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Abstract 
In this paper, the basic reproduction number is calculated for Huanglongbing 
(HLB) model with impulses which is a vector-borne epidemic model with 
impulses. For controlling HLB, farmers’ experience is replanting of healthy 
plants and removing infected plants. To reflect the real world, we construct 
an impulsive control model which considers replanting of healthy plants and 
removing infected plants at one fixed time. By analyzing the model, we con-
clude that the disease-free equilibrium is globally asymptotically stable if the 
basic reproduction number 0 1R < , and we prove that the HLB is permanence 
if the basic reproduction number 0 1R > . 
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1. Introduction 

Huanglongbing (HLB) is one of the most serious problems of citrus worldwide 
which caused by the bacteria Candidatus Liberibacter spp., whose name in Chi-
nese means “yellow dragon disease’’, was first reported from southern China in 
1919 and is now known to occur in next to 40 different Asian, African, Oceanian, 
South and North American countries [1]. HLB has no cure and affects all citrus 
varieties, reducing the productivity of orchards because the fruits of infected 
plants have poor quality and, in extreme cases, infection leads to plant death [2]. 
HLB symptoms are virtually the same wherever the disease occurs. Infected trees 
show a blotchy mottle condition of the leaves that result in the development of 
yellow shoots, the early and very characteristic symptom of the disease [1]. As 

How to cite this paper: Wang, J.P., Feng, 
F.F., Guo, Z.C., Lv, H.M. and Wang, J.J. 
(2019) Threshold Dynamics of a Vector-Borne 
Epidemic Model for Huanglongbing with 
Impulsive Control. Applied Mathematics, 
10, 196-211. 
https://doi.org/10.4236/am.2019.104015 
 
Received: March 25, 2019 
Accepted: April 21, 2019 
Published: April 24, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2019.104015
http://www.scirp.org
http://www.scirp.org
https://doi.org/10.4236/am.2019.104015
http://creativecommons.org/licenses/by/4.0/


J. P. Wang et al. 
 

 

DOI: 10.4236/am.2019.104015 197 Applied Mathematics 
 

we all know, HLB can be spread efficiently by vector psyllids to all commercial 
cultivars of citrus [3] [4]. 

Mathematical models play an important role in understanding the epidemi-
ology of vector-transmitted plant diseases. Applications of mathematical ap-
proach to plant epidemics were reviewed by Van der Plank [5] and Kranz [6]. 
There are many authors establish continuous mathematical models to describe 
the transmission of HLB. Chiyaka et al. [7] proposed a compartmental model of 
ordinary differential equations for the HLB transmission dynamics within a ci-
trus tree considering 10 dimensions. In [2], Raphael et al. constructed a 6 di-
mensions model of ordinary differential equations with delay time. However the 
dynamic behaviors of these models are studied only by using computer simula-
tions. 

But, in our real world, farmers’ experiences have led to development of inte-
grated management concepts for virus diseases that combine available host re-
sistance, cultural, chemical and biological control measures. A cultural control 
strategy including replanting, and/or removing (rouging) diseased plants is a 
widely accepted treatment for plant epidemics which involves periodic inspec-
tions followed by removal of the detected infected plants [8] [9] [10] [11] [12]. 
Periodic replanting of healthy plants or removing (rouging) infected plants in 
plant-virus disease epidemics is widely used to minimize losses and maximize 
returns [12]. There are only a few countries have been able to control Asian HLB. 
São Paulo State (SPS) might be one of the first to be successful. In SPS, encour-
aging results have been obtained in the control of HLB by tree removal and in-
secticide treatments against psyllids [13]. Monocrotophos has a short residual 
effect on psyllid, repeated application is often required to suppress psyllid, which 
can cause pesticide resistance. Pesticides pollution is also recognized as a major 
health hazard to human beings and beneficial insects. To deal with these ques-
tions, we propose model dealing in detail with the killing efficiency rate and de-
cay rate of pesticides. The residual effects of pesticides (i.e. killing efficiency rate 
and decay rate) on the threshold conditions are also addressed. 

A model for the temporal spread of an epidemic in a closed plant population 
with periodic removals of infected plants has been considered by Fishman et al. 
[8]. Integrated management has been found to be more effective at eliminating 
epidemics. In this paper, according to the above biological background, we de-
velop a hybrid impulsive control model, in which replanting of healthy plants 
and removing infected plants at one fixed moment and pesticide spraying at 
another fixed moment are considered, to propose optimal control strategy. 

The paper is organized as follows. In Section 2, we formulate the impulsive 
epidemic model and also simplify the original system (2.1). In Section 3, we in-
troduce some useful lemmas and the basic reproduction number of the model. 
In Sections 4 and 5, we proved the global stability of the disease-free equilibrium 
and permanence of the model, respectively. In the finally section, a brief discus-
sion is given. 
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2. Model Formulation 

Let ( ) ( ),h hS t I t  denote susceptible citrus host and infected citrus host, respec-
tively, and ( ) ( ),v vS t I t  represent susceptible psyllid and infected psyllid, re-
spectively. We give the following system:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )
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h h
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S t I t d S t
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I t

S t I t d I t vI t
t t kT k N

S t
S t I t d S t

t
I t

S t I t d I t
t

S t S t

I t I t
t kT k N

S t S t

I t I t

λ

λ

β

β

δ

φ

+

+

+

+

 
= − − 

 
 

= − −  ≠ ∈ = Λ − −    = −  
 = +

 = −  = ∈ 
 = 
 
 = 

      (2.1) 

with initial condition  

( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0.h h v vS I S I+ + + +> > > >             (2.2) 

The model is satisfied with the following assumptions. 
• , ,h h vS I S  and vI  are left continuous, that is, ( ) ( )h hS t S t−= , 

( ) ( )h hI t I t−= , ( ) ( )v vS t S t−=  and ( ) ( )v vI t I t−=  for all 0t ≥ . 
• 0λ ≥  is the infected rate of citrus host. 1 0, 0d v> >  are the nature death 

rate and disease induced death rate of citrus, respectively. 
• 0Λ >  is constant recruitment rate of psyllid. 
• 20, 0dβ ≥ >  are the infected rate and nature death rate of psyllid, respec-

tively. 
• 0,0 1δ φ≥ < <  are the recruitment rate of citrus and removing rate of in-

fected citrus by impulses, respectively. 
• 0T >  is the interpulse time, i.e., the time between two consecutive pulse 

replanting and removing. 
The following lemma is obvious. 
Lemma 2.1. If ( )0 0hS + > , ( )0 0hI + > , ( )0 0vS + >  and ( )0 0vI + > , then 

( ) 0hS t > , ( ) 0hI t > , ( ) 0vS t >  and ( ) 0vI t >  for every 0t > . 

Denote ( ){ }4 * *: , , , | 0 ,0h h v v h h h v v vG S I S I R S I N S I N+= ∈ ≤ + ≤ ≤ + ≤ , where 

1

*

1 eh d TN δ
−=

−
, *

2
vN

d
Λ

= . 

Theorem 2.1. The solutions of system (2.1) with initial condition (2.2) even-
tually enter into G and G is positively invariant for system (2.1). 

Proof: Let ,h h h v v vN S I N S I= + = + . By system (2.1), we have  
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( ) ( ) ( )
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φ δ+

+
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= − −  ≠  = Λ −  


= − +  = 

= 

             (2.3) 

By the first and third equations of (2.3), we get  

( )

( ) ( )

1

d
, ,

d
, ,

h
h

h h

N t
d N t kT

t
N t N t t kTδ+


≤ − ≠


 ≤ + =

 

Thus, we have 
1

.
1 eh d TN δ

−≤
−

 

From the second and fourth equations of (2.3), we have  

( )
2

d
.

d
v

v

N t
d N

t
≤ Λ −  

Then, we have 
2

vN
d
Λ

≤ . 

Then, from the above analysis, which implies that G is positively invariant. 

3. The Basic Reproduction Number of (2.1) 

Let ( ),n nR R+  be the standard ordered n-dimensional Euclidean space with a 
norm  . For , nu v R∈ , we write u v≥  if nu v R+− ∈ , u v>  if 

{ }\ 0nu v R+− ∈ , u v  if ( )nu v Int R+− ∈ , respectively. 
Set ( )A t  be cooperative, irreducible and periodic n n×  matrix function 

with period ω  (>0), P be a n n×  constant matrix, T be a pulse period satisfy-
ing ,T q q Nω = ∈ . Then ( )(.)A tΦ  is the fundamental solution matrix of the 
linear differential equation  

( ) ( )
d

,
d
y t

A t y
t

=  

and ( )( )(.)
q

Ar P ωΦ  is the spectral radius of ( )(.)
q

AP ωΦ . By Perron-Frobenius 
theorem, ( )( )(.)

q
Ar P ωΦ  is the principal eigenvalue of ( )(.)A ωΦ  in the sense 

that it is simple and admits an eigenvector * 0v  . 
Firstly, we introduce some lemmas which will be useful for our further arguments. 

Lemma 3.1. [14] Let ( )( )(.)
1 ln q

Ar Pµ ω
ω

= Φ . Then there exists a positive, 

ω-periodic function ( )v t  such that ( )e t v tµ  is a solution of  

( ) ( )

( ) ( )

d
, , ,

d
, , .

y t
A t y t kT k N

t
y t Py t t kT k N+


= ≠ ∈


 = = ∈

              (3.1) 

In what follows, we give the basic reproduction number 0R  for system (2.1). 
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Similar to Yang and Xiao [15]. 
An impulsive periodic differential mathematical model in which impulses oc-

cur at fixed times may be described as follows:  

( ) ( )

( ) ( ) ( )

d
, , ,

d
, ,

x t
f t x t kT

t
x t x t I t t kT+


= ≠


 = + =

                   (3.2) 

where : kf R R+ ×Ω→  is ω-periodic function and q Tω= , for t kt= , 

( ) ( )
0

lim , , 1, 2,
h

x kt x kt h k N N
+

+

→
= + ∈ =   and Ω  is an open set. 

Let ( )( ),i t x t  be the input rate of newly infected individuals in the i-th 
compartment, and ( )( ) ( )( ) ( )( ), , ,i i it x t t x t t x t− += −    where ( )( ),i t x t+  be 
the input rate of individuals by other means, and ( )( ),i t x t−  be the rate of 
transfer of individuals out of compartment i; then ( )( ),i t x t  denotes the net 
transfer rate out of compartments. We suppose that ( )kx t  immediately after 
pulses equals  

( ) ( ) ( ) ( )( ) ,x kt x kt I kt x ktψ+ = + =  

where ( )1: , , ,nR Cψ ψΩ→Ω Ω∈ ∈ Ω Ω . 
Denote 

( )T
1 2, , , ,nx x x x=   

( ) ( ) ( ) ( )( )T
1 2, , , , , , , ,nt x t x t x t x=      

( ) ( ) ( ) ( )( )T
1 2, , , , , , , ,nt x t x t x t x=      

where TA  denotes the transpose of A, and 1 2, , , nx x x  are n homogeneous 
compartments in a heterogeneous population, with each 0ix ≥  being the 
number of individuals in each compartment. Assume that the compartments 
sort by two types, with the first m compartments 1 2, , , mx x x  the infected in-
dividual, and 1, ,m nx x+   the uninfected individuals. Denote 

( ) ( )1 1, , , , , ,m m nX x x Y x x+= =   

( ) ( ) ( )T
1 1, , , , , , , ,m m nh g h gψ ψ ψ ψ ψ+= = =   

( ) ( )1 1, , , .m n mh C R g C R −∈ Ω ∈ Ω  

Now, system (3.2) can be written as  

( ) ( )( ) ( )( )

( ) ( )( )
( ) ( )( )

d
, , , ,

d
,

.
,

i
i i

x t
t x t t x t t kT

t
X t h x t

t kT
Y t g x t

+

+


= − ≠


 =  = = 

 

           (3.3) 

Define sX  to be the set of all disease-free states:  

{ }0 | 0, 1, , .s iX x x i m= ≥ = =   

Furthermore, assume that  

( ) ( ) ( )( )T
10, ,0, , ,m nx t x t x t+=  

   
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be a disease-free periodic solution over the k-th time interval ( )( , 1kT k T+   
with ( ) 0ix t > , 1m i n+ ≤ ≤ , for all 0t ≥ . 

Let  

( )
( )( ) ( )

( )( )
1 , 1 ,

, ,
, ,i i

j ji j m i j m

t x t t x t
F t V t

x x
≤ ≤ ≤ ≤

   ∂ ∂
= =      ∂ ∂   

  
 

( )
( )( ) ( )( )

1 , 1 ,

, ,
, ,i i

j jm i j n m i j n

f t x t t x t
M t Q

x x
ψ

+ ≤ ≤ + ≤ ≤

   ∂ ∂
= =      ∂ ∂   

 

 

and 
( )( )

1 ,

,i

j i j m

t x t
P

x
ψ

≤ ≤

 ∂
=   ∂ 



, where ( )( ),i t x t , ( )( ),i t x t , ( )( )if x t , ix  

and iψ  are the i-th component of ( )( ),t x t , ( )( ),t x t , ( )( ),f t x t , x and 

ψ , respectively. 

We make the following assumptions, which are the same biological meanings 
as those by Wang and Zhao [16] and Yang and Xiao [15]. 

(H1) If 0x ≥ , then , , 0i i i
+ − ≥    for 1, ,i n=  . 

(H2) If 0ix = , then 0i
− = . In particular, if sx X∈ , then 0i

− =  for 
1, ,i m=  . 

(H3) 0i =  if i m> . 
(H4) If sx X∈ , then 0i =  and 0iV + =  for 1, ,i m=  . 
(H5) The pulses on the infected compartments must be uncoupled with the 

uninfected compartments; that is, ( )( )h x nT  is essentially ( )( )h X nT . 
(H6) It holds that ( )0 0h = . 
(H7) ( )( ) 1q

Mr Q TΦ < , where ( )M tΦ  is the fundamental solution matrix of 
the system  

( ) ( )
d

.
d

Z t
M t Z

t
=  

(H8) ( )( ) 1q
Vr P T−Φ < . 

In the following, we study the threshold dynamics of system (2.1) and show 
that its basic reproduction number can be defined as the spectral radius of the 
so-called next infection operator as that in impulsive and periodic environment 
[16]. 

Let ( ), ,Y t s t s≥  be the evolution operator of the linear impulsive periodic 
system  

( ) ( )

( ) ( )

d
, ,

d
, ,

y t
V t y t nT

t
y t Py t t nT+


= − ≠


 = =

                 (3.4) 

where the explicit expression of ( ),Y t s  can be found in [17], we omit it here. 
By assumption (H1)-(H8), we also know that the periodic solution of system (3.4) 
is asymptotically stable. 

Now, we define the so-called next infection operator L as follows:  

( )( ) ( ) ( ) ( )lim , d , ,
t

aa
L t Y t s F s s s Cωφ φ φ

→−∞
= ∈∫  
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where Cω  is defined as the ordered Banach space of all ω-periodic functions 
from R to mR , equipped with the maximum norm .

∞
, and the positive cone 

( ){ }: 0,C C t t Rω ωφ φ+ ∈ ≥ ∀ ∈ ; ( )sφ  is the initial distribution of infectious 
individuals. 

The limit as a goes to infinity does exist, and the next infection operator L is 
well defined, continuous, positive and compact on the domain. We now define 
the basic reproductive number as the spectral radius of L is  

( )0 .R Lρ  

From above discussion, we have the following results. 
Lemma 3.3. Assume that (H1)-(H8) hold, Then the following statements are 

valid: 
1) 0 1R =  if and only if ( )( ) 1q

F Vr P ω−Φ = . 
2) 0 1R >  if and only if ( )( ) 1q

F Vr P ω−Φ > . 
3) 0 1R <  if and only if ( )( ) 1q

F Vr P ω−Φ < . 
The proof in detail is similar to periodic systems in [15]. 
Lemma 3.4. If 0 1R <  the disease-free periodic solution ( )x t  is asymptoti-

cally stable, and unstable if 0 1R > . 
Proof: Observe that the linearized system of system (3.3) at the disease-free 

periodic solution is  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

d
, ,

d

, .

F t V tx t
x t t kT

J t M tt

P
x t x t t kT

Q
+

  − 
= ≠  −  


  = =  Γ 

0

0
          (3.5) 

Then the monodromy matrix of the impulsive system (3.5) equals  

( )
( )

0
,

q
F V

M

TP
TQ

−Φ  
   ∗ ΦΓ   

0
 

where ∗  represents a non-zero block matrix. Then the Floquet multipliers of 
system (3.3) are the eigenvalues of ( )( )q

F Vr P T−Φ  and ( )( )q
Mr Q TΦ . By as-

sumption (H7), that is, ( )( ) 1q
Mr Q TΦ < , it then follows that the disease-free 

periodic solution is asymptomatically stable if ( )( ) 1q
F Vr P T−Φ < , and unstable 

if ( )( ) 1q
F Vr P T−Φ > . This completes the proof. 

Following, we demonstrate the existence of the disease-free periodic solution. 
Set ( ) ( )0, 0h vI t I t= =  for all 0t > . Under this condition, we have the follow-
ing system:  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

2

d
,

d ,
d

,
d

,
,

,

h
h

v
v

h h

v v

S t
d S t

t t kT
S t

d S t
t

S t S t
t kT

S t S t

δ+

+

 
= −  ≠  = Λ −  


= +  = 

= 

                   (3.6) 

From the first and third equations of system (3.6), we have  
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( ) ( )

( ) ( )

1

d
, ,

d
, .

h
h

h h

S t
d S t t kT

t
S t S t t kTδ+


= − ≠


 = + =

                   (3.7) 

Then, over the k-th impulsive interval,  

( ) ( ) ( ) ( )(1e , , 1d t kT
h hS t S kT t kT k T− −+= ∈ +  . By the impulsive condition, we have 

( )( ) ( ) 11 e d T
h hS k T S kT σ−+ ++ = + . The unique fixed point of this system equals 

( )
1

*

1 eh d TS t σ
−=

−
. 

Accordingly, the impulsive periodic solution of the system (3.7) is  

( ) ( ) ( )(1

1

* e , , 1 .
1 e

d t nT
h d TS t t kT k Tσ − −

−= ∈ + −
 

Obviously, ( )*
hS t  is globally asymptomatically stable. 

From system (3.6), we know that ( )vS t  is not affected by impulse, and we 
have ( )* 1

2lim vt
S t d −

→+∞
= Λ . Hence, system (2.1) has a unique disease-free periodic 

solution ( ) ( )( )* *
0 ,0, ,0h vE S t S t= . 

Obviously, by Lemma 3.4, we have that ( ) ( )( )* *,0, ,0h vS t S t  of system (2.4) is 
asymptotically stable if 0 1R < , and unstable if 0 1R > . 

We denote ( ) ( ) ( ) ( ) ( )( )T
, , ,h v h vx t I t I t S t S t= , then for system (2.1), we have  

( )( )
( ) ( )
( ) ( ), ,

0
0

h v

v h

S t I t
S t I t

t x t

λ
β
 
 
 =  
  
 

                   (3.8) 

( )( ) ( )( )

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

1

2

1

2

0
0

, , ,
0

h h

v

h v h

v h v

d I t vI t
d I t

t x t t x t
S t I t d S t
S t I t d S t

λ
β

+ −

 +  
  
  = =    +
    +Λ   

      (3.9) 

and ( )( ) ( )( ) ( )( ), , ,t x t t x t t x t− += −   . 
Furthermore, we denote ( ) ( ), , ,h v h vX I I Y S S= = . By [15], suppose that 
( )x t  immediately after pulses equals  

( ) ( )( ) , .x t x t t nTψ+ = =                  (3.10) 

For the system (2.1), we have  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

T
1 2

3 4

, , , 1 , ,

, , .
h v

h v

h g h I t I t

g S t S t

ψ ψ ψ φ

ψ ψ δ

= = = −

= = +
 

Clearly, conditions (H1)-(H6) are satisfied for system (2.1). There are only 
(H7) and (H8) should be verified in the following. 

( ) ( ) ( )( )* * *0,0, ,h vx t S t S t=  is the disease-free periodic solution for system 
(2.1). We define ( )( ) ( )( ) ( )( ), , ,f t x t t x t t x t= −  ,  

( )
( )( )*

3 , 4

i

j
i j

f x t
M t

x
≤ ≤

 ∂
 =
 ∂ 

 and 
( )( )*

3 , 4

i

j
i j

x t
Q

x

ψ

≤ ≤

 ∂
 =
 ∂ 

, where ( )( )if x t , ix  
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and iψ  are the i-th component of ( )( ),f t x t , x and ψ , respectively. 

Then, from (3.8) and (3.9), we obtain  

( ) 1

2

0
.

0
d

M t
d

− 
=  − 

 

From (3.10), we have  

1 0
,

0 1
Q  
=  
 

 

and hence, ( )( ) 1Mr Q TΦ < . Therefore, (H7) holds. 
We further denote ( ) ( ),F t V t  and P are 2 2×  matrices defined by  

( )
( )( )*

1 , 2

,i

j
i j

t x t
F t

x
≤ ≤

 ∂
 =
 ∂ 


, ( )

( )( )*

1 , 2

,i

j
i j

t x t
V t

x
≤ ≤

 ∂
 =
 ∂ 


 and  

( )( )
1 , 2

i

j i j

x t
P

x
ψ

≤ ≤

 ∂
=   ∂ 

, where ( ),i t x  and ( ),i t x  are the i-th component of 

( ),t x  and ( ),t x , respectively. Then from (3.8), (3.9) and (3.10), it follows 
that  

( ) ( )
( ) ( )

*
1

*
2

0 1 00
, and .

0 0 10
h

v

d vS t
F t V t P

dS t
φλ

β
  + −   

= = =          
 

It is easy to see that ( )( ) 1q
Vr P ω−Φ <  satisfied. (H8) is hold. 

Thus, the Lemma 3.3 is right for system (2.1). 

4. Global Stability of the Disease-Free Equilibrium 

In this section, we prove that the disease-free periodic solution 
( ) ( )( )* *

0 ,0, ,0h vE S t S t=  is globally asymptotically stable, if 0 1R <  and hence, 
the disease extinct. 

Firstly, we need to prove the following lemma. 
Lemma 4.1. For the system (2.1), it holds that  

( ) ( )( ) ( ) ( )( )* *lim 0, lim 0,h h v vt t
N t S t N t S t

→+∞ →+∞
− = − =  

where  

( ) ( ) ( ) ( ) ( ) ( ),h h h v v vN t S t I t N t S t I t= + = + . 

Proof: Let ( ) ( ) ( )*
1 h hy t N t S t= − , from Theorem 2.1, we have  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

*
1 *

1 1

*
1 1

d d d
d d d

,

h h
h h h

h h

y t N t S t
d N t vN t d S t

t t t
d N t S t d y t

= − = − − −

≤ − − = −
     (4.1) 

and  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

*
1

*

*
1 ,

h h

h h h

h h

y t N t S t

N t I t S t

N t S t y t

ψ δ δ

+ − += −

= − + − −

≤ − =

              (4.2) 
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for 2 1t t> . 
Obviously, by (4.1), (4.2) and the comparison principle of impulsive differen-

tial equations in [17], we have  

( ) ( ) ( )( )*
1lim lim 0.h ht t

y t N t S t
→+∞ →+∞

= − =  

In similar method, we can prove  

( ) ( )( )*lim 0,v vt
N t S t

→+∞
− =  

for 2 1t t> . 
Hence, the proof is completed. 
Theorem 4.1. For any solution of system (2.1), if 0 1R < , then the dis-

ease-free periodic solution ( ) ( )( )* *,0, ,0h vS t S t  is globally asymptotically stable 
and if 0 1R > , then it is unstable. 

Proof: By Lemma 3.3, if 0 1R > , then ( ) ( )( )* *,0, ,0h vS t S t  is unstable and if 

0 1R < , then ( ) ( )( )* *,0, ,0h vS t S t  is locally stable. Hence, it is sufficient to show 
that the global attractivity of ( ) ( )( )* *,0, ,0h vS t S t  for 0 1R < . 

Now, we prove the global attractivity of the disease-free solution. 
From Lemma 4.1, there exist a 3 2t t≥  and a positive constant 1  such that 
( ) ( )*

1h hS t S t≤ +  , ( ) ( )*
1v vS t S t≤ +  . 

By the second, fourth, sixth and eighth equations of system (2.1), we have  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )

*
1 1

*
1 2

d
,

d ,
d

,
d

1 ,
,

,

h
h v h

v
v h v

h h

v v

I t
S t I t d v I t

t t kT
I t

S t I t d I t
t

I t I t
t kT

I t I t

λ

β

φ+

+

 
≤ + − +  ≠  ≤ + −  


= −  = 

= 



  

for 3t t≥ . 
Set ( )

1
M t  be the 2 2×  matrix function such that  

( )
1

1

1

0
.

0
M t

 
=  
 






 

By Lemma 3.3, we have ( )( ) 1q
F Vr P ω−Φ < , we restrict 1 0> , such that 

( )( )1
1q

F V Mr P ω− +Φ <


. Let us consider the following system  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )

*
1 1

*
1 2

d
,

d ,
d

,
d

1 ,
.

,

h
h v h

v
v h v

h h

v v

I t
S t I t d v I t

t t kT
I t

S t I t d I t
t

I t I t
t kT

I t I t

λ

β

φ+

+

 
= + − +  ≠  = + −  


= −  = 

= 



  

By Lemma 3.1 and the standard comparison principle, there exists a positive 
T-periodic function ( ) ( ) ( )( )1 2,V t V t V t=  such that ( ) ( ) ( )1 1expJ t V t p t≤  
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where ( ) ( ) ( )( )T
1 ,h vJ t I t I t=  and ( )( )( )11

1 ln 0q
F V Mp r P T

T − += Φ <


. Then, we 

see that ( )lim 0ht
I t

→∞
=  and ( )lim 0vt

I t
→∞

= . 

Moreover, we obtain that ( ) ( )( )*lim 0h ht
S t S t

→∞
− = , ( ) ( )( )*lim 0v vt

S t S t
→∞

− = . 
Hence, the disease-free periodic solution ( ) ( )( )* *,0, ,0h vS t S t  is globally attrac-
tive. This completes the proof. 

5. Permanence 

In this section, we show that if 0 1R > , then the disease persists. 
Let X  be a matrix space, :f X X→   be a continuous map, and 0X X⊆   

be an open set. Define  

( ){ }0 0 0 0: \ , : : , 0 .nX X X M x X f x X n∂∂ = = ∈∂ ∈∂ ≥           (5.1) 

A∂  is a maximal compact invariant set of f in 0X∂ . A finite sequence 
{ }1, , kM M  are disjoint, compact, and invariant subsets of 0X∂ , and each of 
them is isolated in 0X∂ . 

We present persistence theory [18] as follows: 
Lemma 5.1. Assume that 
1) ( )0 0f X X⊂  and f has a global attractor A; 
2) The maximal compact invariant set A A M∂ ∂=   of f in 0X∂ , possibly 

empty, has an acyclic covering M  and where { }1 , kM M M=   with the fol-
lowing properties:  

a) iM  is isolated in X ; b) ( ) 0
s

iW M X = ∅  for each 1 i k≤ ≤ . 
Then, f is uniformly persistent with respect to ( )0 0,X X∂ , i.e., there is 0η >  

such that for any compact internally chain transitive set L with iL M  for all 
1 i k≤ ≤ , ( )0inf ,x L d x X η∈ ∂ > . 

Define Poincaré map 4 4:P R R+ +→  associated with system (2.1), satisfying 

( ) ( )0 0 0 4, ,P x u X x Rω+
+= ∀ ∈ , where ( )0,u t x  is the unique solution of system 

(2.1) with ( )0 00,u x x= . Now, we denote ( ){ }4, , ,h h v vX S I S I R+= ∈ , 
( ){ }0 , , , { 0, 0, 0, 0h h v v h h v vX S I S I S I S I= ∈ ≥ > ≥ >  and 0 0\X X X∂ =  . 

Theorem 5.1. Suppose that 0 1R > , then system (2.1) exists a positive con-
stant 0>  such that for all ( ) ( ) ( ) ( )( ) ( )0 0 0 0

00 , 0 , 0 , 0 , , ,h h v v h h v vS I S I S I S I X= ∈ ,  

( ) ( )liminf , liminf .h vt t
I t I t

→+∞ →+∞
≥ ≥   

Proof: Firstly, we prove that P  is uniformly persistent with respect to 
( )0 0,X X∂ . From Theorem 2.1, it is obvious that X  and 0X  are positively 
invariant. We also know that P  is point dissipative on 4R+  from Lemma 4.1. 

Denote ( ) ( ){ }0 0 0 0 0 0 0 0
0 0, , , | , , , , 0m

h h v v h h v vM S I S I X P S I S I X m∂ = ∈∂ ∈∂ ∀ ≥ . 
Next, we need to show that ( ){ },0, ,0 | 0, 0h v h vM S S S S∂ = ≥ ≥ . 
Obviously, ( ){ },0, ,0 | 0, 0h v h vS S S S M ∂≥ ≥ ⊆ . We now need to prove that 

( ){ }\ ,0, ,0 | 0, 0h v h vM S S S S∂ ≥ ≥ = ∅ . Suppose it’s not hold. For any 

( ) ( ){ }0 0 0 0, , , \ ,0, ,0 , 0, 0h h v v h v h vS I S I M S S S S∂∈ ≥ ≥ = ∅ . For the case 
0 00, 0h vI I= > , it is obvious that ( ) 0vI t >  and ( ) 0hS t >  for all 0t > . From 

second and sixth equations of system (2.4), we have  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

d
, ,

d
1 , ,

h
h v h

h h

I t
S t I t d v I t t kT

t
I t I t t kT

λ

φ+


= − + ≠


 = − =

 

then it hold that ( ) ( ) ( ) ( ) ( ) ( )( )1*

1 1

0 0 0 0
e 0d v t Th h h h

h h

S I S I
I t I

d v d v
λ λ − + − 

= + − > 
+ + 

 for 

all 0t >  from Lemma 3.2, where ( ) ( ) ( ) ( )( )
( ) ( )

1

1

*

1

1 1 e0 0

1 1 e

d v T

h h
h d v T

S I
I

d v

ωλ

ω

− +

− +

− −
=

+ − −
. In 

the similar method, for the case 0 00, 0h vI I> = , then we have ( ) 0hI t >  and 

( ) 0vS t >  for all 0t > . This implies that ( ), , ,h h v vS I S I M ∂∉  for ( )0t >  suf-

ficiently small. It follows that ( ){ },0, ,0 | 0, 0h v h vM S S S S∂ ⊆ ≥ ≥ . Thus, 

( ){ },0, ,0 | 0, 0h v h vM S S S S∂ = ≥ ≥ . It is clear that ( )* *
0 ,0, ,0h vE S S=  is a unique 

fixed point of P  in M ∂ . 

In the following, we need to prove ( )0 0
sW E X = ∅ . 

We write ( )0 0 0 0 0
0, , ,h h v vx S I S I X= ∈ . By the continuity of the solutions with 

respect to the initial conditions, 0∀ > , there exist 0 0δ > , such that for all 
0

0x X∈  with 0
0 0x E δ− ≤ , it hold that  

( ) ( ) [ ]0
0, , , 0, .u t x u t E t Tε− ≤ ∀ ∈  

Now, we show that  

( )( )0
0 0limsup , .m

t
d P x E δ

→∞
≥  

Suppose not hold, then ( )( )0
0 0limsup ,m

t
d P x E δ

→∞
<  for some 0

0x X∈ . 
Without loss of the generality, we can assume that ( )( )0

0 0, , 0md P x E mδ< ∀ ≥ . 
Thus, we obtain that ( )( ) ( ) [ ]0

0, , , 0,mu t P x u t E t Tε− ≤ ∀ ∈  and 0m∀ ≥ . 

For any 1 0t ≥ , let 1t m tω ′= + , where [ ]0,t ω′∈  and 1tm
ω
 =   

. 1t
ω
 
  

 is 

the greatest integer less than or equal to 1t ω . So, we have that  

( ) ( ) ( )( ) ( )0 0
1 1 0 0 1, , , , , 0.mu t x u t E u t P x u t E tε′ ′− = − ≤ ∀ ≥

    

It follows that  

( ) ( ) 2 10 , 0 , .h vI t I t t tε≤ ≤ ≤ ≤ ∀ >   

Then, by the first, third, fifth and seventh equations of system (2.1), we have  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

1

2

d
,

d ,
d

,
d

,
,

,

h
h

v
v v

h h

v v

S t
d S t

t t kT
S t

S t d S t
t

S t S t
t kT

S t S t

λε

βε

δ+

+

 
≥ − +  ≠  ≥ Λ − −  


= +  = 

= 

             (5.2) 

Consider an auxiliary system  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

1

2

d
,

d ,
d

,
d

,
,

,

h
h

v
v v

h h

v v

S t
d S t

t t kT
S t

S t d S t
t

S t S t
t kT

S t S t

λε

βε

δ+

+

 
≥ − +  ≠  ≥ Λ − −  


= +  =

 = 







 

 

 

             (5.3) 

Using the same method as aforementioned, we have that (5.3) admits a posi-
tive periodic solution ( ) ( )( )* *,h vS t S t  . Since ( )( ) 1q

Mr Q tΦ <  holds. Then, 
there exists a small enough ε  such that ( )( ) 1q

M Mr Q t
ε+Φ < , and 

( )( )q
M Mr Q t

ε+Φ  is continuous for small ε , where  

0
.

0
Mε

ε
ε

 
=  
 

 

As before, we have that ( ) ( )( )* *,h vS t S t   is globally asymptotically stable, and 
meanwhile ( ) ( )* *

0
lim h hS t S t
ε→

= , ( ) ( )* *

0
lim v vS t S t
ε→

= , thus there exist 1ε  small 
enough and a constant 0ξ > , such that  

( ) ( )
( ) ( )

* *

* *

,

,
h h

v v

S t S t

S t S t

ξ

ξ

 ≥ −


≥ −





 

for 1ξ ε< . 
On the other hand, the standard comparison theorem implies that there exist 

2 1t t≥   and 1ξ  such that  

( ) ( ) ( )
( ) ( ) ( )

*
1

*
1

,

,
h h h

v v v

S t S t S t

S t S t S t

ξ

ξ

 ≥ ≥ −


≥ ≥ −

 

 

 

for all 3 2t t≥  . Then, for all 3 2t t≥  , we have  

( ) ( ) ( )
( ) ( ) ( )

* *
1

2* *
1

,

,
h h h

v v v

S t S t S t
t t

S t S t S t

ξ ξ γ

ξ ξ γ

 ≥ − − − ∀ ≥
≥ − − −





 

where 1γ ξ ξ= + . 
By the second, fourth, sixth and eighth equations of system (2.1), we have  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )

*
1

*
2

d
,

d ,
d

,
d

1 ,
.

,

h
h v h

v
v h v

h h

v v

I t
S t I t d v I t

t t kT
I t

S t I t d I t
t

I t I t
t kT

I t I t

λ γ

β γ

φ+

+

 
≥ − − +  ≠  ≥ − −  


= −  = 

= 

       (5.4) 

Set M γ  be the 2 2×  matrix function such that  

0
,

0
M γ

γ
γ
 

=  
 

 

where γ  is small enough. 
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By Lemma 3.1 and the standard comparison principle, it follows that there ex-
ists a positive T-periodic function ( ) ( ) ( )( )1 2,W t W t W t=  such that 

( ) ( ) ( )2 2expJ t p t W t=  is a solution of system (5.4), where  

( )( )2
1 ln q

F V Mp r P T
T γ− −= Φ . Since ( )( ) 1q

F Vr P T−Φ > , and  

( )( )q
F V Mr P T

γ− −Φ  is continuous for small γ . So we can choose γ  small 

enough, such that ( )( ) 1q
F V Mr P T

γ− −Φ > . It follows that 2 0p > , we can choose 

4 3t t≥   such that  

( ) ( ) ( ) ( )4 1 4 20 , 0 .h vI t W I t W≥ ≥   

By the comparison principle we have  

( ) ( ) ( ) ( ) ( ) ( )2 4 2 4
1 4 2 4exp , expp t t p t t

h vI t W t t I t W t t− −≥ − ≥ −
 

   

for all 4t t≥  . Then, we obtain that ( )lim ht
I t

→+∞
= +∞  and ( )lim vt

I t
→+∞

= +∞ , which 
contradicts to the boundedness of ( )0 hI t ε≤ ≤ , ( )0 hI t ε≤ ≤ . Thus we have 
proved ( )0 0

sW E X = ∅ , which implies each orbit in M ∂  converges to 0E , 
and hence 0E  is acyclic in M ∂ . 

Therefore, the Lemma 5.1 is satisfied for system (2.1). Furthermore, we obtain 
that the disease is permanence, when 0 1R > . 

6. Conclusion 

In this paper, a vector-borne epidemic model for Huanglongbing with impulsive 
control is established. Under the reasonable assumptions (H1)-(H8), one studied 
the threshold dynamics behavior of the model. Based on comparison theorem of 
impulsive differential equation and method of enlarging and reducing, we 
proved that if the 0 1R < , the disease-free equilibrium is global stability, and 
Huanglongbing is uniformly persistent if 0 1R > . We only consider replanting 
susceptible and rouging infective in model, spraying insecticides to kill psyllid is 
not. It’s a lot of room for us to improve. 
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