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Abstract 
In this paper, using Sadovskii’s fixed point theorem and properties of the 
measure of noncompactness, we obtain asymptotic stability results for solu-
tions of nonlinear differential equation with variable delay. Results presented 
in this paper extend some previous results due to Burton [1], Becker and 
Burton [2], Ardjouni and Djoudi [3], and Jin and Luo [4]. 
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1. Introduction 

Since 1892, the Lyapunov’s direct method has been used for the study of stability 
properties of ordinary, functional, differential and partial differential equations. 
Nevertheless, the applications of this method to problem of stability in 
differential equations with delay have encountered serious difficulties if the delay 
is unbounded or if the equation has unbounded terms (see [1] [5] [6]). Recently, 
investigators, such as Burton and Furumochi have noticed that some of these 
difficulties vanish or might be overcome by means of fixed point theory (see 
[1]-[17]). The fixed point theory does not only solve the problem on stability but 
has a significant advantage over Lyapunov’s direct method. Sadovskii’s fixed 
point theorem (see [18]) and techniques of the theory of the measure of 
noncompactness are used to prove the existence and stability of the solution of 
the problem investigated in this paper. 

Let E denote a Banach space. We consider the nonlinear differential equation 
with variable delay 
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )( )1 1 2= ,x t a t x t r t b t x t r t c t G x t x t r t′ ′− − + − + −   (1) 

with the initial condition 

( ) ( ) ( ), for 0 ,0 ,x t t t mψ= ∈     

where ( )( )0 ,0 ,C m Eψ ∈    , ( ) ( ){ }0 inf , 0j jm t r t t= − ≥ ,  
( ) ( ){ }0 min 0 , 1,2jm m j= = . 
Here ( ),CB R E+  denotes the set of all continuous and bounded functions 
:f R E+ →  with the supremum norm ⋅  defined  

( ) ( ){ }sup : 0x x t m t= ≤ < ∞ . Throughout this paper, we assume that 

( )1, , ,a b c CB R R+∈ , ( ) ( )2
1 2, , ,r C R R r C R R+ +∈ ∈  with ( )jt r t− →∞  as 

t →∞ , 1,2j = . We also assume that the function :G E E E× →  is uniformly 
continuous. Moreover, we assume that the function G is bounded, so there exists 
a constant 0L ≥ , such that ( ),G L⋅ ⋅ ≤  and ( )0,0 0G = . 

Special cases of the equation (1) have been investigated by many authors. For 
example, Burton in [6] and Zhang in [17] have studied boundedness and 
stability of the linear equation: 

( ) ( ) ( )( )1 .x t a t x t r t′ = − −  

In [13], Burton and Furumochi using the fixed point theorem of Krasnosielski 
obtained boundedness and asymptotic stability for the equation: 

( ) ( ) ( ) ( ) ( )( )1 2= ,x t a t x t r b t x t r tγ′ − − + −  

where 1 0r >  is constant; ( )0,1γ ∈  and γ  is a quotient with odd positive 
integer denominator and ( )( ), 0,a C R+∈ ∞ . 

Next, Jin and Luo (see [4]), proved the boundedness and stability of solutions 
of the equation 

( ) ( ) ( )( ) ( ) ( )( )1 3
1 2= ,x t a t x t r t b t x t r t′ − − + −  

and generalized the results claimed in [6] [12] [17]. Ardjouni and Djoudi in [3] 
considered the more general neutral nonlinear differential equation 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 1 2x t a t x t r t b t x t r t c t G x t r tγ′ ′= − − + − + −  

and obtained the boundedness and stability results. 
We mentioned here that the neutral delay differential equations appear in 

modelling of the networks containing lossless transmission lines (as in 
high-speed computers where the lossless transmission lines are used to 
interconnect switching circuits), in the study of vibrating masses attached to an 
elastic bar, as the Euler equation in some variational problems, theory of 
automatic control and in neuromechanical systems in which inertia plays an 
important role, we refer the reader to the papers by Boe and Chang [19], Brayton 
and Willoughby [20] and to the books by Driver [21], Hale [14] and Popov [22] 
and reference cited therein. 

The fundamental tool in this paper is the Kuratowski measure of 
noncompactness (see [23]). 
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For any bounded subset A of E we denote by ( )Aα  the Kuratowski measure 
of noncompactness of A, i.e. the infimum of all 0>  such that there exists a 
finite covering of A by sets of diameters smaller than  . The properties of the 
measure of noncompactness α  are: 

1) if A B⊂  then ( ) ( )A Bα α≤ ; 
2) ( ) ( )A Aα α= , where A  denotes the closure of A; 
3) ( ) 0Aα =  if and only if A is relatively compact; 
4) ( ) ( ) ( ){ }max ,A B A Bα α α= ; 
5) ( ) ( )A Aα λ λ α= , ( )Rλ ∈ ; 
6) ( ) ( ) ( )A B A Bα α α+ ≤ +  
7) ( ) ( )conv A Aα α= , where ( )conv A  denotes the convex hull of A, 
8) ( ) ( )A Aα δ< , where ( ) { },supx y AA x yδ ∈= − . 
Lemma 1. [24]. Let ( ),K C I E⊂  be a family of strongly equicontinuous 

functions. Let ( ) ( ){ },K t k t E k K= ∈ ∈ , for t I∈  and ( ) ( )t I
K I K t

∈
=


. 
Then 

( ) ( )( ) ( )( )supC
t I

K K t K Iα α α
∈

= =  

where ( )C Kα  denotes the measure of noncompactness in ( ),C I E  and the 
function ( )( )t K tα  is continuous. 

Let us denote by S∞  the set of all nonnegative real sequences. For 
( )n Sξ ξ ∞= ∈ , ( )n Sη η ∞= ∈ , we write ξ η<  if n nξ η≤  (i.e. n nξ η< , for 
1,2,n =  ) and ξ η≠ . 

Let X be a closed convex subset of ( ),C I E  and let Φ  be a function which 
assigns to each nonempty subset Z of X a sequence ( )Z S∞Φ ∈  such that 

{ }( ) ( ) , for ,z Z Z z XΦ = Φ ∈                   (2) 

( ) ( )conv ,Z ZΦ = Φ                        (3) 

if ( )ZΦ = Θ  (the zero sequence), then Z  is compact.        (4) 

In the proof of the main theorem, we will apply the following fixed point 
theorem 

Theorem 1 [18] If :F X X→  is continuous mapping satisfying 
( )( ) ( )F Z ZΦ < Φ  for arbitrary nonempty subset Z of X with ( ) 0ZΦ > , then 

F has a fixed point in X. 

2. Main Results 

A solution of the problem (1) is a continuous function ( ) ): 0 ,x m E∞ →  such 
that x satisfies (1) on [ )0,∞  and x ψ=  on ( )0 ,0m   . Stability definitions 
may found in [1], for example. 

In this paper, we extend stability theorem proved in [3] by giving a necessary 
and sufficient conditions for asymptotic stability of the zero solution of the 
Equation (1). By using some conditions expressed in terms of the measure of 
noncompactness which G satisfies, we define a continuous, bounded operator 
Pφ  over the Banach space Sψ , whose fixed points are solutions of (1). The fixed 
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point theorem of Sadovskii is used to prove the existence of a fixed point of the 
operator Pφ . To construct our mapping, we begin transforming (1) to a more 
tractable, but equivalent equation, which we invert to obtain an equivalent 
integral equation for which we derive a fixed point mapping. We need the 
following lemma in our proof of the main theorem. 

Lemma 2 Let ( ) ): 0 ,g m R+∞ →  be an arbitrary continuous function and 
suppose that 

( )1 1,r t t R+′ ≠ ∀ ∈                          (5) 

Then x is a solution of (1) if and only if 

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )

( )
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( )

0

1

1

1

0 d
1 0

1

1
1

d

0

d
1 1 10

d
20

0
0 0 d e

1 0

d
1

e d d

e 1 d

e , d ,

t

t
s

t
s

t
s

g u u

r

t

t r t

t sg u u

s r s

t g u u

t g u u

b
x t x x r g u x u u

r

b t
x t r t g u x u u

r t

g s g u x u u s

g s r s r s a s s x s r s s

c s G x s x s r s s

µ

−

−

−

−

−

−

−

∫

∫

∫

∫

 
= − − −  ′− 

+ − +
′−

−

 ′+ − − − − − 

+ −

∫

∫

∫ ∫

∫

∫

   (6) 

where 

( )
( ) ( ) ( )( ) ( )( ) ( ) ( )

( )( )
1 1

2
1

1
=

1

b s b s g s r s r s b s
s

r s
µ

′ ′ ′′+ − +

′−
         (7) 

Now we will present our main results. We set 
( ){ }0 d

0
sup e

t g u u

t
K −

≥

∫=                        (8) 

Let ( )( )0 ,0 ,CB m Eψ ∈     be a fixed. Put 

1

2

,
Up
U

=                             (9) 

where 

( )
( ) ( ) ( ) ( ) ( )

2

0 d
1 0 0

1

0
1 d e d

1 0

t
s

t g u u

r

b
U g u u K L c s s

r
−

−

∫ 
= + + +  ′− 

∫ ∫  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( ){ }

1 1

d
2 0

1

d
1 10

1 d e d d
1

e 1 d

t
s

t
s

t t sg u u

t r t s r s

t g u u

b t
U g u u g s g u u s

r t

g s r s r s a s s sµ

−

− −

−

∫

∫


= − + +

′−


′+ − − − − 


∫ ∫ ∫

∫
 

and 2 0U > , this mean that 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( ){ }

1 1

d

0
1

d
1 10

d e d d
1

e 1 d 1.

t
s

t
s

t t sg u u

t r t s r s

t g u u

b t
g u u g s g u u s

r t

g s r s r s a s s sµ

−

− −

−

∫

∫


+ +

′−


′+ − − − − <


∫ ∫ ∫

∫
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Let us recall that for continuous function :f R E→ , the first order modulus 
of smoothness for f is the function { }: 0R Rω +→   defined for any 0σ ≥  by 

( ) ( ) ( ){ }, sup : , , .f f t f t t t R t tω σ σ′ ′′ ′ ′′ ′ ′′= − ∈ − ≤  

Define 

( ) )( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )}
0 , , , for 0 ,0 , 0

as , , .

S CB m E t t t m t

t p t z t z

ψ ϕ ϕ ψ ϕ

ϕ ϕ ϕ ω

= ∈ ∞ = ∈ →    

→ ∞ ⋅ ≤ − ≤ −
 

Now, we use (6) to define the operator :P S Sψ ψ→  by ( )( ) ( )P t tϕ ψ=  if 
( ) )0 ,0t m∈   and for 0t ≥  we let 

( )( ) ( )
6

1
,i

i
P t I tϕ

=

= ∑  

where 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )0

1

0 d
1 1 0

1

(0)0 0 d e ,
1 0

t g u u

r

bI r g u u u
r

ϕ ϕ ϕ −

−

∫ 
= − − −  ′− 

∫  

( )
( ) ( )( )2 1

1

,
1

b t
I t r t

r t
ϕ= −

′−
 

( ) ( ) ( )
1

3 d ,
t

t r t
I g u u uϕ

−
= ∫  

( ) ( ) ( ) ( ) ( )( )
1

d
4 0

e d d ,
t
s

t sg u u

s r s
I g s g u u u sϕ−

−

∫= ∫ ∫  

( ) ( )( ) ( )( ) ( ) ( ) ( )( )d
5 1 1 10

e 1 d ,
t
s

t g u uI g s r s r s a s s s r s sµ ϕ−
′

∫  = − − − − − ∫  

( ) ( ) ( ) ( )( )( )d
6 20

e , d , for 0,
t
s

t g u uI c s G x s x s r s s t−∫= − ≥∫  

where 

( )
( ) ( ) ( )( ) ( )( ) ( ) ( )

( )( )
1 1

2
1

1
.

1

b s b s g s r s r s b s
s

r s
µ

′ ′ ′′+ − +
=

′−
          (10) 

Theorem 2 Assume that the function ( ),G CB E E E∈ ×  is uniformly 
continuous, satisfies the condition ( )0,0 0G =  and there exists a constant 

10 1k< <  such that 

( ) ( )( )( ) ( )( ) ( )( ){ }1 2 1 1 2, max , ,G V J V J k V J V Jα α α≤       (11) 

for each 1 2,V V Sψ⊂  and for each ( ) ( ) )0 , , 0 ,J m T T m= ∈ ∞     , where α  
denotes the Kuratowski measure of noncompactness. Moreover, we assume that 
there exists a constant ( )1 0,1p ∈  satisfies, for 0t ≥ : 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ){ }

1 1

d
1 0

1

d
1 1 10

d e d d
1

e 1 d ,

t
s

t
s

t t sg u u

t r t s r s

t g u u

b t
k g u u g s g u u s

r t

g s r s r s a s s s pµ

−

− −

−

∫

∫


+ + + ′−


′+ − − − − ≤



∫ ∫ ∫

∫
   (12) 
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where 

( )
( ) ( ) ( )( ) ( )( ) ( ) ( )

( )( )
1 1

2
1

1

1

b s b s g s r s r s b s
s

r s
µ

′ ′ ′′+ − +
=

′−
 

and ( ) ( )d

0
e d 0

t
s

t g u u c s s−∫ →∫ , as t →∞ . 

Then there exists at least one solution of the problem (1), which tends to zero 
if 

( )
0

d , as .
t
g s s t→∞ →∞∫                   (13) 

Proof. We divide our proof into parts. In the first part, we show that 
( ) :P S Sψ ψϕ →  complete with is well defined. Next, using Sadovskii’s fixed 
point theorem and techniques of the theory of the measure of noncompactness, 
we prove, that there exists a fixed point of the operator ( )Pϕ , which is a 
solution of the problem (1). In the last part of our proof, we will show, that the 
solution of (1) tends to zero as t →∞  if ( )

0
d

t
g s s →∞∫ , as t →∞ . 

Part I. It is clear that ( ) ( ) ): 0 ,P m Eϕ ∞ →  is continuous. We will show the 
boundedness of this operator. Notice that ( ),G CB E E E∈ × , so there exists a 
constant 0L >  such that ( ) ( )( )( )2,G x t x t r t L− ≤ , ( ), 0 ,x S t mψ∈ ∈ ∞   . 

For ( )0 ,0t m∈    , the boundedness of the operator ( )Pϕ  is clear. For 
0t >  we have 

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )

( )
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( )( )

0

2

1

1

0 d
1 0

1

1
1

d

0

d
1 1 10

d
20

0
0 0 d e

1 0

d
1

e d d

e 1 d

e , d

t

t
s

t
s

t
s

g u u

r

t

t r t

t sg u u

s r s

t g u u

t g u u

b
P t r g u u u

r

b t
t r t g u u u

r t

g s g u u u s

g s r s r s a s s s r s s

c s G s s r s s

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ

µ ϕ

ϕ ϕ

−

−

−

−

−

−

−

∫

∫

∫

∫

 
≤ − − − ′−  

+ − +
′−

−

 ′+ − − − − − 

+ −

∫

∫

∫ ∫

∫

∫

 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ){ }

( ) ( )

0

2

1

1

0 d

0
1

1

d

0

d
1 10

d

0

0
1 d e

1 0

d
1

e d d

e 1 d

e d

t

t
s

t
s

t
s

g u u

r

t

t r t

t sg u u

s r s

t g u u

t g u u

b
g u u

r

b t
g u u

r t

g s g u u s

g s r s r s a s s s

L c s s

ϕ ϕ

ϕ

ϕ µ

−

−

−

−

−

−

−

∫

∫

∫

∫

 
≤ + +  ′− 

+ +
′−

+

′+ − − − −

+

∫

∫

∫ ∫

∫

∫
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( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ){ }
( ) ( )

2

1 1

0

0
1

d

0
1

d
1 10

d

0

0
1 d

1 0

d e d d
1

e 1 d

e d ,

t
s

t
s

t
s

r

t t sg u u

t r t s r s

t g u u

t g u u

b
g u u K

r

b t
g u u g s g u u s

r t

g s r s r s a s s s

L c s s

ϕ

µ

−

−

− −

−

−

∫

∫

∫

 
≤ + +  ′− 


+ + +

′−

′+ − − − − 

+

∫

∫ ∫ ∫

∫

∫

 

where 

( )
( ) ( ) ( )( ) ( )( ) ( ) ( )

( )( )
1 1

2
1

1
.

1

b s b s g s r s r s b s
s

r s
µ

′ ′ ′′+ − +
=

′−
 

Therefore, because Sψϕ ∈  satisfies ( ) pϕ ⋅ ≤ , we have, by (9), that 
( )P pϕ ⋅ ≤ . 

Now we will show that for each Sψϕ ∈  we obtain 

( )( ) ( )( )0 0 .t z P t P zδ δ ϕ ϕ∀ > ∃ > − < ⇒ − <   

Let’s note that 

( )( ) ( )( ) ( ) ( )
6

1
,i i

i
P t P z A t A zϕ ϕ

=

− ≤ −∑  

where 

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )0 0

1

0 d d
1 1 0

1

0
0 0 d e e ,

1 0

t zg u u g u u

r

b
A r g u u u

r
ϕ ϕ ϕ − −

−

∫ ∫ 
= − − − −  ′− 

∫  

( )
( ) ( )( ) ( )

( ) ( )( )2 1 1
1 1

,
1 1

b t b z
A t r t z r z

r t r z
ϕ ϕ= − − −

′ ′− −
 

( ) ( ) ( ) ( ) ( ) ( )
1 1

3 d d ,
t z

t r t z r z
A g u u u g u u uϕ ϕ

− −
= −∫ ∫  

( ) ( )( ) ( ) ( ) ( ) ( )( )
1

d d
4 0

e e d d ,
t z
s s

t sg u u g u u

s r s
A g s g u u u sϕ− −

−

∫ ∫= −∫ ∫  

( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( )d d
5 1 1 10

e e 1 d ,
t z
s s

t g u u g u uA g s r s r s a s s s r s sµ ϕ− −∫ ∫  ′= − − − − − − ∫
 

( ) ( )( ) ( ) ( ) ( )( )( )d d
6 20

e e , d .
t z
s s

t g u u g u uA c s G s s r s sϕ ϕ− −∫ ∫= − −∫  

Because the exponential function is continuous and using assumptions about 
functions , ,g bϕ  and properties of Bochner integral we have  

( ) ( )1 1 1 1
10 0 .
6

t z A t A zδ δ∀ > ∃ > − < ⇒ − <   

By equicontinuity of function G and equicontinuity of family Sψ  we have 
that 

( ) ( )( )( ) ( ) ( )( )( )2 2
10 0 , , .
6

t z G t t t G z z zδ δ ϕ ϕ τ ϕ ϕ τ∀ > ∃ > − < ⇒ − − − <   
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So we obtain that ( ) ( )2 2
1
6

A t A z− <  . 

In the same way, we estimate the remaining ingredients and we get 

( )( ) ( )( )0 0 .t z P t P zδ δ ϕ ϕ∀ > ∃ > − < ⇒ − <   

Now we will show, that ( )( ) 0P tϕ →  as t →∞ . It is obvious that the first 
term ( )1I t  tends to zero as t →∞ , by the condition (13). Because 
( )1 0t rϕ − →  and ( )1t r t− →∞  as t →∞  and b is a bounded function so 

the second term ( )2I t  tends to zero as t →∞ . Because functions , gϕ  are 
bounded functions, so 3 0I → , t →∞ . Analogously 4I  and 5I  tends to zero 
if t →∞ . Moreover, 

( ) ( ) ( ) ( )( )( )
( ) ( )

d
6 20

d

0

e , d

e d 0, .

t
s

t
s

t g u u

t g u u

A c s G x s x s r s s

L c s s t

−

−

∫

∫

≤ −

≤ → →∞

∫

∫
 

In conclusion ( )( ) 0P tϕ →  as t →∞ . Hence Pϕ  maps Sψ  into Sψ . 
Part II. Suppose that V Sψ⊂  and α  denotes the Kuratowski measure of 

noncompactness. Let ( )0 ,J m T=    , ( ) )0 ,T m∈ ∞ . Then, 

( )( )( )

( )( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( ){ }

( ) ( ){ }

1

1

1

d

0

d
1 10

1 1 2

d
1

e d d

e 1 d

max ,

t
s

t
s

t

t r t

t sg u u

s r s

t g u u

P V t

b t
V J g u u

r t

g s g u u s

g s r s r s a s s s

k V V

α

α

µ

α α

−

−

−

−

∫

∫


≤ ⋅ + ′−

+

′+ − − − − 


+ ⋅

∫

∫ ∫

∫

 

( )( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( ){ }
( )( )

1

1

1

d

0

d
1 1 10

1

d
1

e d d

e 1 d

.

t
s

t
s

t

t r t

t sg u u

s r s

t g u u

b t
V J g u u

r t

g s g u u s

g s r s r s a s s s k

p V J

α

µ

α

−

−

−

−

∫

∫


≤ ⋅ + ′−

+

′+ − − − − + 


≤ ⋅

∫

∫ ∫

∫

 

So, using (12) and properties of α  we have 

( )( ) ( )( ) ( )( )( ) ( )( )1sup sup .
t J t J

V J V t P V t p V Jα α α α
∈ ∈

= = ≤ ⋅  

Because 1 1p < , we get ( )( ) 0V tα =  for each t J∈ . 
Define ( ) ( )( ) ( )( )( )1 2

sup ,sup ,t J t JV V t V tα α∈ ∈Φ =   for any nonempty 
subset V of Sψ , where ( )0 ,kJ m k=    , 1,2, ,k n=  . Evidently ( )V S∞Φ ∈ . 
By the properties of α , the function Φ  satisfies conditions (2)-(4). From (10) 

( )( ) ( )P V VΦ < Φ , whenever ( ) 0VΦ > . If ( ) 0VΦ =  then for each 
( ) )0 ,t m∈ ∞  we have ( )( ) 0V tα = . Hence Arzela-Ascoli’s theorem proves 

that the set V is relatively compact. Consequently, by Theorem 1, the operator 
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( )Pϕ  has a fixed point which is a solution of the problem (1) with ( ) ( )x t t= Φ  
on ( )0 ,0m    and ( ) 0x t →  as t →∞ , if ( )

0
d

t
g s s →∞∫ , for t →∞ . The 

proof is complete. 
Remark 1. It is clear that we can assume about the function G other types of 

continuity and other conditions on measures of noncompactness. When we 
investigate the existence of solutions of (1) with non-continuous right-hand side, 
it is natural to consider the so-called Carathéodory-type solutions. 
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