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Abstract 
The existence of random attractor family for a class of nonlinear high-order 
Kirchhoff equation stochastic dynamical systems with white noise is studied. 
The Ornstein-Uhlenbeck process and the weak solution of the equation are 
used to deal with the stochastic terms. The equation is transformed into a 
general stochastic equation. The bounded stochastic absorption set is ob-
tained by estimating the solution of the equation and the existence of the 
random attractor family is obtained by isomorphic mapping method. Temper 
random compact sets of random attractor family are obtained. 
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1. Introduction 

In this paper, we study the random attractor family of solutions to the strongly 
damped stochastic Kirchhoff equation with white noise: 

( )( ) ( ) ( ) ( )
2

, ,m mm
tt tu M D u u u g x u q x Wβ+ −∆ + −∆ + =       (1.1) 

with the Dirichlet boundary condition 

( ), 0, 0, 1, 2, , 1, , 0,
i

i

uu x t i m x t
v
∂

= = = ⋅⋅⋅ − ∈∂Ω >
∂

           (1.2) 

and the initial value conditions 

( ) ( ) ( ) ( )0 1,0 , ,0 , ,n
tu x u x u x u x x R= = ∈Ω ⊂            (1.3) 

where 1m >  is a positive integer; 0β >  is a constant; Ω  is a bounded re-
gion with smooth boundary in nR . ∆  is the Laplacian with respect to the va-
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riable to variable x∈Ω . M is a general real-valued function; ( ),g x u  is a 
non-linear and non-local source term. W  is derivative of a one-dimensional 
two-valued Wiener process ( )W t  and ( )q x W  formally describes white noise. 

B.L. Guo and X.K. Pu described in detail the related concepts and theories of 
infinite dimensional stochastic dynamical systems, and discussed in detail the 
existence and uniqueness, attractor and inertial manifold of some nonlinear 
evolution equations and wave equation solutions in [1] [2]. 

D.H. Cai and X.M. Fan [3], considered the dissipative KDV equation with 
multiplicative noise. 

( ) ( ) ( )d d d d , , 0.xxxx xx xxu au u uu ru t f x t bu W t x D tβ= + + + = + ∈ >    (1.4) 

By transforming the equation into a stochastic KDV-type equation without 
white noise, the existence of stochastic attractors for dynamic systems deter-
mined by the original equation is proved by discussing the dynamic absorptivity 
and asymptotic property determined by the new equation. 

Yin et al. [4] have mainly studied the dissipative Hamiltonian amplitude 
modulated wave instability equation with multiplicative white noise. 

( ) ( )2d d d d d d .t t xt xx xu u t u t u t iu f u u t u W tα β γ+ − − + + = ⋅       (1.5) 

Stochastic dynamic system has compact random attractors in space 
2

0 1E H L= × . 
Xu et al. [5] studied the non-autonomous stochastic wave equation with dis-

persion and dissipation terms. 

( ) ( ) ( ) d, , .
dtt t tt t
Wu u u u h u u u f x u g x t u u
t

α β λ ε− ∆ − ∆ − + + + = + ⋅    (1.6) 

The existence of random attractors for non-autonomous stochastic wave equ-
ations with product white noise is obtained by using the uniform estimation of 
solutions and the technique of decomposing solutions in a region. 

Lin et al. [6] studied the existence of stochastic attractors for higher order 
nonlinear strongly damped Kirchhoff equation. 

( ) ( )( ) ( ) ( ) ( )
2

d d d , , 1.m mm
t tu u D u u g u t q x W t x mφ + −∆ + −∆ + = ∈Ω >  

(1.7) 

The O-U process is mainly used to deal with the stochastic terms, and the exis-
tence of stochastic attractors is obtained. 

Qin et al. [7] studied random attractors for the Kirchhoff-type suspension 
bridge equations with Strong Damping and white noises. 

( ) ( ) ( )22 2 .tt tu u u p u u bu f u q x W++ ∆ + ∆ + − ∇ ∆ + + =          (1.8) 

Kirchhoff stress term ( )2p u u− ∇ ∆  and dissipation term bu+  are treated. 
It is assumed that the non-linear term ( )f u  satisfies the growth and dissipa-
tion conditions. 

For more relevant studies, it can be referred to references in [8]-[13]. 
On the basis of some random attractors of Kirchhoff equation with white 
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noise studied by predecessors, the existence and uniqueness of solutions of sto-
chastic higher-order Kirchhoff equation with strong damping of white noise, 
nonlinear and non-local source terms and the existence of attractors of stochas-
tic Kirchhoff equation are discussed. This paper is organized as follows. In Sec-
tion 2, some basic assumptions and basic concepts related to random attractor 
for general random dynamical system are presented. Section 3 deals with ran-
dom term and proof the existence of random attractor family by using the iso-
morphism mapping method. 

2. Preliminaries 

In this section, some symbols are made and assumption Kirchhoff Stress term 
( )M s  satisfying condition (a) and Nonlinear term ( ),g x u  satisfies condition 

(b). In addition, some basic definitions of stochastic dynamical systems are also 
introduced. 

For narrative convenience, we introduce the following symbols: 

( ) ( ) ( ) ( )1 2
0 0, , ,m mD H H H H L= ∇ Ω = Ω ∩ Ω = Ω  

( ) ( ) ( )1
0 0 ,m k m kH H H+ +Ω = Ω ∩ Ω  

( ) ( ) ( )0 0 , 0,1, 2, , .m k k
kE H H k m+= Ω × Ω =   

And definition 
( ) ( ) ( ) ( )1 2 1 2 1 2, , , , , , 1, 2.m k m k k k

i i i ky y u u v v y u v E i+ += ∇ ∇ + ∇ ∇ ∀ = ∈ =   (2.1) 

Kirchhoff Stress term ( )M s  satisfies condition (a): 
a) ( )M s  is locally bounded and measurable, ( ) ( )2M s C∈ Ω  and 

( )0 11 M sε σ σ+ ≤ ≤ ≤  where 1 2,σ σ  is a constant; 
Nonlinear term ( ),g x u  satisfies condition (b): 
b) Let ( ),g x u  be nonnegative nonlocal bounded and measurable, 
( ) ( )2,g x u C∈ Ω , ( ) ( )( ), 1 Pg x u a x u≤ + , ( )0 a x<  and ( ) 1a x C∈ ; 
Here are some basics about random attractors. 
Let ( ) ( ) ( ) ( )( ), kB R F B X B w D w+ × × ⊂  be a probabilistic space and define 

a family of transformation { },t t Rθ ∈  preserving measures and ergodicity: 

( ) ( ) ( ) ,t w w t w tθ ⋅ = ⋅+ −                    (2.2) 

then ( )( ), , , t t R
F P θ

∈
Ω  is an ergodic metric dynamical system. 

Let ( ), XX ⋅  be a complete separable metric space and ( )B X  be a Borel 
σ-algebra on X. 

Definition 2.1. ([7]) Let ( )( ), , , t t R
F P θ

∈
Ω  is a metric dynamic system, sup-

pose that the mapping 

( ) ( ): ,  , , , , ,S R X X t w x S t w x+ ×Ω× →            (2.3) 

is ( ) ( )( ) ( ),B R F B X B X+ × × -measurable mapping and satisfies the following 
properties: 

1) The mapping ( ) ( ), : , ,S t w S t w= ⋅  satisfies 

( ) ( ) ( ) ( )0, ,  , , , ;sS w id S t s w S t w S s wθ= + =          (2.4) 
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2) ( ) ( ), , , ,t w x S t w x  is continuous, for any w∈Ω . 
Then S is a continuous stochastic dynamical system on ( )( ), , , t t R

F P θ
∈

Ω . 
Definition 2.2. ([7]) It is said that the random set ( )B w X⊂  is tempered, 

for , 0w β∈Ω ≥ , we have 

( )( )lim inf e 0s
ss

d B wβ θ−
−→∞

=                   (2.5) 

where ( ) sup X
x B

d B x
∈

= , for any x X∈ . 
Definition 2.3. ([7]) Note that ( )D w  is the set of all random sets on X, and 

random set ( )kB w  is called the absorption set on ( )D w . If for any 
( ) ( )kB w D w⊂  and . .P a e w− ∈Ω , there exists ( ) 0BT w >  such that 

( ) ( )( ) ( )0, .t tS t B Bθ ω θ ω ω− − ⊂                  (2.6) 

Definition 2.4. ([7]) Random set ( )A w  called the random attractor of con-
tinuous stochastic dynamical systems ( )S t  on X, if random set ( )A w  satisfies 
the following conditions: 

1) ( )A w  is a random compact set; 
2) ( )A w  is the invariant set ( )D w , that is, for any 0t >   
( ) ( ) ( ), tS t w A w A wθ= ; 
3) ( )A w  attracts all the set on ( )D w , that is, for any ( ) ( )B w D w⊂  and

. .P a e w− ∈Ω , with the following limit: 

( ) ( )( ) ( )( )lim , , 0,t tt
d S t w B w A wθ θ− −→∞

=              (2.7) 

where ( ), supinf Hy Bx A
d A B x y

∈∈
= −  is Hausdorff half distance. (where  

,A B H⊆ ). 
Definition 2.5. ([7]) Let random set ( ) ( )kB w D w⊂  be a random absorbing 

set of stochastic dynamical system ( )( ) 0
,

t
S t w

>
, and the random set ( )kB w  sa-

tisfy: 
1) Random set ( )kB w  is a closed set on Hilbert space X. 
2) For . .P a e w− ∈Ω , random set ( )kB w  satisfies the following asymptotic 

compactness conditions: for any sequence ( ) ( )0,
n nn n t tx S t w B wθ θ− −∈ , there is 

an convergence subsequence in space X, when nt → +∞ , Then stochastic dy-
namical system ( )( ) 0

,
t

S t w
>

 has a unique global attractor. 

( )
( )

( ) ( )0, .
k

k t tt w t
A S t B

τ τ
ω θ ω θ ω− −≥ ≥

= ∩ ∪                  (2.8) 

The Ornstein-Uhlenbeck process [7] is given as following. 
Let ( ) ( )0

e dt
t tz w wαθ α θ τ τ

−∞
= − ∫ , where t R∈ . For any 0t ≥ , the stochastic 

process ( )tz wθ  satisfies the Ito equation 

( )d d d .z z t W tα+ =                         (2.9) 

According to the nature of O-U process, there exists a probability measure P, 

tθ -invariant set, and the above stochastic process 

( ) ( )0
e d .t tz ατθ ω α θ ω τ τ

−∞
= − ∫                   (2.10) 

satisfies the following properties 
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1) The mapping ( )sS z θ ω→  is a continuous mapping, for any given 

0ω∈Ω ; 
2) The random variable ( )z ω  is tempered; 
3) There exist a tempered set ( ) 0r ω > , such that 

( ) ( ) ( ) ( )2 2e ;
t

t t tz w z w r w r w
α

θ θ θ+ ≤ ≤              (2.11) 

4) ( ) 2

0

1 1lim d
2

t

t
z

t τθ ω τ
α→∞

=∫ ;                                   (2.12) 

5) ( )
0

1 1lim d
t

t
z

t τθ ω τ
πα→∞

=∫ .                                  (2.13) 

3. The Existence of Random Attractor Family 

In this section, we consider the existence of random attractor family. To deal 
with the random term we need to transform the problem (1.1) - (1.3) into a gen-
eral stochastic problem. It is proved that there exists a bounded stochastic ab-
sorption set for stochastic dynamical systems. The stochastic dynamical system 
exists stochastic attractor family and a slowly increasing stochastic compact 
set. 

For convenience, Equation (1.1) - (1.3) can be transformed into 

( ) ( ) ( ) [ ]

( ) ( ) ( ) ( )

2

2

0 1

d d

d , d d , 0, ,

,0 , ,0

t

m
m m

t t

t

u u t

u M A A u A u g x u t q x W t t

u x u x u x u x

β

 =


     + + + = ∈ +∞      
= =

 (3.1) 

where A = −∆ . 
Let ( )T, , tu y y u uφ ε= = + . Then the problem (3.1) can be simplified to: 

( )
( ) ( )T

0 0 1 0

d d ,

,

tL t F

u u u

φ φ θ ω φ

φ ω ε

 + =


= +
                    (3.2) 

where 

( )
2

22
, ,m

m m

I I
u

L
M A u A I A Iy

ε

φ
βε ε β ε

− 
      = =    − + −         

 

( ) ( ) ( ) ( )
0

, .
, dtF

g x u q x W t
θ ω φ

 
=  − + 

 

Let ( ) ( )tv y q x δ θ ω= − , then the question (3.2) can be written as: 

( )
( ) ( ) ( )( )T

0 0 1 0

,

,

t

t

d L dt F

u u u q x

ϕ ϕ θ ω ϕ

ϕ ω ε δ θ ω
′

 + =


= + −
            (3.3) 

where 
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( )
2

22
, ,m

m m

I I
u

L
M A u A I A Iv

ε

ϕ
βε ε β ε

− 
      = =    − + −         

 

( )
( ) ( )

( ) ( ) ( ) ( )
, .

, 1
t

t m
t

q x
F

g x u A q x

δ θ ω
θ ω ϕ

β ε δ θ ω

 
 =
 − − + + 

 

Lemma 3.1. Let ( ) ( )0 0
m k k

kE H H+= Ω × Ω  for any ( )T
1 2, ky y y E= ∈   

( )1,2, ,k m=  , if 10
1

ε
β

< ≤
−

,  

( )
22

1 2 2, ,
k k

m k
E ELy y k y k y+≥ + ∇             (3.4) 

where ( )2 2
1 1

1 2

12
min ,

2 2 2

m m

k k
β βε εβε ε ε λ βλ βε ε

β β

− − + + − − −
= = 

 
， . 

Proof: For any ( )T
1 2,y y y= , according to hypothesis (a), we have 

( ) ( )( )

( )

( ) ( )
( ) ( )

2

2
1 2 1 1

2
1 1 2 2 2

2
2

2
1 1 2 1 2

2
1 2 1 2

2 2 2 2

, ,

,

( , ) ,

, ,

, ,

k

m
m k m k k m

E

m m k

m
m k m k m k m k m k

m k m k k k

m k m k k k

Ly y y y y M A u A y

A y y A y y y

y y y M A u y y

y y y y

y y y y

ε

βε ε β ε

ε

βε ε

β ε

+ +

+ + + + +

+ +

+ +

  
  = ∇ − ∇ + ∇
  

 

− + + − ∇



 
 = ∇ − ∇ ∇ + ∇ ∇
 
 

− ∇ ∇ + ∇ ∇

+ ∇ ∇ − ∇ ∇

 

( ) ( )

( )( ) ( )
( ) ( )

( )( ) ( )
( ) ( )

2
2

2
1 1 2 1 2

2
1 2 1 2

2 2 2 2

2 2
1 1 2 1 2

2 2 2 2

, ,

, ,

, ,

, ,

, ,

m
m k m k m k m k m k

m k m k k k

m k m k k k

m k m k m k k k

m k m k k k

y y y M A u y y

y y y y

y y y y

y y y y y

y y y y

ε ε

ε βε ε

β ε

ε βε ε ε

β ε

+ + + + +

+ +

+ +

+ + +

+ +

  
  = ∇ − ∇ ∇ + − ∇ ∇
  

  
+ − ∇ ∇ + ∇ ∇

+ ∇ ∇ − ∇ ∇

≥ ∇ − − ∇ ∇ + ∇ ∇

+ ∇ ∇ − ∇ ∇

 

( )

( )

2 2 2

1 1 2

2 22 2 2

1 2 2 2

2 22 2 2

1 2 1

22

2 2

22 2 21
1 2 1

1( )
2 2

2 2
2

2 2 2
2

2 2
1

2 2 2

m k m k m k

k k m k k

m k m k k

m k k

m
m k m k m k

y y y

y y y y

y y y

y y

y y y

β β εβε εε
β

ε βε β ε
β

βε βε ε β β ε βε ε
β β β

β βε ε

β βε ε ε λβε ε
β β β

+ + +

+

+ +

+

−
+ + +

−−
≥ ∇ − ∇ − ∇

− ∇ − ∇ + ∇ − ∇

− + − +
= ∇ − ∇ − ∇

+
+ ∇ − ∇

− ++
≥ ∇ + ∇ − ∇
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( )

( )

2 21
2

2 2 21
1 2

2 21
2

2 2 2

1 1 2 2 2

22
1 2 2

2
2

1
2 2

2
2

.
k

m
k

m
m k m k

m
k

m k k m k

m k
E

y

y y

y

k y y k y

k y k y

βλ βε ε

β βε εβε ε ε λ
β β

βλ βε ε

−
+ +

+ +

+

− −
+ ∇

− ++ −
= ∇ + ∇

− −
+ ∇

≥ ∇ + ∇ + ∇

≥ + ∇

           (3.5) 

where ( )2 2
1 1

1 2

12
min , ,

2 2 2

m m

k k
β βε εβε ε ε λ βλ βε ε

β β

− − + + − − −
= = 

 
. 

Lemma 3.1 is proved. 
Lemma 3.2. Let φ  be a solution of the problem (3.2), then there exists a 

bounded random compact set ( ) ( )0k kB D Eω ∈ , so that for any random set 
( ) ( )0k kB D Eω ∈ , there exists a random variable ( ) 0

kBT ω > , such that 

( ) ( ) ( ) ( )0, , , .
kt k t k Bt B B t T ωφ θ ω θ ω ω ω− ⊂ ∀ ≥ ∈Ω           (3.6) 

Proof: Let ϕ  be a solution of the problem (3.3), by taking the inner product 
of two sides of the Equation (3.3) is obtained by using ( )T, ku v Eϕ = ∈ , 

( ) ( )( )21 d , , , .
2 d kk tEE L F

t
ϕ ϕ ϕ θ ω ϕ ϕ+ =               (3.7) 

From Lemma 1, we have 

( )
22

1 2, .
k

m k
EL k k vϕ ϕ ϕ +≥ + ∇                   (3.8) 

According to the inner product defined on kE . 

( )( ) ( ) ( )( ) ( )((
( ) ( ) ( )) )

, , , ,

1 , .

m k m k k
t t

m k
t

F q x u g x u

A q x v

θ ω ϕ ϕ δ θ ω

ε β δ θ ω

+ += ∇ ∇ + ∇ −

+ + − ∇
       (3.9) 

According to Holder inequality, Young inequality and Poincare inequality, we 
have 

( ) ( )( ) ( ) ( )
2

21 2, .
2 2

mm mm k m k m k
t tq x u A q x uλ εδ θ ω δ θ ω

ε

− ++ + +∇ ∇ ≤ + ∇   (3.10) 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
2

2 222 12

1 ,

1 .
2 2

m k m k
t

m mmk m k
t t

A q x v

q x A q x v

β δ θ ω

ελ
δ θ ω β δ θ ω

ε

+

−+ +

∇ − ∇

 
 ≤ ∇ + + ∇
 
 

 (3.11) 

( ) ( )( ) ( ) ( )
2 22 1, .

2 2

m
k k k m k

t tq x v q x vελεε δ θ ω δ θ ω
−

+∇ ∇ ≤ ∇ + ∇    (3.12) 

According to hypothesis (b), we have 
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( )( )
( ) ( )( )
( ) ( )

( )

2 2

1
2 22

1

2 221 1
2

, ,

, , 1 d

1 d

.
2 2

k k

pk k

p k k

m k
m k

g x u v

g x u v a x u v x

a x u x v C v

Cvβε λ
βε

Ω

∞ Ω

− −
+

−∇ ∇

≤ ∇ ≤ + ∇

≤ + ∇ ≤ ∇

≤ ∇ +

∫

∫
         (3.13) 

Combining (3.8)-(3.13) yields, we have 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

22 2
1 2

2
2 221 12

222 22 2 12

2 22 22 1 1
2

1 d
2 d

2 2 2

1
2 2 2

.
2 2 2

k k

m k
E E

mm mm m k m k
t

m mmk m k
t t

m k
k m k

t

k k v
t

A q x u v

q x A q x v

Cq x v

ϕ ϕ

λ ελεδ θ ω
ε

ελβδ θ ω δ θ ω
ε ε

βε λε δ θ ω
βε

+

− −+ + +

−+ +

− −
+

+ + ∇

≤ + ∇ + ∇

+ ∇ + + ∇

+ ∇ + ∇ +

(3.14) 

Then 

( )( )

( ) ( )

( ) ( ) ( ) ( )

22 2 2
1 2 1 1

22 22 21 2
2

2
22 21 2

d 2 2
d

2

1 .

k k

m km m k
E E

mmm k
t

mm m k
t t

k k v
t

Cu A q x

A q x q x

ϕ ϕ ελ βε λ

βε δ θ ω
εβε

λ
δ θ ω ε δ θ ω

ε ε

− −− +

++

− +

+ + ∇

≤ ∇ + +

 + + + ∇ 
 

- 2 -

  (3.15) 

Taking 12kη = , 

( ) ( ) ( ) ( )

( ) ( )

2 22
2 212 2

1

2 21 .

m mmm m

t t

k
t

P A q x A q x

q x

λβ δ θ ω δ θ ω
ε ε

ε δ θ ω
ε

−+ +
= +

 + + ∇ 
 

 

we have 

( ) 22 2
2 1

d .
d k k tE E C P

t
ϕ η ϕ δ θ ω+ ≤ +             (3.16) 

By the Gronwall inequality, . .P a eω− ∈Ω  then 

( ) ( ) ( ) ( )( )2 2 2
0 2 10

, e e d .
k k

t t rt
rE E

t C P rηηϕ ω ϕ ω δ θ ω− −−≤ + +∫     (3.17) 

And because ( )tδ θ ω  is tempered, and ( )tδ θ ω  is continuous about t, so 
according to reference [7], we can get a temper random variable 1 :r R+Ω → , so 
that for any ,t R ω∈ ∈Ω , we have 

( ) ( ) ( )2 2
1 1e .

t

t tr r
η

δ θ ω θ ω ω≤ ≤                 (3.18) 

Replace ω  in Equation (3.17) with tθ ω− , we can obtain that 
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( ) ( ) ( ) ( )( )2 2 2
0 2 10

, e e d ,
k k

t t rt
t t tE E

t C p rηηϕ θ ω ϕ θ ω δ θ ω− −−
− −≤ + +∫  (3.19) 

where ( r t τ− = ) 

( ) ( )( )
( )( ) ( )

2
2 10

0 2 2
2 1 1 1

e d

2e d .

t t r
r t

t

C p r

CC p r p r

η

ητ
τ

δ θ ω

δ θ ω ω
η η

− −
−

−

+

= + ≤ +

∫

∫
        (3.20) 

Because ( ) ( )0 t ok tBϕ θ ω θ ω− −∈  is also temper, and ( )tδ θ ω−  is also tem-
pered, so we can let 

( ) ( )2 2
0 1 1

2 .
CR p rω ω
η η

= +                  (3.21) 

Then ( )2
0R ω  is also temper, ( ){ }0 0

ˆ :
kk k EB E Rϕ ϕ ω= ∈ ≤  is a random 

absorb set, and because of 

( ) ( )

( ) ( ) ( ) ( )( )( ) ( ) ( )( )
0

T T
0

,

, 0, 0, .

t t

t t t t

S t

t q x q x

θ ω ϕ θ ω

ϕ θ ω ϕ θ ω δ θ ω δ θ ω

−

− − − −= + −
  (3.22) 

So let 

( ) ( ) ( ) ( ) ( ){ }0 0 0
ˆ : .

k

k
k k EB E R w q x w R wω ϕ ϕ δ= ∈ ≤ + ∇ =     (3.23) 

then ( )0
ˆ

kB ω  is a random absorb set of ( ),tϕ ω , and ( ) ( )0
ˆ

k kB D Eω ∈ . 
Thus, the whole proof is proved. 
Lemma 3.3. When k m= , for any ( ) ( )m mB D Eω ∈ , Let ( )tφ  is a solution 

of the Equation (3.2) with the be initial value ( )T
0 0 1 0, mu u u Bφ ε= + ∈ , it can be 

decompose 1 2φ φ φ= + , where 1 2,φ φ  satisfy 

( )
1 1

T
10 0 0 1 0

d d 0

,

L t

u u u

φ φ

φ φ ε

+ =


= = +
                  (3.24) 

( )2 2

20

d d ,
0
L t Fφ φ ω φ

φ
+ =


=

                   (3.25) 

Then ( ) ( )2
1 , 0,

m
t E

t tφ θ ω → →∞ , for any ( ) ( )0 t m tBφ θ ω θ ω−∈ , there exist a 
temper random radius ( )1R ω , such that 

( ) ( )2
2 1, .

m
t E

t Rφ θ ω ω− ≤                    (3.26) 

Proof: Let ( ) ( ) ( )( )TT
1 2 1 1 1 2 2 2, ,t t tu u u u u u q xϕ ϕ ϕ ε ε δ θ ω= + = + + + −  is a 

solution of Equation (3.3), then according to the Equation (3.24) and (3.25), we 
can see that 1 2,ϕ ϕ  meet separately 

( )
1 1

T
10 0 0 1 0

d d 0

,

L t

u u u

ϕ ϕ

ϕ ϕ ε

+ =


= = +
                 (3.27) 

( )2 2

20

d d ,
0
L t Fϕ ϕ ω ϕ

ϕ
+ =


=

                  (3.28) 

By taking the inner product of equation within mE , we have 

https://doi.org/10.4236/apm.2019.94018


G. G. Lin, Z. X. Li 
 

 

DOI: 10.4236/apm.2019.94018 413 Advances in Pure Mathematics 
 

( )2
1 1 1

1 d , 0.
2 d mm EE L

t
ϕ ϕ ϕ+ =                   (3.29) 

According to lemma 1 and Gronwall inequality, 

( ) ( )1
2 22

1 0, e .
m m

k t
E E

tϕ ω ϕ ω−≤                  (3.30) 

Replacing ω  by tθ ω−  in (3.30), because ( )t mBδ θ ω− ∈  is tempered, then 

( ) ( ) ( )1
2 22

1 0 0, e 0, .
m m

k t
t t t mE E

t Bϕ θ ω ϕ θ ω ϕ θ ω−
− − −≤ → ∀ ∈     (3.31) 

Taking inner product (3.30) with ( ) ( )( )T
2 2 2 2, t tu u u q xϕ ε δ θ ω= + −  in mE  

and from Lemma 1 and Lemma 2, we have 

( ) 22 2
2 2 3 2

d .
d m m tE E C P

t
ϕ η ϕ δ θ ω+ ≤ +             (3.32) 

where ( ) ( ) ( )
2 23 32 212 2

1 2
12 ,

m mm
kk P A q x A q x q xλβη ε

ε ε ε

−  = = + + + ∇ 
 

. 

Replacing ω  by tθ ω−  in (3.32) and from Gronwall inequality, we have 

( ) ( ) ( ) ( )( )
( )

2 2 2
2 20 2 10

3
2 1

, e e d

2 .

m m

t t rt
t t r tE E

t C P r

C
P r

ηηφ θ ω φ θ ω δ θ ω

ω
η η

− −−
− − −≤ + +

≤ +

∫
  (3.33) 

So there is exist a temper random radius 

( ) ( )2 3
1 2 1

2 .
C

R P rω ω
η η

≤ +                    (3.34) 

For any ω∈Ω , 

( ) ( )2 1, .
m

t E
t Rϕ θ ω ω− ≤                   (3.35) 

This completes the proof of Lemma 3.3. 
Lemma 3.4. The Stochastic Dynamic System ( ){ }, , 0S t tω ≥ , while 0t = , 

. .P a eω− ∈Ω  determined by Equation (3.2) has a compact attracting set 
( ) kK Eω ⊂ . 
Proof: Let ( )K ω  be a closed ball with radius ( )1R ω  in space kE . Ac-

cording to the embedding relation 0kE E⊂ , then ( )K ω  is a compact set in 

kE . for any temper random set ( )kB ω , for any ( ), t kt Bϕ θ ω∀ ∈ , according to 
Lemma 3.1, ( )2 1 Kϕ ϕ ϕ ω= − ∈ , so for any ( ) 0

kBt T ω∀ ≥ > , we have 

( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )

( ) ( )

2 2

2
0

, ,

inf , ,

e 0,

k

k k

k

E t k t

t tE Et K

t
t E

d S t B K

t t t

t

ϑ ω

η

θ ω θ ω ω

ϕ θ ω ϑ ϕ θ ω

ϕ θ ω

− −

− −∈

−
−

= − ≤

≤ → →∞

         (3.36) 

So, the whole proof is complete. 
According to Lemma 3.1 - Lemma 3.4, there are the following theorems. 
Theorem 3.1. Random dynamical system ( ){ }, , 0S t tω ≥  has a family of 

random attractors ( ) ( ) ,k kA K Eω ω ω⊂ ⊂ ∈Ω , and there exists a slowly in-
creasing random set ( )K Ω , 
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( ) ( ) ( )
0

,k t tt t
A S t K

τ
ω θ ω θ ω− −≥ ≥

= ∩ ∪                (3.37) 

And ( ) ( ) ( ), .k k tS t A Aω ω θ ω=  
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