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Abstract 
Since rail-road transport uses road and rail networks and requires the trans-
shipment infrastructures at the terminals, its competitiveness depends not 
only on the costs but also on the location of these terminals. This paper fo-
cused on providing a methodology for determining the optimal locations for 
intermodal freight transportation terminals in consolidation network. The 
goal is to minimize total costs in order to increase the efficiency of the trans-
portation system. This paper also has allowed us to have an overview of the 
methods and models that exist for solving the problem of intermodal and 
terminal locating. 
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1. Introduction 

Localization consists of determining the location of one or more installations in 
order to optimize an economic function depending on the distances between 
these installations and a set of potential users. 

Mathematical models have been developed and used to solve intermodal 
transport problems. These models can be classified in several ways. The classifi-
cation can be based on the distinction between the type of space in which the 
terminal is to be located, the nature of the inputs (for example: static or dynam-
ic, deterministic or probabilistic), the type of metric used, the number of facili-
ties to be located, on the nature of the demand (elastic or inelastic), depending 
on whether the capacity of the installations is taken into account or not, etc. 

If the classification criterion used is the type of space in which the installations 
are to be located, then the problems are differentiated according to whether the 
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space considered is continuous or discrete. The formulation of the location in a 
continuous space suggests that a site can be selected anywhere in the plane. In 
other words, there is a continuum of potential locations. On the other hand, the 
formulation of the localization in a discrete space considers that there are only a 
finite number of potential sites. 

Recent location models also consider temporal or random aspects [1]. The 
strategy of location problems implies that the model considers the evolution of 
demand. The investment required to set up terminals is generally important. 
Terminal must remain functional for a sufficient period of time. 

In this study, we present some location models that form the basis of distribu-
tion network design issues. A whole line of research has developed around one 
of the first pioneers of the theory of localization [2]. Since Weber’s work, several 
works have been done dealing with location-allocation problems. 

This paper is organized as follows. Section two provides terminal location 
models based on deterministic model, stochastic models and hub location mod-
els. The paper ends with a conclusion in Section three. 

2. Terminal Location Models 

Weber [2] developed the first industrial location model. He considered the 
problem of locating a service offering point so that the cost of transport is mini-
mized. This model is then enriched by many works such as those of [3] [4] [5] 
[6], and [7]. 

Since then, many localization models have been developed and require four 
inputs [8]: 
• customers whose position is known (demand nodes); 
• terminal to locate; 
• the space where customers and terminal are located; 
• a metric that indicates distances (or times, transportation costs, ...) between 

customers and terminals. 

2.1. Deterministic Model 

The deterministic models that form the basis of these problems are classified in-
to three categories: 
 Covering problem; 
 P-center problems; 
 P-median problems 

a) Covering Problem 
In many location problems, the service to the client (from the installation that 

is located) depends on the distance between the client and the installation to 
which the client is assigned. Customers are usually assigned to the nearest facili-
ty. The service is considered adequate if the distance between the client and the 
facility to which it is assigned is smaller than a given distance. This leads to the 
notion of coverage. 
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The objective of this type of problem is to locate terminals to serve all demand 
nodes, with a minimum total cost. A demand node is covered by a service, if the 
distance or time between that node and the nearest terminal is not greater than a 
specified value. 

Parameters: 
n: Number of demand points indexed by { }, 1, ,j j J n∈ =   
m: Number of potentials terminals indexed by { }, 1, ,i i I m∈ =   
P: Number of terminal to be located 1 P m≤ ≤  

jia  = 1 if the potential terminal i cover the demand node j 
      0 if not 

ic : Installation cost at potential site j 
Decision variables 

ix : 1 if terminal is located at i 
   0 if not 
Minimize:  

i i
i I

c x
∈
∑                             (1.1) 

Constraints: 

1,i i
i I

c x j J
∈

≥ ∀ ∈∑                      (1.2) 

{ }0,1ix ∈                          (1.3) 

The objective function (1.1) minimizes the total cost of the facilities that are 
selected. The constraints (1.2) stipulate that each demand node j must be served 
by at least one terminal; the left-hand side of the inequality gives the number of 
localized terminals that can serve node j. The constraints (1.3) are the integrity 
constraints. 

This problem requires a very restrictive condition: every demand point must 
be served. In a problem containing a lot of scattered demanded nodes, the full 
covering condition can lead to solutions with too many terminals so costly. [9] 
Then introduce the Maximum Covering Location Problem (MCLP). The MCLP 
abandons full covering to maximize covered demand with a limited number of 
terminal to open. To formulate this problem, the following notations must be 
added: 

Parameters: 
n: Number of demand points indexed by { }, 1, ,j j J n∈ =   
m: Number of potentials terminals indexed by { }, 1, ,i i I m∈ =   
P: Number of terminal to be located 1 P m≤ ≤  

jh : Demand at node j 
Decision variables: 

jZ : 1 if node j is opened 
    0 if not 
With these additional notations, the maximum coverage problem can then be 

formulated as follows: 
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Maximize 

j j
j J

h Z
∈
∑                           (1.4) 

Constraint 

,ji i i
i I

a x Z j J
∈

≥ ∀ ∈∑                    (1.5) 

i
i I

x P
∈

≤∑                         (1.6) 

{ }0,1 ,ix i I∈ ∀ ∈                     (1.7) 

{ }0,1 ,jZ j J∀ ∈                      (1.8) 

The objective function (1.4) maximizes the number of demand covered. Con-
straints (1.5) indicate that the demand at node i cannot be covered until at least 
one site that covers node i is selected. The constraint (1.6) stipulates that p 
maximum terminals can be located. As long as p is greater than the number of 
terminals needed to cover all the demand nodes, the constraint (1.6) will not af-
fect the obtaining of the optimal solution to cover all the demand nodes. Con-
straints (1.7) and (1.8) are integrity constraints on decision variables 

b) P-center problem 
In the p-center problem, all the demand nodes must be covered. However, 

rather than using a specified blanking distance exogenous and seeking to mi-
nimize the number of installations required to cover the request nodes, the 
p-center problem minimizes the coverage distance so that each node of request 
is served by one of the facilities located at a distance less than or equal to a de-
termined endogenous distance.  

The p-center problem, therefore, is to open terminal and assign each demand 
node to one of them so as to minimize the maximum distance between each de-
mand mode and the nearest facility. The problem of the p-center can be formu-
lated as follows: 

W: The maximum distance between a demand node and the nearest facility to 
which it is assigned. 

Parameters: 
P: Number of terminal to be located 1 P m≤ ≤  

jh : Demand at node j 

jid : The distance from a demand node j to a potential location i 
Decision variables: 

ix  = 1 if terminal is located at i 
     0 if not 

jiy : The fraction of the demand node j that is assigned to the terminal at node i; 
Minimize  

W                             (2.1) 

Constraints 

i
i I

x P
∈

=∑                          (2.2) 
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1,ji
i I

y j J
∈

= ∀ ∈∑                      (2.3) 

0, ,ji iy x j J i I− ≤ ∀ ∈ ∈                (2.4) 

0ji ji
i I

W d y
∈

− ≤∑                       (2.5) 

{ }0,1 ,ix i I∈ ∀ ∈                      (2.6) 

{ }0,1 , ,jiy j J i I∈ ∀ ∈ ∈                   (2.7) 

The objective function (2.1) minimizes the maximum distance between a de-
mand node and the closest facility to that node. The constraint (2.2) stipulates 
that p terminal must be located. The constraints (2.3) require that each demand 
node be assigned to an installation located at node j. Constraints (2.4) limit the 
assignment of demand nodes to open facilities. The constraints (2.5) indicate 
that the maximum distance between the demand points and the nearest installa-
tion must be greater than or equal to the distance between each demand node 
and the facility to which it is assigned. The set of constraints (2.6) and (2.7) are 
the standard integrity constraints. 

In some cases, the distance must be weighted by the demand, since the con-
straints (2.5) must be replaced by: 

0,i ij ij
j J

W h d y i I
∈

− ≥ ∀ ∈∑  

c) P-median problem 
The problem of the p-median is not to maximize the number of demand 

nodes covered but to minimize the costs of travel. 
The p-median problem, [10] [11] consists of locating facilities and serving 

each client from established facilities so that the demands of all clients are served 
and totals cost are minimized. It is based on three important assumptions. He 
assumes that: 
• The number of terminal to be located is known  
• The installation cost of a terminal is identical regardless of the potential site; 
• The terminals do not have capacity constraints. 

The formulation of this problem is as follows: 
Parameters: 
n: Number of demand points indexed by { }, 1, ,j j J n∈ =   
m: Number of potentials terminals indexed by { }, 1, ,i i I m∈ =   
P: Number of terminal to be located 1 P m≤ ≤  

jh : Demand at node j 

jic : The unit transportation cost of to satisfy the demand of the node i by the 
installation of the node i 

Decision Variables: 

ix  = 1 if terminal is located at i (location variable) 
    0 if not 

jiy  = 1 if demand node i is assigned to terminal i (affectation variable) 
      0 if not 
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Minimize 

j ji ji
j J i I

h c y
∈ ∈
∑∑                        (3.1) 

Constraints 

i
i I

x P
∈

=∑                           (3.2) 

1,ji
i I

y j J
∈

= ∀ ∈∑                       (3.3) 

0, ,ji iy x i I j J− ≤ ∀ ∈ ∈                   (3.4) 

{ }0,1 ,ix i I∈ ∀ ∈                      (3.5) 

{ }0,1 , ,jiy i I j J∈ ∀ ∈ ∈                   (3.6) 

The objective function (3.1) minimizes the total cost needed to serve each 
demand node from the nearest facility. Constraint (3.2) states that p terminal 
must be located. The constraints (3.3) require that each demand node i be as-
signed to exactly one facility j. Constraints (3.4) limit the assignment of demand 
nodes to open terminals. The set of constraints (3.5) and (3.6) are the standard 
integrity constraints. 

The Uncapacitated Facility Location Problem (UFLP) is similar to the p-median 
problem except that the number of installations to locate is determined endoge-
nously. A non-negative fixed cost is associated with each potential site and this 
cost is incurred only if the service is actually implemented on this site. The for-
mulation of the p-median problem is modified by removing the constraint (3.2) 
and adding the term: 

i i
i I

f x
∈
∑  

to the objective function (3.1) where if ’s the cost to implement a terminal at 
node j. The goal is to minimize the total costs of transportation and installation. 

The Capacitated Facility Location Problem (CFLP) adds facility capacity con-
straints to the UFL problem and thus relaxes the three assumptions of the 
p-median. If jΦ  is the capacity of the terminal j, these constraints are written: 

( ) 0,j ji i ih y x j J−Φ ≤ ∀ ∈∑  

In addition, the demand node j can then be assigned to several terminal, if the 
nearest terminal sees its capacity limit reached. 

2.2. Stochastic Models 

The majority of the work reported in the literature, dealing with localization 
problems, presents deterministic models known as NP-difficult and therefore 
extremely difficult to solve. 

But these models do not faithfully present reality and this is the reason why, 
several authors have recently tried to relax some simplistic assumptions of de-
terministic models by introducing aspects related to uncertainty. 

The introduction of uncertainty in the data in the study of localization prob-
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lems is made for the first time by [12]. Study on stochastic problems continues 
even in [13] the authors consider a location problem assuming random costs of 
exploitation in the distribution center. The goal is to minimize the total cost of 
transportation between production centers and distribution centers and between 
the distribution centers and the demand areas. And also to minimize the average 
total cost of exploitation of the distribution center they suppose that the location 
of the distribution centers is previously known. 

2.3. Hub Localization Problem 

The Hub Location Problems (HLPs) have been investigated by many researchers 
since the pioneering work by [14]. HLP apply when it is necessary to simulta-
neously determine the location of hubs and the allocation of potential users to 
them. This is therefore an assignment-location problem. The basic model as-
sumes that there is no capacity constraint at “hubs”, that there is no implemen-
tation cost, that direct transport is not allowed between the origins- destinations, 
which are not hubs, and all traffic from one origin to one destination goes 
through two hubs. 

The mathematical formulation of the HLP due to O’Kelly (1987) can be pre-
sented as follows: 

Parameters 

ijq : Quantity of flow between nodes i and j. 

ijc : The transport cost of a unit of flow between node i and j. 
p: The total number of hubs to be constructed 
n: The total number of nodes in the transport network to be interconnected. 
Function 

min ij ik ik km ik jk jm jm
i j k k m m

A q c Y a c Y Y c Y = + + 
 

∑∑ ∑ ∑∑ ∑   

Constraints 

( )1 ,ik kk
i

Y n p Y k≤ − + ∀∑                    (4.1) 

1,ik
k

Y i= ∀∑                          (4.2) 

kk
k

Y p=∑                           (4.3) 

{ }0,1 ; ,ikY i k∈ ∀                         (4.4) 

The objective function Λ comprises three main terms; the first term is collec-
tion costs; the second term is transfer costs then the third term is distribution 
costs. 

Constraint (4.1) ensures that no node is assigned to a location unless a hub is 
opened at that site and recognizing that nodes can only be assigned to hubs, 
Constraint (4.2) ensures that each node is assigned to one and only one hub. 
Constraint (4.3) locates the correct number of hubs. Constraint (4.4) ensures 
that a hub is either opened or closed. 
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The problems of p-hub median, p-hub center and covering hub are respec-
tively extension of the p-median, p-center and covering problems of location. 

P-hub median was proposed by [14]. The goal of the p-hub median problem is 
to minimize the total transport cost (time, distance, etc.) to serve flows, given the 
demand nodes, the flow between the destination- origin path and the number of 
centers to be located (p). 

The p-hub center problem was introduced by [15]. The goal is to minimize 
the maximum distance between each demand node and the nearest center. Ac-
cording to Campbell (1994) p-HCP can be characterized by three main objective 
functions; the first is to minimize the maximum cost or distance for any ori-
gin-destination pair; the second is to minimize the maximum cost or distance of 
any single link in an origin-destination path and finally, to minimize the maxi-
mum cost or distance between flow origin or destination and a hub. 

The hub covering problem is on the one hand to locate the hub to cover all the 
requests such as the costs of opening a hub are minimized and on the other hand 
to maximize the demand covered with a large number of hub to locate. 

3. Conclusions 

Location problems draw attention of numerous researchers in different fields. 
This paper focused on providing a methodology for determining the optimal lo-
cations for intermodal freight transportation terminals in consolidation net-
work. The primary purpose of this study is to describe a method that helps iden-
tify the best potential locations. Our goal is to minimize total costs in order to 
increase the efficiency of the transportation system. This paper also has allowed 
us to have an overview of the methods and models that exist for solving the 
problem of intermodal, terminal locating. Despite the rich and diverse literature, 
location problems face theoretical and practical challenges, because every loca-
tion problem requires a research approach, appropriate model and methods 
suitable for solving. This paper is an attempt to provide insight and inspiration 
for solving practical problems by presenting several basic methods for solving 
terminal location problems. Each of these models added some insights to the 
general problem of intermodal terminal location in the literature and applica-
tions. 
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