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Abstract 

Multilevel CFA models (MLV CFA) modeling permits more sophisticated con-
struct validity research by examining relationships among factor structures, 
factor loadings, and errors at different hierarchical levels. In the MLV CFA 
models, the latent variable or variables have two kinds of elements: 1) the be-
tween-group elements (Level 2 or higher level) and 2) the within-group ele-
ments (Level 1 of lower level). The between-group elements represent the gen-
eral part of the model and the within-group element the individual part. The 
within-level variation includes an individual-level measurement error variance, 
which generally expands the impact of the within-level variation to the intrac-
lass correlations. Multilevel CFA therefore generates results corresponding to 
those generated by perfectly reliable measures. If the same measurement model 
is specified across levels, by defining each item loading to be invariant with its 
across-level counterpart, the researcher can equate the factor scales across le-
vels. Thus, the factor variances at different levels are directly comparable. The 
fit of this constrained MLV CFA model can be evaluated by comparing it with 
an unconstrained model specified with freely estimated factor loadings at each 
level. In the present work the steps of the above procedure are fully described 
and additional issues relevant to the use of MLV CFA are discussed in detail. 
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1. Introduction 

In all the analyses carried out in the social and behavioral research field, data are 
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organized at a single level. Nevertheless, real world data are frequently struc-
tured in multiple levels. These data structures are called hierarchical1. Such hie-
rarchical structures are also termed nested data or clustered data (Byrne, 2012). 
This means that some variables are clustered or nested within other variables 
(Field, 2013; Geiser, 2013; Nezlek, 2011). For example, to study the attachment 
type of a child to its mother (Bowlby, 1969, 1973; Ainsworth, 1978), a researcher 
studies the mother-infant relationship of 300 infants in 100 families. The infants 
are nested in families. Infants are the first level of analysis and families are the 
second level. Lower-level units are also called micro level and higher-level macro 
level units (Heck & Thomas, 2015; Geiser, 2013). Macro-level variables are al-
ternatively called groups or contexts (Kreft & de Leeuw, 1998; Heck & Thomas, 
2015). Infants grew up in different family environments. Therefore, the re-
searcher expects that they will have different attachment types. Generally, re-
search in psychology deals with designs about individuals acting within a con-
text, like families in the previous example, or schools (see Byrne, 2012; Geiser, 
2013), organizations (see Brown, 2015; Darlington & Hayes, 2017) or neighbor-
hoods (see Tabachnick & Fidell, 2013). The family in the above example is a 
contextual variable (Field, 2013) that multilevel modeling analysis allows to be 
taken into consideration (Hox, 2013; Loehlin & Beaujean, 2017). Models used to 
analyze clustered data are called Multilevel Models, Hierarchical Linear Models, 
Random Coefficient Models, or Mixed Models (Geiser, 2013; Field, 2013 among 
many others). Multilevel models are not a new conceptualization (cf. hierarchic-
al linear models; Raudenbush & Bryk, 2002; Bickel, 2007; as quoted by Brown, 
2015). However, only in recent decades, they were efficiently incorporated in 
CFA (c.f. Muthén, 1994, 1997, 2004; Brown, 2015). 

The purpose of this study is to describe the procedure of Multilevel Confir-
matory Factor Analysis Modeling (MLV CFA, Byrne, 2012), i.e., how to incor-
porate the multilevel approach into a CFA model. 

2. Overview of Multilevel Modeling 

Multi-level models are a category of statistical techniques for studying hierarch-
ically structured data-sets where the scores 1) are nested into larger units (clus-
ters) and 2) each cluster may be dependent from the other. For example, re-
peated measurements generate inherently hierarchical datasets with multiple 
scores clustered within each respondent (Kline, 2016: p. 444). Similarly, Selig, 
Card, and Little (2008) commented—as reproduced by Byrne (2012)—that any 
model representable as a multigroup SEM, can also be specified as a multilevel 
SEM/CFA, if the data are hierarchically clustered. 

This relative delay of MLV CFA modeling could be attributed to the power-
lessness of the older CFA software packages to deal with the inherent complexi-
ties of MLV CFA effectively, e.g. with the computation of separate covariance 

 

 

1This hierarchy is not identical to the higher order EFA and CFA. In FA the hierarchical element 
emerges from the construct been evaluated. Here the hierarchical element emerges from the data 
sampling design. 

https://doi.org/10.4236/psych.2019.106051


T. A. Kyriazos 
 

 

DOI: 10.4236/psych.2019.106051 779 Psychology 

 

matrices for sampling units and the use of robust estimators (Heck & Thomas, 
2009; Hox, 2002; McArdle & Hamagami, 1996 as quoted by Byrne, 2012). In 
MLV EFA and MLV CFA, both direct and indirect effects are considered simul-
taneously before the assessment of the overall model fit, thus they are very flexi-
ble (Hox, 2013). For a comparison of the multilevel design to the cross-sectional 
design see Table 1. For a conceptual representation of a Multilevel family func-
tioning model see Figure 1. 

A two-level structure (like in Figure 1) is the simplest hierarchy available 
(Field, 2013; Kline, 2016), i.e., at least one higher-level variable is included above 
individual cases (Kline, 2016). So, if in a study of family functioning the re-
searcher decides to study the neighborhood within the families are nested, then a 
second-level hierarchical model must be constructed in which neighborhood is 
the second level. In a similar vein if multiple neighborhoods are included in the 
sample, then the area could become the third level (see Tabachnick & Fidell, 
2013 for a similar example). Different neighborhoods and areas are contextual  

 
Table 1. Conceptual differences of the multilevel research design and the crossed research 
design. 

Multilevel Design Crossed Design 

Parents (Level 2) A B Parents (Level 2) A B 

Children (Level 1) 1 2 3 4 Children (Level 1) 1  2  3  4 1  2  3  4 

Source. Adapted by Schumacker & Lomax, 2016, page 195-196. 
 

 
Figure 1. Conceptual multilevel representation of the McMaster model of family func-
tioning (Epstein, Bishop & Levin, 1978). 
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variables, possibly reflecting differences in social and economic status or/and 
culture (see also Field, 2013 and Byrne, 2012 for analogous examples). 

To use another common example (e.g., Field, 2013; Kline, 2016; Hox, 2013; 
Geiser, 2013), let us assume that a sample includes 3000 students who attend 20 
different schools. Scores from students (1st level) attending the same classroom 
(2nd level) may also not be independent and scores from students enrolled in the 
same school (3rd level) may not be independent as well. This is likely to happen 
because students of the same classroom are affected by similar influences like the 
teacher’s character and peer’s behavior. According to Kline (2016) students of 
the same school could equally be influenced by school staff, school discipline 
frameworks, curriculums established, the number and nature of midterm exams 
and the like. Depending on the sampling design, there could be additional higher 
levels, e.g., schools, districts, cities, states, countries (Geiser, 2013). 

This case similarity because of common contextual influences in clustered 
sampling is problematic because it violates two core assumptions of quantitative 
measurement: 1) that all cases are independent, and 2) that all random errors of 
cases are also independent, normally distributed, and homoscedastic (Byrne, 
2012). By definition these assumptions are made by traditional statistical ap-
proaches like Ordinary Least Squares (OLS) regression analysis and Analysis of 
Variance (Cohen, Cohen, West, & Aikem, 2003; Geiser, 2013; Field, 2013). 
Therefore, using conventional statistical approaches to analyze clustered data 
may lead to biased results (Geiser, 2013). Specifically, a vital reason for MLV use 
is the correct estimation of standard errors or the assignment of probability 
weights in complex sampling designs (Kline, 2016; Kelloway, 2015; Brown, 2015; 
Field, 2013). The bias, Kline (2016) continues, arises because standard errors are 
denominators of significance tests, and when underestimated the null hypothesis 
is often rejected, as p values of the statistical significance tests will often be too 
small (Geiser, 2013). Moreover, clustering can lead to overestimation of the ef-
fective sample size. This would introduce biased statistical inference by an in-
crease in the alpha error rate (Cohen et al., 2003; Snijders & Bosker, 1999; Geis-
er, 2013). Muthén and Satorra (1995) argue that the more similar the individuals 
within groups are, the more biased the parameter estimates, standard errors, and 
related tests for significance will emerge (as reproduced by Byrne, 2012). 

An additional reason, multilevel structure should not be overlooked is that 
interactions of variables at different levels are often of central research interest 
(Geiser, 2013), see Figure 1 for a conceptual representation of interactions 
across levels. This is especially true for estimating the contextual effects of higher 
level variables on the scores of first-level cases, i.e., to examine within-and be-
tween-cluster relationships (Brown, 2015). For instance, returning into a pre-
vious example, schools differ in the number of enrolled students. This is a cha-
racteristic of schools, not of students (Kline, 2016; Geiser, 2013). That is, a ma-
cro level (level 2) variable affected the relationship of level-1 variables. This is 
called a cross-level interaction (Darlington & Hayes, 2017). The basic terms used 

https://doi.org/10.4236/psych.2019.106051


T. A. Kyriazos 
 

 

DOI: 10.4236/psych.2019.106051 781 Psychology 

 

in MLV SEM and MLV CFA are presented in Table 2. See Figure 2 for an ex-
ample of hierarchical structure of families nested into cultures. 

Although multilevel modeling was introduced to study individuals within 
groups, the method was extended to repeated measures data (like in longitudinal 
designs). Thus, measurement occasions (termed also time points) are nested 
within individuals (Bryk & Raudenbush, I987; Goldstein 1987; Singer & Willett, 
2003; Geiser, 2013). Multilevel modeling of longitudinal data is a powerful 
approach, because it offers many possibilities for the metric treatment of time 
points, dealing effectively with missing data from dropouts and panel attrition 
(Hox, 2013). Crucially, Structural Equation Models is more flexible approach 
than the traditional multilevel regression models additionally because regression 
models are based on unrealistic assumptions, e.g. that predictor variables are 
perfectly reliable. Structural equation models do not assume perfect reliability of 
variables, because they can specify a measurement model for the predictor or  

 
Table 2. Terms used in multilevel SEM and SEM analysis. 

Between groups Model for the group-level structure (second level). This term gets 
progressively rather vague as higher levels are added, it is suggested to be 
combined with an explicit indication of the grouping element of each 
level (i.e., class or school level). 

Cross-level interaction Higher level variables can directly influence lower level variables. This is 
usually displayed by an interaction between higher-level and lower-level 
variables. 

Fixed effect, fixed 
Coefficient 

Factor loadings and path coefficients that do not change across the units 
of the higher level. 

Intraclass Correlation Used to examine population similarity of the individuals of the same 
group. It is also a measure of the amount of population variance at the 
group level. 

Multilevel model A model comprising variables at multiple levels of a hierarchically 
structured population. Also called hierarchical model. 

Random effect, random 
coefficient 

Factor loadings and path coefficients that do not change across the units 
of the higher level. 

Variance Component Variances and covariances of the changeable coefficients. 

Within groups Model representing the structure at the lowest level, i.e. the individual 
(first) level. 

Source. Hox (2013: p. 292). 
 

 

Figure 2. A 3 level hierarchy where respondents are nested within families and families 
within cultures (hierarchy is adapted from Byrne, 2012). 
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Table 3. Summary of the reasons why to use MLV modeling. 

• Multilevel models properly account for the hierarchical data structure causing data dependencies. 

• Multilevel modeling methodology overcomes standard error bias due to clustering that 
generating inflated Type-I error rates and inaccurate confidence intervals. 

• Multilevel models permit analyzing variables at different levels taking into account cross-level 
interactions. 

• Multilevel analysis is a more flexible method requiring fewer assumptions than other statistical 
methods such as, repeated measures of A NOVA. 

Source. Geiser, 2013, page 197. 
 

outcome variables. Additionally, they can model more complicated interactions, 
like indirect effects of mediation analysis (Hox, 2013). 

Conventional SEM/CFA software can estimate two-level models by treating 
the two levels as two groups (Muthén, 1994). Mehta and Neale (2005) described 
in detail how multilevel models can be incorporated in SEM/CFA. However, be-
cause using conventional SEM/CFA software requires complicated model speci-
fications, recent versions of most SEM software packages (EQS, Bentler, 2005; 
LISREL, Joreskog & Sorbom, 1989, 1993; Mplus, Muthén & Muthén, 1998-2012; 
and Stata, StataCorp, 2015). Some extensions of this approach permit the use of 
categorical and ordinal data, incomplete data, and >2 levels (Hox, 2013; Kline, 
2016). These new capabilities are summarized next. For more detailed applica-
tions of the MLV approach in the literature please refer to Dedrick and Green-
baum (2010, 2011); Dyer, Hanges, and Hall (2005); Kaplan and Kreisman 
(2000); and J. Little (2013), Byrne (2012), Heck & Tomas (2015) and Brown 
(2015). See a summary of the main advantages of MLV in Table 3. 

3. Description of Multilevel Factor Analysis 

One important feature of multilevel modeling is the flexibility to decide whether 
the effects of micro-level variables are fixed to be the same across macro-level 
research units (called a fixed effect), or are permitted to vary—called a random 
effect (Darlington & Hayes, 2017). Thus, random coefficients are parameters in a 
model that vary across clusters. Covariates could be included in a multilevel 
model to represent variability within and between clusters. To elaborate the ex-
ample of classrooms nested within schools further, (see Brown, 2015 for a simi-
lar example), a multilevel regression model could examine, e.g., if a student’s 
gender is a significant predictor of achievement in verbal ability. Gender would 
be a within-level effect (Level 1 or Micro level) because gender is a characteristic 
of individuals and the gender covariate illustrates variation in verbal achieve-
ment among individuals. An example of a between-level effect (Level 2), the age 
of the teacher (a classroom variable) may illustrate variability in oral achieve-
ment across classrooms. Thus, the effect of gender in oral achievement is a ran-
dom slope (the slope varies across clusters) and the level 2 covariate of teacher 
age explained the variability of this coefficient across clusters/classrooms (Hox, 
2010, 2013; Brown, 2015). 
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To return to the previous example of students nested within schools, this mul-
tilevel structure suggests that the total covariance matrix, Σ, would be divided 
into a within-covariance matrix ΣW and a between-covariance matrix ΣB. The ΣW 
matrix contains covariances at the individual level (i.e., individual score differ-
ences in oral achievement) and their correlates accounting for variation across 
schools. In contrast, the ΣB matrix represents covariation at the school level (i.e. 
differences across schools in the teaching experience and age of the teaching 
stuff). The ΣW and ΣB covariance matrices can either have similar or totally dif-
ferent factor structures (Byrne, 2012). For each student in Level 1, the total score 
comprises a Level 1 component accounting for the individual deviation from the 
group mean and a Level 2 component accounting for the disaggregated school 
group mean. This individual composition allows separate calculation of within- 
and between-group covariance matrices (Heck, 2001; Hox, 2002 as quoted by 
Byrne, 2012). The related effects are defined within-cluster effects and be-
tween-cluster effects (Bentler, 2005). If a mean structure is necessary, it is used 
to illustrate the between-group means (Byrne, 2012). 

In two-level structures, the observed individual-level variables are calculated 
by the following within and between equations: 

W W W Wy η ε= Λ +            (1) (within level) 

B B B Bµ µ η ε= + Λ +          (2) (between level) 

μ = vector of between-level means 
ΛW = within-level factor loading matrix 
ΛB = between-level factor loading matrix 
ηW = within-level factor 
ηΒ = between-level factor 
εW = within-level indicator residual variance 
εΒ = between-level indicator residual variance 
(Hox, 2013: p. 287; Brown, 2015: p. 421) 
In the first equation the within-groups variation is represented. The second 

equation denotes the between-groups variation and the group level means while 
the factor loading matrices (ΛW, ΛB) and cluster-level means μ are considered 
fixed effects (Brown, 2015). Importantly, μB represents the random intercepts of 
the X variables that are the focus of the between-level means. By their combina-
tion Equation (3) is obtained: 

ij W W B B B WX µ η η ε ε= + Λ + Λ + +                  (3) 

μ = vector of between-level means 
ΛW = within-level factor loading matrix 
ΛB = between-level factor loading matrix 
ηW = within-level factor 
ηΒ = between-level factor 
εW = within-level indicator residual variance 
εΒ = between-level indicator residual variance 
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(Hox, 2013: p. 288; Brown, 2015: p. 422) 
Equation (2) is similar to equations used by random intercept regression 

models (except for symbols), with the loadings in the place of fixed regression 
coefficients and the factor matrices and a level-one and level-two error term. By 
allowing variation at the group-level factor loadings, this model is a generalized 
random coefficient model. The model in Equation (3) is a two-level factor mod-
el. If we add structural relationships between the latent factors at both levels, a 
multilevel SEM/CFA with two levels derives (Hox, 2013; Brown, 2015). 

Multilevel models can be employed to analyze both EFA and CFA models. 
Actually, the within and between levels might have different number of latent 
variables, because, applied research suggests that typically fewer factors emerge 
at the between levels than at within levels because the variability across groups is 
lower than among individuals. Any CFA parameter (like factor loadings, or in-
dicator intercepts) might be handled like a random coefficient, if justifiable by 
substantive theory and are based on empirical basis (Brown, 2015). Additionally, 
more complex data structures like cross-classifications, multiple-memberships 
or covariates are only few of the possible extensions of the basic CFA models 
developed (see Goldstein & Browne, 2005; Byrne, 2012). 

Another feature of the multilevel CFA modeling is the disintegration of the 
total variance (Ψ) of the latent variables into the part attributed to be-
tween-cluster variation (ΨB) and the part attributed to within-cluster variation 
(ΨW). Based on these variances, the intraclass correlation (ICC) for the indica-
tors can be estimated as: 

ICC B

B W

Ψ
=
Ψ +Ψ

                        (4) 

(Finch & Bolin, 2017: p. 237) 
ICC values can range from 0.0 to 1.0 (Byrne, 2012). Generally, if the ICCs are 

all small, e.g., <0.05, the between-group variance is low and possibly there is no 
need to specify an MLV CFA model (Hox, 2013; Brown, 2015). Muthén (1997) 
noted—as reproduced by Byrne (2012)—that while ICC values usually range 
from 0.00 to 0.50 ICC values of 0.10 or larger, for a group size of 15 or larger 
suggest that MLV data should definitely be modeled. However, Julian (2001) and 
Selig et al. (2008) cautioned that even with ICC < 0.10, the hierarchical structure 
of the data should be taken into account (Byrne, 2012). Mehta and Neale (2005) 
proposed a method to compare the factor variances at levels 1 and 2. Specifically, 
(as reproduced by Finch & Bolin, 2017 and Heck & Thomas, 2015) the factor 
loadings across levels must be invariant. Thus, the loadings for each indicator at 
level 1 are constrained to be equivalent to the corresponding loading at level 2. 

4. A Walk-Through into the Multilevel CFA 

Multilevel CFA models are evaluated in multiple steps (Hox, 2013). Byrne (2012) 
states that three different methods emerged over the years. The first was a me-
thod proposed by Muthén (1994) initially containing four phases with the 
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MUML as an estimator. Muthén (1989, 1990, 1991, 1994) simplified the multi-
level data analysis by using conventional SEM software by computing separate 
within and between-groups covariance matrices, which are orthogonal (uncor-
related) and additive (Heck & Thomas, 2015). However, as Byrne (2012) com-
ments, elaboration of the MLV modeling estimation—moving from MUML to 
FIML—plus the evolution of statistical software used (Kaplan et al., 2009) and 
Bayesian methods of estimation (Heck & Thomas, 2015) inevitably altered the 
original methodology proposed by Muthén (1994). Specifically, Byrne (2012) 
explains that some phases (2 - 4) were unified (c.f. Mplus, 1998-2012). The 
second method was proposed by Hox (2002) and it tests the fundamental as-
sumptions of MLV modeling by establishing benchmark models. Finally, the 
third method was developed by Mehta and Neale (2005) and is based on a 
process of 3 phases of fitting the univariate random intercepts to the data. The 
Hox (2002) method is described as the most uncomplicated to carry out (Selig et 
al., 2008; Byrne, 2012), but the Muthén (1994) approach is still the most fre-
quently used (Cheung & Au, 2005; Byrne, 2012). See Byrne (2012) for details. A 
brief description of the steps of the most widely used method proposed by 
Muthén (1994) or the general-specific method (Heck & Thomas, 2015) follows. 

The Steps of the method 
The following steps were described by Hox (2013) for regression and SEM 

models and they were further detailed for CFA models by Brown (2015) and by 
Heck and Thomas (2015), Byrne (2012) and Finch and Bolin (2017). The fol-
lowing three steps are suggested for the estimation of a two-level model with the 
within-structure fully specified (Hox, 2013; Brown, 2015). This method was 
originally proposed by Muthén (1994) using MUML estimator. However, as 
Byrne (2012) comments, subsequent elaboration of MLV modeling—from 
MUML estimator to FIML estimator—plus evolution of statistical software sim-
plified the method. A two-level model can be analyzed following three steps. 
• Step 1: The intraclass correlations of the indicators are first examined (ICCs) 

of the indicators to examine group-level properties, i.e., how much variance 
in the indicator is explained by group membership (Shumacker & Lomax, 
2016). In other words, to examine the extent of individual scores dependency 
within groups due to similarities of individuals (Field, 2013; Brown, 2015, 
Byrne, 2012; Tabachnick & Fidell, 2013; Kalaian & Kasim, 2007). The higher the 
ICC, the more score variance is attributed to the stratification or cluster (group-
ing variable). Using a design effect to estimate the difference between a mul-
ti-level nested design is possible as compared to a simple random sample 
(Shumacker & Lomax, 2016). As an alternative, using different non-hierarchical 
methods is possible, that do allow for a certain minor dependency in the data 
(Brown, 2015; Muthén & Muthén, 1998-2012). If the between-group va-
riances are substantial, then the between structure is necessary to be taken 
into account (Hox, 2013). 

• Step 2: Then the data of the within structure is analyzed (Level 1). At this 
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level (the individual level) a standard CFA is used (Hox, 2013) to ensure a 
viable measurement model at the within level with the between level un-
structured (Brown, 2015), or (beyond CFA) more generally statistical tech-
niques for clustered samples (cf. de Leeuw, Hox, & Dillman, 2008). First, we 
carry out a CFA to test the validity of the hypothesized structure based on the 
covariance matrix of the full sample, without taking into account the data 
hierarchy. If model modifications suggested by MIs are supported by subs-
tantive theory, the model can be re-specified accordingly to include addition-
al parameters used for the individual level only (Byrne, 2012: p. 355). The fit 
of the model is then examined with conventional fit criteria (e.g., Hu & 
Bentler, 1999) and if satisfactory the researcher proceeds to the next step. As 
a rule, fit indices used are (Byrne, 2012): χ2, Comparative Fit Index (CFI; 
Bentler, 1990), Root Mean Square Error of Approximation (RMSEA; Steiger 
& Lind, 1980), and Standardized Root Mean Square Residual (SRMR). 

• Step 3: if an acceptable measurement model emerges, the final step is to ex-
amine the between-level factor structure (Level 2) with the within-level factor 
structure (Level 1) completely modeled (Hox, 2013; Brown, 2015). Many 
MLV models with latent variables found in literature, but few of them are 
psychometrically oriented (Dedrick & Greenbaum, 2010; Byrne 2012). With 
an adequate fit for the single-level CFA model, then the factor structure of 
both individual and group level-data are tested simultaneously. Analyses can 
be based on robust Maximum likelihood (MLR; Muthén & Muthén, 
1998-2012) estimator. However, in this step an error message may occur re-
lated to the higher level of the model. That is the higher level of the model 
must be overidentified for the model to be estimated properly. Specifically, 
error messages occur due to the usually small sample of the higher level. Un-
luckily, even when estimated parameters at the higher level are adequate (i.e., 
the model is over-identified), the same error message may again appear (c.f. 
Byrne, 2012). Note that by using the variance—covariance formula [p (p + 
1)/2]) estimating the number of variance—covariance parameters when a 
group level is added is possible. However, in MLV CFA the number of 
variance—covariance parameters doubled and the k intercept parameters es-
timated at Level-2 are added (Heck & Thomas, 2015). If presented with per-
sistent error messages Byrne (2012) proposes to consider carrying out the 
MLV CFA analysis using the MUML estimator instead of the MLR. Note 
however, that MUML cannot handle deviations from multivariate normality. 
According to studies on the MUML (Hox & Maas, 2001; Yuan & Hayashi, 
2005) when using MUML the likelihood of inadmissible solutions is greater if 
the sample size at the higher level is less than 50 (quoted in Byrne, 2012). In 
an admissible solution, according to Hox and Maas (2001) as reproduced by 
Byrne (2012), as a rule the factor loadings are generally accurate, but the re-
sidual variances and the standard errors may be underestimated. 

If the estimation of the model will produce no errors the initial information 
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examined is the following: (a) model summary results like the number of clus-
ters in the analysis and the average cluster size, and (b) the ICCs pertinent to 
each of the observed variables. if’s the ICCs of the observed variables calculated 
in this step based on the simultaneous analysis at both levels are >0.10 (see 
Muthén, 1997 and Byrne, 2012), then the continuation of MLV analysis is sup-
ported (Julian, 2001; Byrne, 2012). Model Fit is evaluated by the following 
measures (Byrne, 2012): Chi-Square Test of Model Fit, Comparative Fit Index 
(CFI; Bentler, 1990), Tucker Lewis Index (TLI; Tucker & Lewis, 1973), Root 
Mean Square Error of Approximation (RMSEA; Steiger & Lind, 1980), and 
Standardized Root Mean Square Residual (SRMR) for the within model, Stan-
dardized Root Mean Square Residual (SRMR) for the between model (Byrne, 
2012). Akaike’s Information Criterion (AIC; Akaike, 1987), and the Bayesian 
Information Index (BIC; Raftery, 1993; Schwartz, 1978) can also be used for 
MLV model fit comparison (Heck & Thomas, 2015). Crucially, even if model fit 
is acceptable, the estimated parameters must be examined as well to decide if the 
model is acceptable (i.e. significant factor loadings and relatively low measure-
ment errors). These goodness-of-fit indices apply to the entire model. Specifi-
cally, they show to what extend the model fits the within-group model data and 
of the between-group model. Moreover, the likelihood function can be used for 
the calculation of the deviance statistic by multiplying with −2 (−2LL log like-
lihood function2), where the log is the natural logarithm and likelihood is the 
value of the likelihood function at convergence (Heck & Thomas, 2015). Gener-
ally, models with lower deviance show better fit than models with higher de-
viance (Hox, 2002; Heck & Thomas, 2015). 

Consider an example (Figure 3) where a 3-item questionnaire assessing Pa-
rental Satisfaction, e.g. Kansas Parental Satisfaction Scale (James et al., 1985) is 
administered to 620 parents from 31 different neighborhoods. This is a two-level 
data structure where parents are nested under neighborhoods with an average 
cluster size of 20. Note that the size of the sample at the individual level (Level 1) 
of the hierarchical structure is 620 and that at the group level (Level 2) is 31. The 
study objective would be to create a multilevel CFA model with two levels to 
take into consideration the variability of a hypothesized 3-item single-factor 
questionnaire (see Figure 3) with continuous data given the existing suggestions 
that as the number of scale points increases, ordinal data (>5 or 7 Likert points) 
then interval data are treated like continuous (Boomsma, 1987; Rigdon, 1998; 
Byrne, 2012). 

The path diagram in Figure 3 follows the conventions proposed by Muthén 
and Muthén (1998-2012). Note that indicators (x1 - x3) are within-levels ob-
served variables (parents), but at the between level (neighborhoods) they become 
latent variables. Therefore, the black circles of the 3 indicators shown in the path 
diagram are continuous random intercepts for the observed items that vary 
across clusters. Observed variables for each individual are assumed to have a 
unique, person specific, within-cluster source of variance (Mehta & Neale, 2005;  

 

 

2See also Satorra & Bentler (2010). 
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Figure 3. MLV CFA model with one factor and two levels. In the between-groups model, 
the random intercepts are continuous latent variables. Thus, they are represented small 
black ovals at the end of the latent factors arrows to illustrate random intercepts (Muthén 
& Muthén, 1998-2012). 

 
Heck & Thomas, 2015). On the between levels, the single factor (FB) is specified 
to account for the variation and covariation among these random intercepts 
(Brown, 2015). For a similar applied example, the readers can refer to Brown 
(2015). For instructions on how to extend the CFA model to three levels readers 
can refer to Heck & Thomas (2015). 

Brown (2015) notes that the following parameters are freely assessed (Muthén 
& Muthén, 1998-2012): factor variances at both levels, fixed intercepts at the 
between-level and indicator residual variances at both levels (Brown, 2015). By 
default, the latent-variable means and covariances of the residuals are fixed to 
zero at both levels. Note that the magnitudes of the variances of the parental sa-
tisfaction factors at both levels are not directly comparable unless the factors 
have a common metric. If the within and between levels have the same mea-
surement model, the equality of factor loadings across levels can be tested. The 
metrics of the within-and between-level factors will be equated if the factor 
loadings are equivalent. Therefore, factor variances will also be directly compa-
rable (Mehta & Neale, 2005; Brown, 2015). However, if there is no common scale 
of measurement across levels, the magnitude of the factor variances at each level 
is not directly comparable (Mehta & Neale, 2005; Heck & Thomas, 2015). Con-
sequently, establishing a common scale of measurement across levels is often 
useful (Heck & Thomas, 2015). Alternatively, Byrne (2012) follows the same 
procedure described above by omitting the initial calculation of the ICC. A 
second differentiation of the applied example proposed by Byrne (2012) is the 
inclusion of a different measurement model across levels. Finally, Byrne com-
ments that ideally, to get a more accurate result description the model fit must 
be evaluated separately for each of the two levels. This procedure is described 
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next, along with other important issues in the MLV CFA. 

5. Important Considerations of MLV CFA 

Model Estimation 
During early MLV SEM modeling—as Byrne (2012) describes—the parameter 

estimation was carried out mainly by full information maximum likelihood es-
timation (FIML) adjusted for multilevel data (MUML), and it was proposed by 
Muthén (1994). More recent advancements in SEM research brought about im-
portant refinements in ML estimation and MLV modeling (Heck & Thomas, 
2009; Kaplan et al., 2009). These newer estimation methods can be distinguished 
based on their approach to the computation of standard errors. The first of these 
methods is based on the MLF estimator; the second is based on the usual ML es-
timator on second-order derivatives and the third is based on the MLR estima-
tor, which is robust to nonnormality but also permits MLV analyses based on 
unbalanced groups. Given these new possibilities it was suggested that MUML 
estimator may no longer be needed (Yuan & Hayashi, 2005; Byrne, 2012). Ob-
viously, these estimation options increased SEM MLV modeling flexibility add-
ing computational power (Heck & Thomas, 2009). However, Byrne (2012) 
showed that MUML could be useful in case of errors generated during model es-
timation, typically caused by small sample size at levels > 1. 

Model fit evaluation 
As Finch and Bolin (2017) argue, fit statistics—maybe except Standardized Root 

Mean Square Residual (e.g. in Mplus; Muthén & Muthén, 1998-2012)—typically 
present combined model fit information about both levels (also Byrne, 2012). 
Usually points at Level 1 are greater than those of Level 2, fit indices primarily 
measure the level 1 model fit (Ryu & West, 2009; Byrne, 2012). Stapleton (2013) 
provides instructions on separate model fit evaluation at each level, reproduced 
here based on Finch and Bolin (2017). 

First, the Chi-square model fit statistics are calculated for Level 1 baseline 
models. This process is repeated for Level 2 baseline models. To calculate the 
baseline value for the level 1 part of the model, the covariances of the observed 
indicators are constrained to 0 at Level 1 and they are freely estimated at Level 2. 
By this method, the baseline Chi-square fit statistic is obtained. Similarly, to es-
timate the baseline value for the level 1 part of the model, the covariances of the 
observed indicators are constrained to 0 at Level 2 and they are freely estimated 
at Level 1. See an example of the path diagram of an MLV CFA Model with two 
factors in Figure 4. 

Following Stapleton’s (2013) steps for calculating fit statistics at each level 
separately, a saturated model specified at level 2 (i.e. with a perfect fit at that lev-
el), with the level 1 model fully specified. The resulting Chi-square fit statistic is 
then examined. Using an equation described by Ryu and West (2009), the com-
parative fit index (CFI) for the level 1 part of the model is then obtained. Like-
wise, we can obtain the level 2 CFI value in a comparable method, i.e. by obtaining  
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Figure 4. MLV CFA model with two factors and two levels. Again in the be-
tween—groups model, the random intercepts are continuous latent variables, represented 
by small black ovals to model random intercepts (Muthén & Muthén, 1998-2012). 

 
the Chi-square goodness of fit statistic for the level 1 saturated model. The fit at 
level 2 is then examined following typical CFA guidelines (e.g. Hu & Bentler, 
1999; Brown, 2015; Kline, 2016). Based on previous analyses the CFI values at 
levels 1 and 2 are both examined. The SRMR is also examined providing model 
fit information at both levels separately. From these results, we can decide if 
model fit at each level is acceptable. If the model shows a good fit to the data, the 
evaluation of model parameters comes next. 

Moreover, to estimate the amount of variance of the observed indicators, at-
tributed to each data level, the same latent structure at each level must be speci-
fied and the factor loadings must be constrained to equality at both levels (Mehta 
& Neale, 2005; Brown, 2015; Finch & Bolin, 2017; Heck & Thomas, 2015). In 
order to obtain the ICC for each factor, we would employ Equation 4 above, us-
ing the factor variances resulting from this constrained model (Finch & Bolin, 
2017). 

Sample Size 
ML estimation is notorious for requiring large sample sizes, and this is also 

true for MLV CFA (Heck, 2001; Hox, 2002; Hox & Maas, 2001; Muthén, 1994; 
Yuan & Bentler, 2002, 2004; Byrne, 2012). As a rule, in multilevel modeling, the 
sample size of the highest level is generally of primary importance, because the 
higher level sample sizes are smaller than the lower level sample sizes (Hox, 
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2013). A minimum sample size of 60 for the highest level was recommended by 
Eliason (1993) when using ML as an estimator (Hox, 2013). However, Maas and 
Hox (2005) set this value to at least 100 groups, although for uncomplicated 
models, even 50 groups may also suffice. Although these recommendations were 
initially made for regression models, multilevel regression accuracy of higher 
level variances also applies to SEM and CFA models, because multilevel SEM is 
also based on the within-group and between-group covariance matrices (Hox, 
2013; Hox, Maas, & Brinkhuis, 2010). 

Finally, an unequal sample size at each level is not a problem for the estima-
tion of the model, because unequal sample sizes are assumed by FIML (MLR or 
MLM). However, the interpretation of model fit indicators must be made cau-
tiously. Also in longitudinal models, missing values commonly attributed to 
missing occasions or panel dropout can be easily handled. Van Buuren (2011) 
has elaborated on incomplete multilevel data (Hox, 2013). For in depth analysis 
of the theoretical background and applied examples of MLV modeling the fol-
lowing resources are referred: Bovaird (2007), Heck (2001), Hox (2002, 2010), 
Kaplan et al. (2009), Little et al. (2000), Reise and Duan (2003), Selig et al. 
(2008), Hoffman (2007), Byrne (2012), Heck & Thomas (2015) and Finch & Bo-
lin (2017). Typically, when MLV CFA is carried out to establish construct valid-
ity additional analyses are required (Byrne, 2012), that are beyond the scope of 
this work. However, a detailed description a multi-phased method of construct 
validity was provided by Kyriazos (2018) or applied examples by Kyriazos, Stali-
kas, Prassa, Yotsidi (2018a, 2018b), Kyriazos, Stalikas, Prassa, Yotsidi, Galanakis, 
Pezirkianidis (2018) and Kyriazos, Stalikas, Prassa, Galanakis, Yotsidi, Lakioti 
(2018). Some specialized applications of MLV modeling within the SEM frame-
work are recommended by SEM experts (Byrne, 2012). Specifically, for informa-
tion on longitudinal analyses and/or latent growth curve modeling, Byrne refers 
readers to Chen, Kwok, Luo, and Willson (2010); Chou, Bentler, and Pentz 
(1998); Ecob and Der (2003); Hung (2010); Jo and Muthén (2003); Kwok, West, 
and Green (2007); MacCallum and Kim (2000); and Muthén, Khoo, Francis, and 
Boscardin (2003). 

6. Summary & Conclusion 

Multilevel modeling is an extremely complicated topic. We can only skim the 
surface of these intriguing sets of methods (Tabachnick & Fidell, 2013; Field 
2013). The need for multilevel modeling arose because data are sometimes col-
lected from people or other units that are “nested” in some fashion under dif-
ferent higher-level research units (Darlington & Hayes, 2017). These hierarchical 
models explicitly model lower and higher levels by taking into account the in-
terdependence of individuals within each sample group. In MLV CFA analysis, 
biases in parameter estimates, standard errors, and tests of model fit emerge if 
the hierarchical structure is ignored, additionally, if the nonindependence of the 
observations and the standard errors of parameter estimates may be underesti-
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mated, resulting in positively biased statistical significance testing (Brown, 2015). 
The MLV CFA procedure assumed that latent factors contain between- and 

within-group elements. The between-group element is typically the general part 
and the within-group element is the specific part of the model. During this 
process, if factor loadings are constrained to be invariant with its counterpart, factor 
loadings on the different level provide a way to equate factor scales across levels 
thus, enabling the direct comparison of factor variances across levels (Mehta & 
Neale, 2005; Heck & Thomas, 2015; Brown, 2015; Finch & Bolin, 2017). 

Alternatively, a different method can be used for evaluating clustered data and 
this is the hierarchical factor model (Bauer, 2003; Curran, 2003; Harnqvist, Gus-
tafsson, Muthén, & Nelson, 1994; Mehta & Neale, 2005; cited in Heck & Tho-
mas, 2015). During this procedure, the assumption of invariant factor loadings 
across levels is examined but additionally, the assumption of zero variability of 
the observed indicators at the cluster level is also evaluated (Mehta & Neale, 
2005; Heck & Thomas, 2015). If these two assumptions are true, a hierarchical 
factor model emerges, where latent variables at the individual level define the la-
tent factor at the higher level (Mehta & Neale, 2005; Heck & Thomas, 2015). 

During the estimation of multilevel CFA models, problems frequently arise. 
Specifically, due to the smaller sample size, or the necessity of a more parsimo-
nious structure, the between-group structure may be more prone to errors dur-
ing model estimation. Researchers are also in debate whether missing data are a 
problem (Heck & Thomas, 2015) or not (Hox, 2013). The MLV CFA is carried 
out in several steps. If a problem occurs, defining model starting values to boost 
the iteration of the software to a solution may be necessary (Heck & Thomas, 
2015). Alternatively, it could help to specify the model progressively, e.g. by de-
fining one factor at a time within the multilevel model. Sometimes this could 
help to learn exactly where the problem lies. Anyhow, patience is a valuable 
strength of character when carrying out a multilevel CFA (Heck & Thomas, 
2015)! 
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