductively Coupled Plasma Mass Spectrometry 
(ICP-MS) methods at ACME Laboratories, Canada. Trace elements and REE 
elements were reported on a 0.1 g sample and concentrations were determined 
following a lithium metaborate/tetraborate fusion and dilute nitric acid diges-
tion. 

Detection limits for all major oxides are 0.01 wt%, except MnO, TiO2 and S 
which are 0.001 wt%. Detection limits for trace elements and REE are: Sc, Be, 
Co, Ni, Zn, Cu, Ga, Ge, Nb, Sn, W, 1 ppm; Rb, Sr, Y, Mo, 2 ppm; Ba, Se, 3 ppm; 
Zr, 4 ppm; V, Pb, As, Cr, Ir, 5 ppm; Cr, 20 ppm; La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, 
Er, Yb, Ta, Tl, Th, U, Sc, 0.1 ppm; In, Hf, Sb, 0.2 ppm; Ag, 0.3 ppm; Bi, 0.4 ppm; 
Cd, Sb, Cs, As, Br, 0.5 ppm; Lu, 0.04 ppm; Pr, Eu, Tm, 0.05 ppm; Au, 2 ppb. Loss 
on ignition (LOI) was determined for all samples by measuring the weight dif-
ference after ignition at 1000˚C. The results of chemical analyses were presented 
in Table 1. 
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Table 1. Results of ICPMS analyses for different hydrothermally-altered and un-altered rocks from Cijulang area. 

Sample 

Un-altered  
precursor rock (lapillituff) 

Argillic alteration facies 
(lapillituff) 

Advance argillic alteration facies 
(lapillituff) 

Silicic alteration 
facies (lapillituff) 

CUA-1 CUA-2 CA-1 CA-2 CA-3 CA-4 CAD-1 CAD-2 CAD-3 CAD-4 CSI-1 CSI-2 

Major element (wt.%) 

SiO2 55.54 59.7 78.21 74.38 46.39 72.3 90.74 77.94 74.76 68.22 94.55 90.48 

Al2O3 16.64 16.19 12.3 13.14 16.99 17.69 5.56 13.56 14.58 16.85 0.67 2.79 

Fe2O3 8.68 7.96 1.63 0.78 9.83 0.52 1.25 0.96 1.93 4.33 2.25 1.75 

CaO 7.58 6.57 0.09 2.24 7.82 0.12 0.07 0.09 0.13 0.12 0.12 1.25 

Na2O 2.85 3.3 1.69 0.88 2.69 0.08 0.02 0.02 0.04 0.03 0.03 0.44 

K2O 1.2 1.3 1.66 2.13 0.59 1.23 0.03 0.04 0.09 0.07 0.03 0.2 

MgO 4.23 2.65 0.19 0.22 5.2 0.11 0.02 0.01 0.03 0.03 0.02 0.58 

MnO 0.166 0.151 0.006 0.024 0.191 0.007 0.004 0.004 0.004 0.006 0.012 0.028 

TiO2 0.837 0.815 0.283 0.302 0.884 0.619 0.496 0.615 0.626 0.438 0.421 0.43 

P2O5 0.16 0.15 <0.01 0.01 0.15 0.13 0.1 0.18 0.22 0.18 0.07 0.03 

L.O.I. 1.21 1.4 4.23 5.83 8.88 6.13 2.48 5.5 6.72 9.12 1.59 0.56 

Total 99.08 100.2 100.3 99.94 99.6 98.92 100.8 98.91 99.12 99.38 99.75 98.54 

Trace element (ppm) 

S 0.035 0.023 1.1 0.057 0.025 0.012 0.064 0.067 1.41 3.59 1.1 0.096 

V 206 161 14 21 244 137 34 107 86 105 24 38 

Sc 25 25 11 12 32 12 4 11 7 8 5 7 

Be 1 1 bdl bdl bdl 1 1 bdl bdl bdl bdl bdl 

Cr 30 bdl bdl bdl 200 bdl bdl bdl bdl bdl bdl bdl 

Co 24 18 2 1 30 bdl bdl bdl 4 8 bdl 4 

Ni 22 13 bdl bdl 42 bdl bdl bdl 2 3 bdl 5 

Cu 78 49 5 3 22 19 22 12 18 62 58 28 

Zn 66 76 47 18 66 9 5 4 15 31 4 14 

Rb 52 54 40 59 15 45 bdl bdl bdl 2 bdl 9 

Sr 251 208 52 110 677 296 333 816 955 469 60 55 

Y 24 29 27 36 16 19 5 6 8 8 3 5 

Nb 3 4 1 2 1 3 3 2 3 2 2 2 

Ba 146 211 137 220 113 143 101 238 411 363 119 38 

W <1 <1 1 bdl bdl bdl 3 15 4 2 3 bdl 

Pb 5 8 bdl 6 bdl 22 638 910 220 222 225 109 

Th 4.8 4.8 2.2 2.2 1.1 6.9 10 8.4 4.8 6.6 6.6 4.7 

U 1.2 1 0.6 0.5 0.2 2 1.8 3.4 1.2 2.1 1.9 1.5 

Zr 106 113 121 118 42 86 86 72 109 65 86 78 
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Continued 

As 5.7 13 22.7 14 4 1050 169 101 23.7 59.2 272 24 

Sb <0.5 <0.5 2.8 1.4 0.9 18.6 19.8 19.6 1.8 6.7 33.7 18.4 

Ga 17 18 13 14 16 19 19 28 30 18 2 4 

Ge 2 2 1 1 2 3 3 3 2 3 1 1 

Sn 1 1 bdl 1 bdl 2 33 8 2 bdl 22 22 

Sb <0.2 <0.2 2.5 0.7 <0.2 17.3 18.1 16.8 2.1 9.1 36.6 17.6 

Bi <0.4 <0.4 <0.4 <0.4 <0.4 0.9 34.9 14.8 5.7 1.6 132 27.1 

Br <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

Cr 49 24 <5 9 185 <5 17 21 15 12 18 6 

Ir <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 

Sc 27.5 28 11.3 12.3 31 11.6 4.6 10.8 7.8 9.5 6.4 7.8 

Tl 0.1 0.2 0.3 0.3 bdl 1 0.2 bdl bdl bdl 1.6 bdl 

Hf 2.9 3.2 3.4 3.6 1.3 1.8 2.2 2.2 2.9 1.9 2.3 2.2 

Ta 0.2 0.7 0.1 0.1 bdl 0.3 0.3 0.2 0.2 0.2 0.3 0.2 

REE (ppm) 

La 12.3 14.7 9 10.5 6.1 14.2 49.5 20.5 14.6 15.8 13.3 9.7 

Ce 27.1 30.3 21.5 24.7 13.4 28.1 101 40.6 30.4 32.8 25.1 18.5 

Pr 3.69 4.1 3.1 3.52 1.93 3.24 12.5 4.43 3.7 3.99 2.71 2.11 

Nd 15.9 17.5 14.4 17 9.4 12.1 47 18 14.8 15.4 10.3 8.1 

Sm 3.8 4.5 3.6 4.4 2.6 2.4 7.4 3.4 2.9 3 1.7 1.9 

Eu 1.01 1.16 0.79 1.19 0.89 0.76 1.39 0.97 0.86 0.79 0.41 0.52 

Gd 4 4.5 3.6 4.7 2.7 2.4 3.3 2.8 1.8 2.3 1.2 1.7 

Tb 0.7 0.8 0.7 0.9 0.5 0.4 0.3 0.3 0.2 0.3 0.1 0.3 

Dy 4.4 5 4.2 5.6 2.9 2.9 1.1 1.3 1.4 1.6 0.8 1.4 

Ho 0.9 1 0.9 1.2 0.6 0.6 0.2 0.2 0.3 0.3 0.1 0.2 

Er 2.6 3.1 2.9 3.7 1.5 1.5 0.6 0.6 1 0.9 0.4 0.6 

Tm 0.42 0.49 0.5 0.58 0.23 0.22 0.09 0.1 0.17 0.13 0.08 0.1 

Yb 2.7 3.4 3.4 4 1.5 1.5 0.6 0.8 1.4 0.8 0.6 0.7 

Lu 0.4 0.5 0.52 0.59 0.22 0.21 0.11 0.12 0.23 0.13 0.09 0.11 

ΣREE 79.92 91.05 69.11 82.58 44.47 70.53 225.09 94.12 73.76 78.24 56.89 45.94 

(La/Sm)cn 2.32 2.34 1.79 1.71 1.68 4.24 4.80 4.32 3.61 3.78 5.61 3.66 

(La/Yb)cn 3.27 3.10 1.90 1.88 2.92 6.79 59.18 18.38 7.48 14.17 15.90 9.94 

(Tb/Yb)cn 1.18 1.07 0.94 1.02 1.52 1.21 2.27 1.70 0.65 1.70 0.76 1.95 

Eu/Eu* 0.79 0.79 0.67 0.80 1.03 0.97 0.86 0.96 1.15 0.92 0.88 0.88 

Note: L.O.I.: Loss on ignition; bdl: Below detection limit. 
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5. Results 
5.1. The Behavior of the REE and Other Trace Elements 

Abundances of REE in studied samples from three different hydrothermal alte-
ration facies (silicic, advanced argillic, and argillic) and un-altered rocks were 
normalized to chondrite values [34] and the resulting REE patterns of silicic 
(CSI-1 and CSI-2), advanced argillic (CAD-1, CAD-2, CAD-3 and CAD-4) and 
argillic facies rocks (CA-1, CA-2, CA-3 and CA-4) were compared with those of 
un-altered rocks (CUA-1 and CUA-2) which are considered to be the precursor 
rocks of hydrothermal alteration (Figures 4(a)-(c)). X-ray diffraction patterns 
of three different alteration facies are also shown (Figures 5(a)-(f)). The chon-
drite-normalized REE patterns of the un-altered volcaniclastic rocks indicate va-
riable enrichment of LREEs with respect to HREEs and exhibit negative Eu 
anomalies which are typical characteristics of the average upper continental 
crust [35]. 

The ratios of (La/Sm)cn, (La/Yb)cn, (Tb/Yb)cn and (Eu/Eu*)cn were calcu-
lated for the different alteration facies and the precursor rocks (Table 1). Com-
parisons were made between precursor rocks and each alteration facies in order 
to understand the possible fractionation processes where REE could have been 
encountered during hydrothermal alteration (Figures 6(a)-(d)). (La/Yb)cn ratio 
was calculated in order to observe the enrichment of LREE over HREE. Fractio-
nation among LREE was indicated by (La/Sm)cn and those between MREE and 
HREE were expressed by (Tb/Yb)cn. (Eu/Eu*)cn ratio was also calculated by 
using the equation (Eu/Eu* = Eu N NSm Gd− ). The geochemical behavior of 
REE and their ratios will be discussed in the following sections. 

5.1.1. Silicic Alteration 
As a result of strong acid leaching and mobilization of almost all oxides and 
elements, silicic alteration facies rocks are characterized by quartz (Figure 5(a)). 
REEs in this facies are strongly depleted if compared to the un-altered precursor 
rocks (Figure 4(a)). A strong depletion is more pronounced in MREE and 
HREE (Figure 4(a)). The degree of impoverishment of HREE is related to the 
degree of silicification as the most intensely-silicified rocks seem to be characte-
rized by higher depletion of HREE. 

Silicic facies is characterized by high ratio of (La/Sm)cn, moderately high ratio 
of (Tb/Yb)cn and low ratios of (La/Yb)cn and (Eu/Eu*)cn (Figure 6). A strong 
depletion of all REEs in this facies could be explained by the very low pH condi-
tion [10] and the abundances of complexing ions (Cl−, F−, and 2

4SO − ) in the hy-
drothermal solutions ([1] [2] [17] [18]). The depletion of REEs might also be 
favored by the absence of secondary minerals that can host the REE in their 
structures.  

5.1.2. Advanced Argillic Alteration 
Based on the result of XRD analysis, advanced argillic facies rocks are characte-
rized by alunite, pyrophyllite, kaolinite and dickite (Figures 5(b)-(d)). On the  
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Figure 4. Chondrite-normalized REE patterns the un-altered rocks (CUA-1 and CUA-2) 
and hydrothermally-altered rocks. (a) silicic alteration (CSI-1 and CSI-2), (b) advanced 
argillic alteration (CAD-1, CAD-2, CAD-3 and CAD-4), (c) argillic alteration (CA-1, 
CA-2, CA-3 and CA-4). Data in the figures are from Table 1; normalization values are 
taken from Sun and McDonough [34]. 
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Figure 5. The result of XRD analyses for different alteration facies. (a) silicic alteration; 
((b), (c) and (d)) advanced argillic alteration; (e) and (f) argillic alteration. Mineral ab-
breviation: Qz-quartz; Alu-alunite; Py-pyrite; Prl-pyrophyllite; Dck-dickite; Kln-kaolinite; 
Ilt-illite. 
 
chondrite-normalized REE diagram, this facies rocks show LREE enrichment 
and its enrichment factor reaches about 110 times of chondritic level in the sam-
ple CAA1 (Figure 4(b)).  

In contrast, both MREE and HREE concentrations are strongly depleted in 
this facies rocks. The (La/Yb)cn ratios are quite high, whereas (La/Sm)cn, 
(Tb/Yb)cn and (Eu/Eu*)cn ratios are moderately high (Figure 6). Fractionation  
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Figure 6. Variations in (La/Sm)cn, (La/Yb)cn, (Tb/Yb)cn ratios displaying REE fractio-
nation in the hydrothermally-altered rock compared to un-altered equivalent original 
rocks. The (Eu/Eu*)cn ratio shows the variation of Eu anomaly. (Eu/Eu* = Eu × 

N NSm Gd− ). 
 
of REE is quite obvious in this facies. Hydrothermal fluids responsible for the 
development of the advanced argillic alteration were derived from the partial 
neutralization and dilution of fluids which involved in the silicic alteration. The 
presence of alunite indicates a high activity of the sulfate ion in the hydrother-
mal solutions [36].  

5.1.3. Argillic Alteration 
The rocks of argillic alteration facies are composed of quartz; illite and kaolinite 
(Figure 5(e) and Figure 5(f)). REE patterns of this facies rocks do not show sig-
nificant variation with respect to un-altered precursor rock (Figure 4(c)). This is 
also evident by the higher ratios of (La/Sm)cn in the studied samples (Figure 6). 

5.1.4. Isocon Method 
Isocon method of Grant [37] was applied in order to determine the mobility of 
elements in different alteration facies with respect to precursor rock, as the 
chemical analyses of an original and an altered rock cannot be directly compared 
to estimate gains and losses until a reference frame or assumption has been 
made [38]. In this study, some components are assumed to be remained as im-
mobile during alteration. Selected elements were plotted against TiO2 (Figure 
not shown) and those with a correlation coefficient r ≥ 0.6 were considered as 
immobile. La, Pr, Nd, Ho, Tm, Lu, and P2O5 were found to be immobile and are 
used as mass changes indicators. The geometry of isocon diagram is such that 
the elements below the straight isocon line are depleted whereas those above are 
enriched by the hydrothermal alteration (Figures 7(a)-(c)). 

https://doi.org/10.4236/ojg.2019.95019


M. M. Tun et al. 
 

 

DOI: 10.4236/ojg.2019.95019 290 Open Journal of Geology 
 

 
Figure 7. Isocon diagrams of three different alteration facies and histograms showing the 
percentage of gains and losses of selected elements during hydrothermal alteration as 
calculated from isocon method [35]. (a) argillic, (b) an advanced argillic, and (c) silicic 
alteration. Values of +4 to +3 = a gain of 75% to 100%, +3 to +2 = 50% to 75%, +2 to +1 = 
25% to 50%, and +1 to 0 = 0% to 25% respectively, and 0 = immobile elements. Values of 
0 to −1 = losses of 0% to 25%, −1 to −2 = 25% to 50%, −2 to −3 = 50% to 75%, and −3 to 
−4 = 75% to 100%. 
 

In the argillic rocks, oxides and element such as SiO2, K2O, Sn, Tl, Cs, Y, Pb, 
Zr, As, and S are enriched, however, the remaining components are depleted 
(Figure 7(a)). The advanced argillic rocks show strong enrichments of As, Sr, 
Ba, Pb, and SiO2 (Figure 7(b)). The concentration of other oxides and elements 
such as Sn, Th, P2O5, S and U are also slightly enriched whereas most major 
oxides (K2O, Al2O3, CaO, MnO, Na2O, MgO, and Fe2O3) and elements (Nd, Zr, 
Nb, Co, Cr, Y, Zn, and Sc) are depleted in the advanced argillic facies rocks. In 
the silicic alteration facies (Figure 7(c)), except for SiO2, As, Pb, Sn, U, Th and S, 
other oxides and elements are strongly removed from the rocks. The anomalous 
concentration of arsenic is observed in this facies rocks. 
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6. Conclusions 

Based on the currently available data, the following summary and conclusions 
were made to interpret the development of hydrothermal system, and the REE 
behavior in different alteration facies of the Cijulang area: 

A characteristic alteration sequence and zonation of an advanced argillic, ar-
gillic and propylitic alteration outward from the silicic core has developed from 
the progressive cooling and neutralization of hot acidic magmatic fluid with the 
host rocks. Silicic alteration facies is identified by the presence of residual and 
amorphous silica. All REE are strongly depleted in the silicic facies and a re-
markable depletion of REE in this facies is probably caused by high acidity and 
abundance of 2

4SO −  ion and Cl− and F− complexing ions in the hydrothermal 
solutions. Advanced argillic alteration facies is mineralogically composed of va-
riable amounts of quartz, pyrophyllite, alunite, dickite, kaolinite and diaspore. 
The enrichment of LREE along with depletion of HREE is observed in this facies. 
The immobile nature of LREE might be caused by the bounding of these ele-
ments into alunite structure. This confirms an important role of the occurrences 
of secondary minerals which control the behavior of REE in the hydrothermal 
paragenesis. The major constituents of argillic facies are quartz, illite, smectite, 
and pyrite. The relative immobility of REE in this facies is possibly related to the 
higher pH and lower water/rock ratio. The presence of phyllosilicates such as 
kaolinite, smectite and illite/sericite could also be a possible factor to fix the REE 
into their structures. Mass balance calculation indicates that REE are relatively 
mobile in the silicic facies whereas they are immobile in both advanced argillic 
and argillic facies. 

The result of the study shows how REE behavior in the hydrothermal altera-
tion paragenesis gives important information concerning to the physi-
co-chemical conditions during the leaching processes. A strong variability of 
LREE, MREE and HREE concentrations of different alteration facies indicates 
variable degree of alteration and different fluid/rock ratios. It shows the selective 
nature of REE and trace elements even under strongly acidic conditions. The 
results also represent a useful tool to study HS epithermal ore deposits because it 
helps understand the mechanisms during the development of ‘main stage hypo-
gene wall-rock alteration. 
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