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Abstract 

Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 
2D and 3D printed conductive structures directly onto a substrate. By formu-
lating a nanoalloy structure containing multiple metals, the opportunity to 
modify chemical and physical properties exists. In this paper, a copper-nickel 
bimetallic nanoalloy film was fabricated by mixing copper and nickel precur-
sor inks and sintering them in vacuum. The individual elemental inks were 
formulated and characterized using SEM, EDS, and XRD. During thermal 
processing, elemental copper forms first and is followed by the formation of 
bimetallic copper-nickel alloy. The encapsulation of the underlying copper by 
the nickel-rich alloy provides excellent oxidation resistance. No change in 
film resistance was observed after the film was exposed to an oxygen plasma. 
Nanoalloy films printed using reactive metallic inks have a variety of impor-
tant applications involving local control of alloy composition. Examples in-
clude facile formation of layered nanostructures, and electrical conductivity 
with oxidative stability. 
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1. Introduction 

Functional printing has evolved from fabricating parts using a single material, to 
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make multifunctional components using two or more materials. There is tre-
mendous interest in functional printing, where different printing techniques [1] 
are used to make devices such as antennas [2] [3] [4] [5], electrical circuit com-
ponents [6] [7] [8] [9] [10], and sensors [11] [12] [13] [14]. Metallic inks are of-
ten used to fabricate 2D and 3D structures to conduct heat and electricity. Nu-
merous examples of printing of copper [15]-[20] and silver [21]-[26] inks on 
solid and flexible substrates have been demonstrated in the literature. These inks 
are either metal nanoparticle or precursor (metal-organic decomposition (MOD) 
inks. The opportunity to tune the physical and chemical properties of a material 
could be achieved by mixing several metal inks together to create an alloy. A 
nanoalloy is a solid state solution containing atoms or molecules of two or more 
metals [27]. Elements which are immiscible in the bulk form or have a large 
miscibility gap can be mixed at the nanoscale to produce properties that differ 
from those of the individual bulk materials [28] [29]. The physical and chemical 
properties of nanoalloys can be enhanced by varying their structure, composi-
tion and particle size to provide properties having applications in biomedical 
devices, electronics, engineering, and catalysis [30] [31] [32] [33]. It is generally 
easier to control the structure of nanoalloys using bottom-up synthesis where 
single atoms or molecules are assembled to form a nanostructure [34]. When 
using precursor inks, different structures are possible depending on the decom-
position profiles, solid loading, and reactivity of individual inks. If the decompo-
sition profiles are identical, then a well-mixed structure is possible. If the de-
composition profiles are different, it is possible to synthesize a variety of differ-
ent structures, for example core-shell structures [35] [36] [37]. 

In recent years, copper nickel nanoalloys have gained considerable interest in 
the research community due to the conductivity of copper and the corrosion re-
sistance of nickel. For this reason, they are potential candidates as electrodes in 
corrosive environments. CuNi alloys are used in marine applications [38], solid 
oxide fuel cells [39], glucose sensors [40], hydrogenation of refined soybean oil 
[32], photodegradation of organic dyes [41], and in hyperthermia therapy [42]. 
Different methods have been used to fabricate CuNi nanoalloy particles. Chem-
ical methods include electrochemistry [40], hydrothermal reduction [41] [43], 
microemulsions [44] [45], mechanical alloying [30] [46], reduction of polyols 
[30] [47] or salts [48] [49], and solution combustion [50] [51]. Synthesizing such 
nanoalloy particles is often accompanied by undesirable contamination in the 
final composition. For example, impurities from the metal salts may not be 
completely removed by repeated washing and drying of the nanoparticles. Oxi-
dation is also a problem, requiring special care during washing, filtering and 
drying of the nanoalloy particles. Printing a precursor nanoalloy ink and directly 
sintering in situ on the substrate will eliminate some of the problems encoun-
tered in the synthesis and use of premade nanoparticles.  

The printing of functional devices using nanoalloys is still at a relatively early 
stage and has not been widely explored. Inks containing nanoalloy particles can 
be printed using a wide variety of printing techniques to create customized parts 

https://doi.org/10.4236/msa.2019.104026


C. G. Mahajan et al. 
 

 

DOI: 10.4236/msa.2019.104026 351 Materials Sciences and Applications 

 

for many specific applications. In this work, a nanoalloy precursor ink contain-
ing copper and nickel is prepared which can be reduced to a binary alloy of the 
desired composition. Different characterization techniques such as EDS, TEM, 
and XRD were used to confirm the formation of nanoalloys. The change in re-
sistivity of the sintered conductive film on exposure to oxygen plasma is re-
ported. 

2. Experimental Section 

2.1. Materials 

All chemicals used were analytical grade. Nickel formate dihydrate (molecular 
weight (MW): 184.77) and copper formate tetrahydrate (molecular weight (MW): 
225.65) were purchased from Alfa Aesar, USA. Ethylene diamine was purchased 
from Fisher Scientific, USA and ethylene glycol was purchased from Sigma-Aldrich, 
USA. These chemicals were used without further purification. Glass microscope 
slides (Thermo Scientific, USA), Kapton film (DuPont USA, 5 mil thick) and 
single crystal quartz (MTI corporation, USA) were used as substrates and were 
cleaned with isopropyl alcohol before ink deposition. 

2.2. Ink Formulation 

To formulate copper precursor (MOD) ink, ethylene glycol (EG) (2 ml) was used 
as the solvent. Ethylene diamine (ED) (0.36 ml, 5.39 mmol) was used as the li-
gand and was added to the ethylene glycol. The mixture was stirred at room 
temperature for 15 minutes. Copper formate tetrahydrate (0.61 g, 2.70 mmol) 
was added to the solution and stirred at room temperature for one hour. A dark 
blue color was formed indicating the formation of a copper amine complex. The 
ink was filtered through a 0.2 µm syringe filter. The nickel precursor (MOD) ink 
formulation was adapted from the patent published by Ginley et al. [52]. To 
formulate the nickel ink, ethylene glycol (2 ml) was used as the solvent. Ethylene 
diamine (0.36 ml, 5.39 mmol) was used as the ligand and added to the ethylene 
glycol. The mixture was stirred at room temperature for 15 minutes. Nickel for-
mate (0.50 g, 2.70 mmol) was added to the solution and stirred at room temper-
ature for one hour. The ink turned from green to purple indicating the forma-
tion of a nickel amine complex. The ink was filtered through a 0.2 µm syringe 
filter. To formulate the alloy inks, copper and nickel inks were mixed in the de-
sired ratio and stirred at room temperature. The same ligand molecule (ethylene 
diamine) and carrier solvent (ethylene glycol) were used to prepare the individ-
ual inks to avoid immiscibility and solubility issues during mixing. 

2.3. Characterization 

Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) 
(Shimadzu DTG-60, Japan) were performed by heating samples in a platinum 
pan from room temperature to 300˚C at 10˚C/min. For thermal analysis mass 
spectrometry (TA-MS), 4.0 µl of the ink was placed onto clean glass wool inside 
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of a 0.25 inch OD glass tube. These were then placed into the autosampler tray 
(Gerstel TDSA, Germany) with the open ends blocked with Viton O-rings. 
Each tube was individually loaded into the heated chamber at 30˚C, and helium 
flowed through the tube at 100 ml/min. Effluent from the tube was split, with 1.0 
ml/min directed into the mass spectrometer (Agilent 5973, USA) through a 
heated one meter transfer line. The remainder of the effluent was vented. The 
sample tube was heated from room temperature to 280˚C at a rate of 10˚C/min. 
Surface morphology and elemental analysis of the printed films were analyzed 
using a scanning electron microscope having an energy-dispersive x-ray spec-
troscopy (EDS) detector (Jeol JSM-IT100LA, USA). The drop cast films were 
characterized by a RIGAKU DMax-IIB x-ray diffractometer. Transmission elec-
tron microscopy (TEM) (Jeol 2010, USA) was used at 200 kV to obtain the 
SAED pattern for the sintered alloy film. Infrared (IR) spectroscopy (Shimadzu 
IR Prestige-21 with ATR) was used to analyze the precursor (MOD) inks, ethy-
lene glycol, and ethylene diamine.  

To study the effect of oxygen exposure on resistance, the sintered film was 
exposed to an O2 plasma using a SurFxAtomfloTM 400 atmospheric plasma sys-
tem. This system generates plasma using a helium-oxygen gas mixture to create 
an oxidizing environment. The plasma head was mounted on a linear stage to 
move in X and Y direction. The Z height between the sample and the head was 
kept constant at 10 mm. For each pass, the power of the plasma was set to 100 
W. Helium and oxygen gas flow rates of 15.00 l/min and 0.30 l/min were used. 

2.4. Inkjet Printing 

The inks were printed onto a substrate using a Fuji Dimatix inkjet printer (DMP 
3000). The printer uses a piezoelectric ink cartridge having a single row of 16 
nozzles with a drop volume of 10 pl. The print head temperature and the voltage 
were adjusted for individual inks before printing. For electrical measurements, a 
solid square film (1 cm × 1 cm) was printed on a glass substrate and sintered in a 
vacuum furnace.  

3. Results and Discussion 

3.1. Copper and Nickel Ink Characterization 

The copper and nickel precursor (MOD) inks contain the metal formate salts 
complexed by ethylenediamine. Formate ions were used because of their low 
molecular weight and volatility [53]. Furthermore, the decomposition of formate 
is accompanied by the release of carbon dioxide and molecular hydrogen, (Equ-
ation (1) & Equation (2)), the latter of which generates a reducing atmosphere, 
thus limiting the amount of oxidation of the reduced metals [36].  

2 22HCOO 2CO H 2e− −→ + +                      (1) 

( )2 0M 2e M M Cu or Ni+ −+ → =                    (2) 

The bidentate ethylenediamine was used in the formation of the metal com-
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plex to enhance the reduction efficiency, achieve complex stability, and increase 
solubility in the solvent. Ethylene glycol was used as a solvent to obtain suitable 
solubility and rheological properties for inkjet printing. The high boiling point 
(~198˚C) of ethylene glycol also enables reduction of the complex to metal at 
elevated temperature.  

Figure 1 shows the primary IR absorbance for ethylene glycol, ethylenedia-
mine, and the copper and nickel precursor (MOD) inks. As expected, all of the 
EG peaks in the ink spectra match those associated with neat EG. EG vibrational 
transitions in the ink do not exhibit any evidence of metal-EG interactions 
through vibrational peak damping or significant spectral band shifting. The IR 
spectra (Figure 1) also confirms that the EDA is directly complexed to the met-
als as indicated by dampening of the IR frequencies assigned to amine transi-
tions.   

Figure 2(A) and Figure 2(B) show the TA-MS results for copper and nickel 
precursor inks respectively. For both the inks, the thermal decomposition occurs 
in two stages. The solvent evaporates first, followed by the metal reduction. In 
the first stage (<130˚C), ethylene glycol and water are released leaving behind 
the metal complex. The reduction of the copper and nickel precursor inks occur 
at ~155˚C and ~220˚C respectively. The metal complex decomposition evolves 
carbon dioxide, carbon monoxide and ethylenediamine, consistent with the 
reactions in Equation (1) and Equation (2). The final solid loadings of copper 
and nickel are 6.5% and 4.5% w/w respectively. 

Figure 3 shows scanning electron microscopy (SEM) images of the reduced 
copper and nickel from the precursor inks. The metal deposits are composed of 
sintered nanoparticles having an average particle size around 500 nm. The size 
of the particles are dependent on various factors such as the rates of reaction,  
 

 
Figure 1. IR spectra of ethylene glycol (EG), ethylenediamine (ED), copper ink and nickel 
ink. 
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Figure 2. Thermal analysis mass spectrometry (TA-MS) of (A) Cu and (B) Ni precursor inks. 

 

 
Figure 3. SEM image of (A) copper and (B) nickel film sintered in N2 atmosphere. 

 
nucleation and crystal growth [54]. Small particles can coalesce into larger par-
ticles. XRD analysis confirmed the presence of elemental copper and nickel 
(Figure 4).  

Kα1 peak positions were obtained from Pearson type VII peak decomposition 
[55]. Precise lattice parameter was determined from a plot of lattice parameter 
versus cos2θ/sinθ [56]. The experimental lattice parameters for copper and nickel 
were found to be 3.6145 Å and 3.5242 Å respectively. These values are in good 
agreement with the lattice parameter for pure copper (3.614 Å, PDF# 00-004-0836) 
and pure nickel (3.524 Å, PDF# 00-004-0850). 

Figure 5 shows the differential thermal analysis for copper and nickel inks 
heated up to 300˚C at 10˚C/min. The reduction of copper and nickel to their 
elemental states occurs in four stages. The first stage is same for both the inks 
and includes evaporation of ethylene glycol and water as indicated by the endo-
thermic region below 140˚C. The second stage includes reduction of the metal 
complex as indicated by the exothermic range up to 155˚C for copper and 
around 200˚C for nickel. The exothermic ranges for the metals match the TA-MS  
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Figure 4. X-ray diffraction patterns for reduced copper and nickel films on quartz sub-
strate. 
 

 
Figure 5. Differential thermal analysis for copper MOD ink and nickel MOD ink at 
10˚C/min. 
 
(Figure 2). Nucleation takes place in the third stage. This is indicated by endo-
thermic range from ~160˚C - 180˚C for Cu, and ~195˚C - 230˚C for Ni. Nuclea-
tion can be affected by impurities present in the ink and/or substrate. Impurities 
may inhibit or accelerate the rate of the reactions. The fourth stage is the crystal 
growth indicated by exothermic ranges > ~180˚C for Cu and ~230˚C for Ni. 

3.2. Alloy Characterization 

Figure 6 shows a proposed schematic overview of the nanoalloy formation 
process. The copper and nickel nuclei formed at the beginning of the reduction  
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Figure 6. Schematic overview of formation of nanoalloy structure onto a substrate. 
 
reaction result in copper-nickel nanoalloy particles. These nanoalloy particles 
subsequently sinter into a continuous film. 

In order to observe the endothermic and exothermic events for the formation 
of bimetallic film, DTA was carried out for Cu, Ni and CuNi MOD inks at 
2˚C/min (Figure 7). As shown above for 10˚C/min, the reduction of the metal 
complex to elemental metal was observed in four stages (S1 - S4). The first stage 
(S1, solvent evaporation) was the same for all inks. The copper complex reduces 
at a lower temperature than nickel due to its lower reduction potential. For the 
CuNi alloy ink, copper reduces first and provides nucleation sites for nickel 
which reduces later when the temperature is increased. The endothermic peak 
for the nickel reduction takes place at a lower temperature suggesting that the 
presence of copper nanoparticles may catalyze the reaction. DTA data suggests 
the presence of two phases which are copper and copper nickel alloy. The re-
sulting alloy films have a layered structure with copper reducing first at the sub-
strate and a non-uniform distribution of Cu and Ni atoms (CuNi) alloy on top of 
the reduced copper. 

The EDS elemental mapping (Figure 8(A)) shows no segregation of copper 
and nickel (within the measurement resolution). The x-ray diffraction pattern in 
Figure 8(C) shows peaks for both a copper phase and a copper-nickel alloy 
phase. This corroborates the results obtained from the DTA where copper re-
duced first and the copper-nickel alloy deposited on the reduced copper. The 
lattice parameter obtained for the copper peak was 3.6143 Å, and from the cop-
per-nickel alloy peak was 3.5318 Å respectively. Using Vegard’s law, the compo-
sition of the alloy phase was estimated to be Cu8Ni92. 

Figure 9(A) shows the TEM image of drop casted CuNi film sintered at 
2˚C/min in a vacuum furnace. The film was removed from the substrate and 
placed on the TEM grid for analysis. The nanoparticles and grain boundaries are 
easily seen. Figure 9(B) shows the electron diffraction pattern obtained from the  
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Figure 7. Differential thermal analysis for copper MOD ink, nickel MOD ink, and CuNi 
alloy MOD ink. 
 

 
Figure 8. (A) EDS elemental maps on samples sintered in a vacuum furnace. (B) EDS 
spectrum of the sintered sample. (C) X-ray diffraction pattern for sintered film on quartz 
substrate. 
 
same area shown in Figure 9(A). The d spacing from electron diffraction data 
was used to calculate the lattice constant and then was averaged over all four lat-
tice constants. The lattice constants obtained from the TEM analysis were not 
consistent with either a pure copper or pure nickel phase, indicating an alloy 
formation. Other unresolved ring patterns may be due to impurities, amorphous 
materials, or formation of small amounts of metal oxides (NiO, CuO or NiCuO). 
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Figure 9. (A) TEM micrograph and (B) electron diffraction pattern of the alloy film. 

 
To study the effect of oxygen exposure on resistance, the sample was printed 

with copper, nickel and alloy MOD ink on a glass substrate using an inkjet 
printing technique. The resistance was measured across the sintered sample after 
every ten passes of the oxygen plasma. Figure 10 shows the change in relative 
resistance of the printed film with exposure. As expected, the relative resistance 
of the sintered copper increased due to oxidization as the number of passes were  
 

 
Figure 10. Measured change of resistance in printed film on exposure to oxygen plasma.  
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increased. In contrast, the relative resistance of the nickel and copper nickel alloy 
samples was not affected by the oxidizing environment. This demonstrated 
ability of the nanoalloy structure to maintain conductivity in a strongly corrosive 
or oxidative environment suggests numerous potential applications in electron-
ics. 

4. Conclusion 

A new method to easily form copper-nickel nanoalloys directly onto a substrate 
has been shown. The copper and nickel precursor inks were formulated using 
metal formate salts, ethylenediamine, and ethylene glycol. The reduction process 
of copper, nickel and combined solutions was studied in detail. XRD analysis of 
the sintered alloy shows the presence of two phases, copper and bimetallic cop-
per-nickel. Sintering of the alloy ink resulted in the formation of a copper film 
on the substrate that was encapsulated by nickel-rich copper-nickel alloy. The 
lattice constant for the sintered alloy was 3.5318 Å, indicating the average com-
position of the bimetallic alloy to be Cu8Ni92. The relative resistance change was 
observed for all MOD inks in an oxidizing environment. After several passes of 
oxygen plasma treatment, the nanoalloy film demonstrated no change in resis-
tivity values, making the copper-nickel nanoalloy film suitable in oxidizing en-
vironments. This research enables the creation of complex shapes and function-
ally graded materials with a variety of stoichiometric ratios by simply mixing in-
dividual metal inks in the desired proportions. 
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