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Abstract

This paper deals with a new higher order compact difference scheme, which is, O(h*) using coupled ap-
proach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At
each internal grid point, the solution u(X, y, z) and its Laplacian V?u are obtained. The resulting stencil al-
gorithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The
present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discre-
tize the derivative boundary conditions near the boundary. We also show that special treatment is required to
handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method
is tested on three problems and compares very favourably with the corresponding second order approxima-
tion which we also discuss using coupled approach.
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1. Introduction

We are interested to develop a new algorithm for solving
the three-dimensional non-linear biharmonic partial dif-
ferential equation

4 4 4
V“u(x,y,z)za—l:+a—l:+a—:J
ox* oy' oz

» o'u . o'u . o'u .

ox*oy>  oy*or*  or’ox M

2 2 2 2
= f(x,y,z,u,ux,uy,uz,v u,v’u,,v2u,,V uz)
0<xy,x<1

defined in the solution region

Q= {(X, Y, Z)|O <X, V,2< 1} with boundary 6Q, where
o’'u o°u o

Vu(xy,2)=—+—+—
ox~ oy oz

"Present address: 4076, C/4, Vasant Kunj, New Delhi, India.

“Present address: Department of Mathematics, Rajasunakhala College,
Nayagarh, Orissa, India.

represents the three di-
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mensional Laplacians of U in Q. We assume that the
solution u(X, y, z) is smooth enough to maintain the order
and accuracy of the algorithm as high as possible under
consideration.

The Dirichlet boundary conditions are given by

2

o°u
u= fl(x,y,z),W: f,(X.y,2),(x,y,2)edQ. (2)

The nonlinear biharmonic equation is a fourth order
elliptic partial differential equation which occurs in many
areas of physics and applied mathematics, especially in
elasticity theory and stokes flow problems. It occurs with
fluid flowing over an obstacle or with the movement of a
natural or artificial body. Common examples are the
flows past an airplane, a submarine, an automobile, or
wind blowing past a high-rise building. Till about three
and half decades ago, second order accuracy was consid-
ered to be sufficient for most biharmonic problems. In
particular, the central difference schemes have been the
most popular ones because of their straightforwardness
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in application. Though for problems having well behaved
solutions, the solution may be of poor quality for con-
vection dominated flows, or for high Reynolds number if
the mesh is not sufficiently refined. Again, higher order
discretization is generally associated with non-compact
stencil which increase the band-width of the resultant
coefficient matrix. Both mesh refinement and increased
matrix band-width invariably lead to a large number of
arithmetic operations. Thus neither a lower order accu-
rate method on a fine mesh nor a higher order accurate
one on a non-compact stencil seems to be computation-
ally cost-effective. This is where higher order compact
(HOC) finite difference methods become important. A
compact finite difference schemes is one which utilizes
grid points located only directly adjacent to the node
about which differences are taken. In addition, if the
scheme has an accuracy greater than two, it is termed as
HOC method. The higher order accuracy of the HOC
methods combined with the compactness of the differ-
ence stencils yields highly accurate numerical solutions
on relatively coarser grids with greater computational
efficiency. A compact difference scheme is one that is
restricted to the patch of cells immediately surrounding
any given node and does not extend further. Most stan-
dard difference schemes such as the central difference
scheme for second order elliptic partial differential equa-
tions are compact. The high order compact method con-
sidered here is different in that the governing differential
equation is used to approximate the lower order deriva-
tive terms with the imbedding technique. The scheme is
difficult to develop due to the need for extensive alge-
braic manipulation, especially for non-linear problems.
However, once high-order method developed, it can be
incorporated easily in application. Various approaches
for the numerical solution of 2D biharmonic problems
has been discussed in the literature. Not many authors
have tried to solve the three-dimensional biharmonic
problems. The reason is that for high order approxima-
tion it is difficult to discretize the nonlinear biharmonic
equation as well as the associated boundary conditions
using a single computational cell. Another reason of ne-
cessity is that three-dimensional problems require large
computing power and place huge amount of memory
requirements on the computational systems. Such com-
puting power has only recently begun to become avail-
able for academic research. Smith [1] and Ehrlich [2,3]
have used coupled approach and solved 2D biharmonic
equation using second order accurate finite difference
equations. Bauer and Riess [4] have used block iterative
method to solve block 5-diagonal matrices for the solu-
tion of 2D biharmonic problem of first kind. Glowinski
and Pironneau [5] have developed a stable lower order
numerical method for the first biharmonic problem. Later,
kwon et al. [6], Stephenson [7], and Mohanty et al. [8-12]
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have developed certain second- and fourth-order finite
difference methods for the solution of two and three di-
mensional biharmonic problems using single compact
cells. Recently, using more grid points Singh et al [13]
and Khattar et al. [14] have discussed the fourth order
numerical methods for the solution of 2D and 3D bihar-
monic problems of second kind. Further, using coupled
approach Mohanty [15] has derived a new nine point
fourth order finite difference method for the solution of
non-linear biharmonic problems of second kind. In most
recently, using nine point compact cell Mohanty et al. [16]
have discussed fourth order finite difference method for
the solution of nonlinear 2D triharmonic problems. Ear-
lier, Mohanty et al. [17-19] have developed fourth order
compact difference schemes for the solution of multi-
dimensional non-linear elliptic partial differential equa-
tions. Fourth order compact difference schemes have
become quite popular as against the other lower order
accurate schemes which require high mesh refinement
and hence are computationally inefficient. On the other
hand, the higher order accuracy of the fourth order com-
pact methods combined with the compactness of the dif-
ference stencil yields highly accurate numerical solutions
on relatively coarser grids with greater computational
efficiency. A conventional approach for solving the 3D
biharmonic equation is to discretize the differential Equa-
tion (1) on a uniform grid using 125-point approxima-
tions with truncation error of order h*. This approxima-
tion connect the values of central point in terms of 124
neighbouring values of U in 5x5x5 cubic grid. We
note that the central value of U is connected to grid points
two grids away in each direction from the central point
and the difference approximations needs to be modified
at grid points near the boundaries. There are serious
computational difficulties with solution of the linear and
non-linear systems obtained through 125-point discreti-
zation of the 3D biharmonic equation. Approximations
using compact cells avoid these difficulties. The compact
approach involves discretizing the biharmonic equations
using not just the grid values of the unknown solution u
but also the values of the derivatives u,,, U, and u,
at selected grid points (see Mohanty and Pandey [10]). It
is required to solve the system of four equations to obtain
the solutions of u, u,,, U, and u,. In this paper, we
write the original differential equation in a coupled man-
ner and introduce new concepts to handle the boundary
conditions without discretizing them. For fourth order
approximations we use only 19-point compact cell (see
Figure 1). No approximations for derivatives need to be
carried out at the boundaries and the given Dirichlet
boundary conditions are exactly satisfied. The main ad-
vantage of this work is that we require to solve a system
of two equations, whereas in our previous work [10], we
were required to solve a system of four equations to ob-
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Figure 1. 19-point 3D single computational cell.

tain the numerical solution of u(X, y, z). Thus the pro-
posed method requires less algebraic operations as com-
pared to the method discussed in [10]. In Section 2, we
give the formulation of the method. The complete deri-
vation of the method is carried out in Section 3. In order
to validate the proposed fourth order method and test its
robustness, we solve three problems in Section 4 and
also discussed stability analysis briefly for a model pro-
blem. Concluding remarks are presented in Section 5.

2. Formulation of the Fourth Order
Discretization

Consider the three-dimensional solution region Q ,
which is replaced by a set of grid points (X, Ym, Zn),
where h > 0 is the mesh sizes in x-, y- and z- directions,
and grid points are defined by X, = Ih, y,, = mh, z, = nh; I,
mn=0()N+1with(N+1)h=1. Let u,, and
U, . be the approximate and exact solution values of
u(x, y, z) at the grid point (X, Ym, Z, ), respectively.

The Dirichlet boundary conditions are given by (2).
Since the grid lines are parallel to coordinate axes and
the values of U are exactly known on the boundary, this
implies, the successive tangential partial derivatives of u
are known exactly on the boundary. For example, on the
plane y = 0, the values of u(x, 0, z) and u, (x,0,z) are
known, i.e., the values of u,(x,0,2), Uu,(x,0,2),
U, (x,0,2), u,(x,0,z), etc are known on the plane
y = 0. This implies, the values of u(x, 0, z) and
VAU(x,0,2) =u,(%,0,2)+u,, (x,0,2)+u, (x,0,2) are
known on the plane y=0. Similarly the values of u and
V?u are known on all plane sides of the cubic region
Q.

Let us denote V°u(X,y,z)=V(X,y,z). Then we re-
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formulate the boundary value problems (1) and (2) in a
coupled manner as

o’'u o'u d’u
Vz s Yo =TS T I T3~ I K] >
u(x,y,z) P +8y2 +aZZ v(x,Y,2)  Ga)
(x,y,2)eQ
2 2 2
Vzv(x,y,z)za—\2/+a—\2/+a—\2/
ox~ oy~ oz
= f(x, y,z,u,v,ux,vx,uy,vy,uz,vz),. (3b)
(x,y,2)eQ

subject to the Dirichlet boundary conditions prescribed
by

u=a(xy,z), v=c(xv,z), (xy,z)edQ. (4

Let at the grid points (X;, Ym, Zn), the approximate and
exact solution values of V(X, Yy, z) be denoted as v, .
and V., respectively.

In order to obtain fourth order approximations on the
19-point compact cell for the system of non-linear dif-
ferential Equations (3a) and (3b), we need the following

approximations:
1

Usmn = E(Ulﬂ,m,n _UI—I,m,n) > (5a)
vxlqm,n :%(Vlﬂ,m,n _Vl—l,m,n) > (5b)
U yimn = 2_1h(u'~"’“~" ~Uypin) (6a)
V yimn %(VIMn ~Vimin) (6b)
Uamn = %(u,,mm1 ~Uy ) - (7a)
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_ 1 = 1
zmn = E(Vl,m,nﬂ _Vl,m,n—l) > (7b) Vi min = E(Vl,mtl,nﬂ _Vl,mtl‘nfl) > (15b)
_ 1 — 1
U aztmn = E(ﬁu,ﬂ,m,n F4U 0 tU 00 ). (82) Uamns = E(ﬁu,,m’nﬂ FAU 0 tU, ). (162)
Vst = E(J_rsv,ﬂ,m‘n FN o tVisima) > (8D) Vdmns = E(ﬂV.,m,nﬂ TN Vi), (16b)
_ 1 _
Uximzin = E(Ulﬂ,mil,n _Ul—l,mtl,n) ’ (93) U .m0 = %(Ulﬂ,mil‘n - ZUI,mil,n +Ul—l,mil,n) , (173)
= 1
_ _ — 1
V xI,mtl,n = E(Vlﬂ,mil,n Vl—l,mil,n ) > (9b) V xxl,mtl,n = F(Vlﬂ,mil,n - 2V|,m11,n +VI—1,m11,n ) 5 (17b)
U xmnet =i(u -U ) (10a) = 1
xl,m,n+ 2h 1+1,m,n+1 I-1,m,n+1 ) » U xxl,m,ntl = F(U llmnsl 2U 1m,n+l +U I—1,mntl ) , (183)
\7xl,m ntl = L(VI+1 m,n+l _Vl—l m n+1) > (IOb) \/ 1
2h N hmnE e Vidmast = F(v,ﬂmi1 =V, et FViimnet ) (18D)
Uyltl,m,n :L(UIH m+1,n _UIH m—ln) ’ (118') e 1
2h o Y U st mn :F(Ulil,mﬂ,n _2UIJ_r1,m,n +UIJ_r1,m—1,n ) » (192)
= 1
Vylil,m,n = o Vli m+1,n _Vlt m-1,n ) » (llb) = 1
2h ( Lm+1, 1,m-1, ) vV yylxl,m,n = F(Vlil,mﬂn —2V|i1’m‘n +VI¢1,m—1,n ) , (l9b)
— 1
U yimern = E(ii}u Imitn F 4U I,m,n U I,m¥1,n ) > (123) — 1
U yyl,m,ntl = F(Ul‘mﬂ,nil - 2Ul,m,nil +Ul,m—l‘nil ) ) (203)
= 1
V yimiin = %(iw,,mim FN o EVimen ). (12b) _ ]
Viimns = F(Vl,m+1,nt1 - 2Vl,m,nirl +Vl,m—1,nil) , (20b)
— 1
U yl.m,n£l = E(Ul,mﬂ,nil _Ul,m—l,ntl) » (133) o 1
| U zltlmn = F(Ultl,m,nﬂ _ZUIil‘m,n +Ulil,m,n—1) P (213)
\% yl,m,ntl = E(Vl,mﬂ,nil _Vl,m—l,nil) ’ (13b) _ 1
1 \% zltlmn = F(Vlil,m,nﬂ - 2Vlil,m,n +Vlil,m,n—1) B (Zlb)
Uadsimn = %(Ulil,m,m—l _Ultl,m,n—l ) ’ (143) _ 1
_ 1 u zzl,mtl,n = F(Ul,mil,ml - 2UI,mJ_rl,n +Ul,mil,n—1) ) (223)
\ Z£l,m,n = E(Vltl‘m,nﬂ _Vlil,m,n—l) > (14b) 1
o 1 \% zl,mtln = F(Vl,mil,nﬂ - 2Vl,mil,n +Vl,mil,n—1) . (22b)
Uz,mi,nz—u mELn+ -U m+ln-t ) » 15a
hm 2h ( bt men-d ) (152) Then we need to evaluate
Elil,m,n =f (X|ﬂ T/ U 141,m.n 3VI11,m,n , leil,m,n ,\7xlil,m,n ,L_Jyltl,m,n ,\7ylt1,m,n ,L_leil,m,n ,vzltl,m,n ) (23)
El,mtl,n = f (X| s ymil b Zn ’ Ul,mil,n 9V|,mi1,n s l-_Jxl,mil,n ,\7x|,mtl,n ,L_Jyl,mtl,n ,\7yl,mtl,n ,L_le,mil,n ,vzl,mtl,n ) (24)
El,m,nil =f (X| > Yms Znﬂ,ULm’nﬂ,V|’m‘nﬂ,l._1xl,m,nil,\7x|,m,n11,Uyl‘m,nil,\7y|‘m,n¢1,Uzl,m,nil,vzl,m,ntl) (25)
Further, we define
= h h — _ h _
U xl,m,n = U xI,m,n _E(VHIJTLH _Vl—l,m,n ) +E(U yyl+1,m,n —U yyl-1,m,n ) +B(U zzl+1,m,n —U zzl—l,m,n) (268.)
= - h= = h - - h -
V xI,m,n :V xI,m,n _E( F I+1,m,n — F 1-1,m,n ) +B(V yyl+1,m,n —V yyl-1,m,n ) +E(V zzIl+1,m,n —V 2z1-1,m,n ) (26b)
Copyright © 2011 SciRes. AJCM
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= — h h — h — —
U yl,m,n = U yl,m,n _E(VUTHL" _Vl,m—l,n ) +E(U xxI,m+1,n —U xxl,m—l‘n)‘f‘E(U zzIl,m+1,n —U zzl,m—l,n) (273)
= — h = — h - — h (- —
V yl,m,n :V yl,m,n —E( F I,m+1,n — F I,m-1,n ) +E(V xxI,m+1,n —V xxI,m-1,n ) + E(V zzl,m+1,n —V zzl,m-1,n ) (27b)
ﬁzl,m,n —Uzl m,n _1 Vl,m,n+1 _Vl,m,n—l +£ L_Jxxl,m,ml _L_Jxxl,m,n—l +£ L_Jyyl,m,n+1 _L_Jyyl,m,n—l (28a)
12 12 12
= — h = — h — h (o =
V zl,m,n =V zl,m,n —E( F I,m,n+1 — F I,m,n-1 )+ E(V xxI,m,n+1 -V xxI,m,n—1 ) +E(V yyl,m,n+1 -V yyl,m,n—l) (28b)
Finally, let
FI ,mn = f (X| N ym N Zn ,U| m,n> | m,n ,L_Jxl,m‘n ,\7xl,m,n ,L_Jyl‘m,n ,\7yl,m‘n ,Uzl‘m,n ,vzl,m,n) (29)
Then at each internal grid point (X, Ym, Zn) of the solu- tions (3) are discretized by
tion region €, the given system of differential Equa-
L[U ] El'Jl‘m—l,n 1 +UI 1,m,n—-1 +2UI ,m,n-1 l'Jl+l ,m,n—1 +Ul,m+1,n—l +Ul—l‘m—l n +2UI ,m-1,n UI+l ,m-1,n +2UI—1,m,n
_24UI,m n + 2UI+1 m,n lJl—l,m+1 n + 2UI m-+1,n Ul+l,m+1,n +Ul,m—1,n+1 +Ul—l,m,n+1 + 2UI m,n+1 Ul+l,m,n+l +Ul,m+1,n+1
h? ] (30a)
:7[Vl+l,m,n +Vl—l,m,n +Vl,m+1,n +Vl,m—1,n +Vl,m,n+1 + I,m,n—1 + 6VI ,m n:|+o(h )
I,mn=1(1)N
[V] VI m-1,n—1 Vl—l,m,n 1 +2VI m,n—1 Vl+l,m,n—1 +Vl,m+1,n—l +Vl—l,m—l n +2VI m-1,n Vl+l,m—1 n + 2VI Lmn 4VI,m,n
+2VI+1,m,n +Vl—l,m+1 n +2VI m+1,n VI+1,m+1,n +Vl,m—1,n+1 +Vl—l,m,n+1 + 2VI m,n+1 Vl+l,m,n+1 +Vl,m+1,n+1
(30b)

2 — p— — — — — —_— p—
:h?|:|:l+l,m,n + Fl—l,m,n + Fl,m+l,n + Fl,m—l,n + Fl,m,n+l + Fl,m,n—l +6Fl,m,n:|+T|,m,n,

I,m,n=1(1)N

where Timn = O(h(’) . Note that, the approximations
(30a) and (30b) require only 19-grid points with a single
computational cell. Incorporating the Dirichlet boundary
conditions given by (4) into the difference methods (30a)
and (30b), we obtain the sparse system of tri-block-block
diagonal matrix equations in coupled form, which can be
6i+j+kU 0 6f o

ijk axl|6ymjaznkﬂ I,m,n aU > “1,m,n

xl,m,n
of of
7I(1r?1n:au ’7I(,2n')|,n:av

zI,m,n zl,m,n

Further, at the grid point (X, Y,,,Z, ), we define

I m,n f (XI b ym s Zn’UI ,m,n 7VI,m,n ’le,m,n ’Vxl,m,n 7U yl,m,n ’Vyl,m,n 7U zl,m,n ’Vzl,m,n )

B VR VI

solved by appropriate iterative methods (see [20-24]).

3. Derivation of the Fourth Order
Approximations

At the grid point (X, Y,,.Z, ). let us denote

Using Taylor expansion about the grid point (X, Y,,Z,), we first obtain

+F

I+1,m,n I-1,m,n + I:I,erl,n

L[V]:h?z[F

Copyright © 2011 SciRes.

+F

xl,m,n yl,m,n (31)
(32)

I,m—l,n+FI,m,n+1+FI,m,n 1+6Flmn:|+o(h6) (33)
AJCM



R. K. MOHANTY ET AL 323

Now by the help of the approximations (8a)-(16b),
from (23)-(25), we obtain

_ 2
Fretmn = Fiay Jr%T1 +0(h*), (34)
— h?
Finsin = Fipan +To +o(h*), (35)
— h2
Fimns = F o +ZT3 +0(h’). (36)

where
T = _2U3000’/I(,1r31,n - 2V300al(,2n:,n +U s I(,ln)un
+V030ﬂl(,2m),n +U 037/ l(,lr:m,n +Voos? I(,zrr:,n ,
T, = Uzooal(,lr;,n +V300al(fn),n —2U 5 I(,In)nn
_2V030ﬂl(,?n),n +U 037 I(,lrr)l,n +Voos) I(,?n),n
T,= U300a|(,1n)1,n +V300al(,fn),n +U 50 I(,1r1)1,n

(2) 0 2
+V030ﬁl,m,n -2U 00371,m,n _2V0037|,m,n

Let us consider the linear combination

>

Uximn = L_Jxl,m‘n + hall (Vl+l,m‘n _Vl—l,m,n)
+ha12 (L_JyyHl,m,n —L_Jyyl—l‘m,n) (373)
+ha13 (Uzzh—],m,n —Uzzl—],m,n)

\Y xI,m,n =\7xl,m,n + hb11 (El+l,m,n _El—l,m,n)
+hb, (vwl+1.m,n —\7yyl—1,m,n) , (37b)

+hb13 (\722I+1,m,n —vzzl—l,m,n)

Uyimn =Uyimn + ha21 (Vl,m+1,n _Vl,m—l,n)
+ha,, (Uxxl,mﬂ,n _Uxxl,m—l,n) s (38a)

+haz3 (U 2zl msin —U zzl,m—l,n)

<I

yl,m,n =\7yl,m,n + hb21 (El,m+l,n —El,m—l,n)
+hb22 (vxxl,mﬂ,n _vxxl,m—l,n) , (38]1))

+hb,, (\7zz|,m+1,n —\722I,m—l,n)

Uamn =Uzmn + ha31 (Vl,m,n+1 _Vl,m,n—l)
+ha,, (Uxxl,m,ml _Uxxl,m,n—l) s (39a)

+ha33 (U yyl,m,n+1 -U yyl,m,n—l)

\7zl,m,n :\72I,m,n + hb31 (El,m,m—l —El,m,n—l)
+hb;, (\7xxl,m,n+1 —vxxl,m,n—l) (39b)

+hb33 (\7yy|,m,n+1 —\7yyl,m,n—1 )

Copyright © 2011 SciRes.

where a; and by;; i, j =1, 2, 3 are parameters to be
determined.

Now using the approximations (5a)-(7b), (17a)-(22b)
and (34)-(36), from (37a)-(39b), we obtain

= h?
Uninn =Uygng +-Ta +0(h*), (40a)
= h?
Vxl,m,n :Vxl,m,n +?T5 +O(h4) > (4Ob)
= h?
Usina =Uma+Ts +0(h*), (41a)
= h?
Vitnn =Vyna + =T +0(h'), (41b)
= h?
U zd,mn = UzI,m,n +?T8 +O(h4) ’ (423)
= h?
Vzl,m,n :Vzl,m,n +?T9 +O(h4) . (42b)

where
T, =(1+12a,,)Usy, +12(a,, +a,,)U
+12(a, +a,;)U,, ’
T, = (1+12b11)V300 +12(b11 +b12)V120 +12(b11 +b13)V102 ,
T, =(1+12a,,)U +12(a, +a,, )U,,,
+12(a,, +a,)U,,

T, =(1+12by, Vg5 +12(by, +byy )V +12(by, +byy )V,

B

Ty = (1+12a31 )U003 +12(a31 + asz)Uzm
+12(ay, +ay; )Uyy,

>

Ty = (1+12by; )Vys +12(by, +byy )V, +12(by; +byy )V,

By the help of the approximations (40a)-(42b), from
(29), we get

— 2
Fimn=F, +%T10+O(h4) (43)
where

I,m,n I,m,n ,m

— O] (2) (1) (2)
TlO _T4a +T5a +T6ﬂ| ,n +T7ﬁ’l,m,n
0) ) '
+T87I,m‘n +T‘)7/I,m,n

Finally, by the help of the relations (34)-(36) and (43),
from (30b) and (33), we obtain the local truncation error

_ _h4
Tl,m,n=Th[T1+T2+T3+3T10]+O(h6) (44)
The proposed difference methods (30a) and (30b) are

to be of O(h*), the coefficient of h* in (44) must be
zero and we obtain a relation
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T+T,+T,+3T,,=0 (45)
Substituting the values of T,, T,, T, and T, in (45),

we obtain the values of parameters @, =b, = 1_—21 fori=

1,2,3 and a; =b; :L fori=1,2,3andj=2, 3, and
12

the local truncation error (44) reduces to Timn = O(h°) .

We may summarize the results as follows:

Theorem 1: The compact 19-point finite difference
methods (30a) and (30b) with the approximations listed
in (5a)-(29) are of O(h4)f0r the numerical solutions of
u(x,y,z)and its Laplacian V?u(X,y,z) of the non-li-
near biharmonic Equation (1) with Dirichlet boundary
conditions (2).

4. Stability Consideration and Results of
Computational Experiments

Let us consider the test equation
Viu(x,y,2)=G(x,y,z),0<x,y,z<1 (46)

Applying the proposed method (30a) and (30b) to the
above equation, we obtain

Ul‘m—l,n—l +Ul—l,m‘n—1 + 2UI,m,n—l +Ul+l,m,n—l
+Ul,m+1,n—1 +Ul—l,m—1,n +2UI,m—1,n +Ul+l,m—1,n
+2UI—1,m,n - 24'Ul,m,n + 2UI+1,rn,n +Ul—l,rn+1,n
+2UI,m+1,n +Ul+l,m+1,n +Ul,m—1,n+1 +Ul—l,m,n+1
+2UI,m,n+l +Ul+l,m,n+l +Ul,m+l,n+l (473)
h2

ZTWIH,m,n +Vl—l,m,n +Vl,m+l,n +Vl,m—l,n
+Vl,m,n+l +Vl,m,n—l + 6Vl,m,n]
I,m,n=1(1)N

Vl,m—l,n—l +VI—1,m,n—1 + 2Vl,m,n—l +VI+1,m,n—1

+Vl,m+l,n—l +Vl—l,m—1,n + 2Vl,m—l,n +Vl+l,m—1,n

+2VI—1,m‘n - 24'Vl‘m,n + 2VIJrl,m‘n +Vl—l,m+l,n

+2VI,m+l,n +Vl+l,m+1,n +Vl,m—l,n+1 +Vl—l‘m,n+1

+2VI,m,n+1 +Vl+l,m,n+1 +Vl,m+1,n+1 (47b)

h2

= T[Glﬂ,m,n + GI—l,m,n + Gl,m+1,n + Gl,m—l,n

+Gl,m,n+l + GI,m,n—l + 6GI,m,n

l,mn=1(1)N

where G, =G(X,Yn.2,), ... etc.
An iterative method for (47a) and (47b) can be written as
2

2410 = Ay —h? Bv® + RHU (48a)
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241V = ou™ + AV + RHV (48b)

where u(k), v are solution vectors and RHU, RHV
are right hand side vectors consists of boundary and ho-
mogenous function values.

Above iterative method in matrix form can be written

as

_U(k”) _U(k)

=G RH 49

v [Ty | “9)

where
1 _A __th‘ RHU
=% 2 LR oy |
0 A |

We denote | = [0, 1, 0] as the Nth order identity matrix
and H=11, 2, 1] and Q = [2, 0, 2] as Nth order tridiago-
nal matrices, and C =[I, H, I] and D = [H, Q, H] as the
Nth order block-tridiagonal matrices, where, in general,
we denote

o oc 0]
a c
[a,b,c]=
a b c
_O a b_NxN

as Nth order tridiagonal matrix whose eigen values are
given by

T
N +1

b+2«/¥cos( j,jzl,z,mN. (50)

The eigenvalues of I, H and Q are 1(N-times),
2+2cos(knh)and 4cos(kmh), k=1(1)N respectively,

where (N+ 1)h = 1.
The eigenvalues of C and D are given by

Ei :2+2[cos(jnh)+cos(knhﬂ; jk=1(1)N  (51a)
and
Ny = 4[cos( jmh) + cos (knh)) +cos( jnh)cos(knh)](SIb)

ji.k=1(1)N

The matrix A = [C, D, C] associated with the iteration
matrix G is a Nth order block-block-tridiagonal matrix
whose eigenvalues are given by

Vi =My +2&; cos(imh); i, jk =1(1)N
or,

Vi =4[ cos(imh)+ cos( jzh)
+cos(knh)+cos(inh)cos( jrh)
+cos(jnh)cos(knh)+cos(knh)cos(inh)];

i, jk=1(1)N

(52)
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Similarly, the eigenvalues of the matrix B associated
with the iteration matrix G are given by

oy = 6+2[ cos(imh) + cos ( jah)+cos (krh) |;
i,j.k=1(1)N
The iterative method (49) is stable as long as p(G) <1,

(53)

[l

The maximum values of all eigenvalues of G occur at

where p(G) is the spectral radius of G.
The characteristic equation of the matrix G is given by

1 —h?
det|:§7ijk -1 28 Oijk

=0;i, j,k=1(1)N (54)
0 ﬁ)’ijk‘ﬂl ()

Thus the eigenvalues of G are given by

A = A=31Vii :%[cos(inh)+cos( jmh) + cos(knh)+ cos(inh)cos( jh)+cos( jnh)cos(knh)+cos(knh)cos(inh)]; (59)

which is satisfied for all variable angles mh. Hence the

i=j=k=1. iterative method (48a)-(48Db) is stable.
Hence, The second order approximations for the system of
COS Tth differential Equations (3a) and (3b) are straightforward
=7 <
p (G) max. | ”k| DJFCOS 71'h } I, (6 and can be written in a coupled manner

UI,m,n—l +Ul,m—1,n +Ul—l,m,n _6UI,m,n +Ul+l,m,n +Ul,m+1,n +Ul,m,n+1 = h2Vl,m,n +O(h4)9 (573)
I,m,n=1(1)N
VI,m n-1 +VI ,m-1,n Vl—l,m,n _6VI,m,n +Vl+l,m,n +Vl,m+l,n +Vl,m,n+l
=h’f (XI > Yms Zn’Ul,m,nsV|,m,nstl.m,n,vxl,m.n,Uyl,m,n,VyLm,n,Uzl.m,n,vzl,m.n)+ O (h4) (57b)
ILm,n=1(1)N

Note that, the second order approximations (57a) and
(57b) require only 7-grid points on a single computa-
tional cell (see Figure 1).

By combining the difference equations at each internal
grid points, we obtain a large sparse system of matrix to
solve. At each interior mesh point, we have two un-
knowns U and V?u=v, that is, the number of bands
with non-zero entries is increased, and so is the size of
the final matrix for the same mesh size. However, by this
new method, the value of the Laplacian, which is often
of interest, is also computed.

Whenever f(x,y,z u,v,u,,v,,u Vy,uz,v) is linear
(or, non-linear) in u,v,u,,v,, u ysVy,U, andV,, the
difference Equations (30a) and (30b) form a linear (or,
non-linear) system. To solve such a system or indeed to
demonstrate the existence of a solution, we use iterative
methods. In this section, we solve the following three test
problems in the region 0 <X, y, z < 1, whose exact solu-
tions are known. The Dirichlet boundary conditions and
right hand side homogeneous functions are obtained by
using the exact solutions. We have also compared the
numerical results obtained by proposed fourth order ap-
proximations (30a) and (30b) with the numerical results
obtained by corresponding second order approximations
(57a) and (57b). In all cases, we have considered

u® =0 as the initial approximation and the iterations
were stopped when the absolute error tolerance

‘u(k”) —u(k)‘ <107 was achieved. In all cases, we have

Copyright © 2011 SciRes.

calculated maximum absolute errors (|OO -norm) for dif-
ferent grid sizes. All computations were performed using
double precision arithmetic.

Test Problem 1: (Biharmonic problem)

o'u o'u  d'u o'u o'u o'u
Tt a2 St e T A

x' oyt \oxiey? eyl azox’ ) (58)
=G(x,¥,2),0<x,y,z<1

The exact solution is
u(x,y,z)=(1-cos2nx)(1-cos2my)(1—cos2nz).

The maximum absolute errors are tabulated in Table
1.

Table 1. Test Problem 1: The maximum absolute errors.

h (e} ( h* )-method O(hz )-method
g U 0.1065(-01) 0.1089(~01)
ViU 0.6145(+00) 0.2932(+02)
6 U 0.6659(~03) 0.2614(+00)
v 0.3776(-01) 0.7121(+01)
. U 0.4157(~04) 0.6469(-01)
v 0.2349(v02) 0.1767(+01)
e U 0.2586(-05) 0.1611(-01)
v 0.1466(-03) 0.4410(+00)
AJCM
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Test Problem 2: (Variable coefficient problems) Test Problem 3: (Navier-Stokes model equation in
Vi = (1+ X2)<UXXX tu, + szz) terms of stream function y ) (see [25])
|-
+(1+ yz)(uxxy+uwy+uyzz) ?V !//:l//y('//xxx+!//xyy)_l//x(l//xxy+(//yyy) (60)
2
+(14+27) (U +Uy, +U,,, ) (59) +Ci‘(x,.y,z), 0<x, y,Zjl. |
N (1 +sin? X) u + (1 +sin? y) U, The exact solution is w(xy,z2)=e sm(ny).sm(nz) :
The maximum absolute errors are tabulated in Table 3
+ (1 +sin’ z) u, +G(x,y,z), for various values of Reynolds number R, .

O<xy.z<l 5. Concluding Remarks

The exact solution is
In this paper, using coupled approach we discuss a new
u(x,y,2)=sin(mx)-sin(my)-sin(nz). fourth (I:rdper 19—po%nt colinpactp Ifzmite difference approxi-
mation for the solution of 3D non-linear biharmonic el-
liptic partial differential equations. The method is de-
+(1+cos’ Y)(Uyy +Uyy, +Uy,,) rived on a single computational cell using the values of u
and V’Uas the unknowns. We have obtained the nu-
merical solution of V’U as a by-product, which is quite
+(1+xhHu, + A+ yHu, + 1+, often of interest in many physical problems. Our method
is applied to solve several problems including Navier
Stokes model equation in terms of stream function
The exact solution is U(X, ¥, z) =e and enables us to obtain high accuracy solutions with
The maximum absolute errors are tabulated in Table 2. great efficiency. Numerical results confirm that the pro-

VAU = (14 c08” X)(Uygy + Uy, +U,,)
+(1+cos” Z)(U,, +Uy,, +U,,) (590b)

+G(x,Y,2),0<x,y,2<1

X+y+2

Table 2. Test Problem 2: The maximum absolute errors.

h Problem (59a) Problem (59b)
0 ( h* ) -Method 0 ( h? )-Method 0 ( h* ) -Method O(h2 )-Method
4 u 0.7778(-02) 0.1078(+00) 0.1464(-04) 0.5088(-02)
v 0.1161(+00) 0.1562(+01) 0.6745(-03) 0.3249(-01)
8 u 0.4655(-03) 0.2578(-01) 0.8861(-06) 0.1444(-02)
v 0.6952(-02) 0.3812(+00) 0.4195(-04) 0.1016(-01)
16 u 0.2877(-04) 0.6377(-02) 0.5529(-07) 0.3699(-03)
v 0.4551(-03) 0.9474(-01) 0.2626(-05) 0.2577(-02)
32 u 0.1797(-05) 0.1590(-02) 0.3456(-08) 0.9353(-04)
vu 0.2836(-04) 0.2393(-01) 0.1666(-06) 0.6467(-03)
Table 3. Test Problem 3: The maximum absolute errors.
O(h*)-Method 0O(h*)-Method
h
R =10’ R, =10%,10°,10° R, =10,10*,10°,10°
v 0.1808(-03) 0.1880(-03)
18 Vi 0.3332(-02) 0.3524(-02) Over Flow
v 0.1134(-04) 0.1202(~04)
116 Viy 0.2079(-03) 0.2253(-03) Over Flow
v 0.7095(-06) 0.7545(-06)
1/32 Viy 0.1299(-04) 0.1413(-04) Over Flow
4 0.4432(-07) 0.4705(-07)
1/64 Vy 0.8127(-06) 0.8808(-06) Over Flow

Copyright © 2011 SciRes. AJCM
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posed fourth order method produces oscillation free so-
lution for large Reynolds number, whereas the second or-
der method is unstable.

6. References

(1]

(1]

[12]

J. Smith, “The Coupled Equation Approach to the Nu-
merical Solution of the Biharmonic Equation by Finite
Differences,” SIAM Journal on Numerical Analysis, Vol.
7, No. 1, 1970, pp. 104-111. doi:10.1137/0707005

L. W. Ehrlich, “Solving the Biharmonic Equation as Cou-
pled Finite Difference Equations,” SIAM Journal on Nu-
merical Analysis, Vol. 8, No. 2, 1971, pp. 278-287.
doi:10.1137/0708029

L. W. Ehrlich, “Point and Block SOR Applied to a Cou-
pled Set of Difference Equations,” Computing, Vol. 12,
No. 3, 1974, pp. 181-194. doi:10.1007/BF02293104

L. Bauer and E. L. Riess, “Block Five Diagonal Matrices
and the Fast Numerical Solution of the Biharmonic Equa-
tion,” Mathematics of Computation, Vol. 26, No. 118, 1972,
pp- 311-326. doi:10.1090/S0025-5718-1972-0312751-9

R. Glowinski and O. Pironneau, “Numerical Methods for
the First Biharmonic Equations and for the Two-Dimen-
sional Stokes Problems,” SIAM Review, Vol. 21, No. 2,
1979, pp. 167-212. d0i:10.1137/1021028

Y. Kwon, R. Manohar and J. W. Stephenson, “Single Cell
Fourth Order Methods for the Biharmonic Equation,” Con-
gress Numerantium, Vol. 34, 1982, pp. 475-482.

J. W. Stephenson, “Single Cell Discretization of Order
Two and Four for Biharmonic Problems,” Journal of Com-
putational Physics, Vol. 55, No. 1, 1984, pp. 65-80.
doi:10.1016/0021-9991(84)90015-9

R. K. Mohanty and P. K. Pandey, “Difference Methods of
Order Two and Four for Systems of Mildly Non-linear
Biharmonic Problems of Second Kind in Two Space Di-
mensions,” Numerical Methods for Partial Differential
Equations, Vol. 12, No. 6, 1996, pp. 707-717.
doi:10.1002/(SICI)1098-2426(199611)12:6<707::AID-N
UM4>3.0.CO;2-W

R. K. Mohanty, M. K. Jain and P. K. Pandey, “Finite Dif-
ference Methods of Order Two and Four for 2D Nonlin-
ear Biharmonic Problems of First Kind,” International
Journal of Computer Mathematics, Vol. 61, No. 1-2, 1996,
pp. 155-163. doi:10.1080/00207169608804507

R. K. Mohanty and P. K. Pandey, “Families of Accurate
Discretizations of Order Two and Four for 3D Mildly
Nonlinear Biharmonic Problems of Second Kind,” Inter-
national Journal of Computer Mathematics, Vol. 68, No.
3-4, 1998, pp. 363-380. doi:10.1080/00207169808804702

D. J. Evans and R. K. Mohanty, “Block Iterative Methods
for the Numerical Solution of Two-Dimensional Nonlin-
ear Biharmonic Equations,” International Journal of Com-
puter Mathematics, Vol. 69, No. 3-4, 1998, pp. 371-390.
doi:10.1080/00207169808804729

R. K. Mohanty, D. J. Evans and P. K. Pandey, “Block Ite-
rative Methods for the Numerical Solution of Three Di-
mensional Mildly Nonlinear Biharmonic Problems of

Copyright © 2011 SciRes.

[14]

[15]

[16]

[17]

[24]

[25]

327

First Kind,” International Journal of Computer Mathe-
matics, Vol. 77, No. 2, 2001, pp. 319-332.
doi:10.1080/00207160108805068

S. Singh, D. Khattar and R. K. Mohanty, “A New Cou-
pled Approach High Accuracy Numerical Method for the
Solution of 2D Nonlinear Biharmonic Equations,” Neural
Parallel and Scientific Computations, Vol. 17, 2009, pp.
239-256.

D. Khattar, S. Singh and R. K. Mohanty, “A New Cou-
pled Approach High Accuracy Numerical Method for the
Solution of 3D Non-Linear Biharmonic Equations,” Ap-
plied Mathematics and Computations, Vol. 215, No. 8,
2009, pp. 3036-3044. doi:10.1016/j.amc.2009.09.052

R. K. Mohanty, “A New High Accuracy Finite Difference
Discretization for the Solution of 2D Non-Linear Bihar-
monic Equations Using Coupled Approach,” Numerical
Methods for Partial Differential Equations, Vol. 26, No.
4, 2010, pp. 931-944. do0i:10.1002/num.204605

R. K. Mohanty, M. K. Jain and B. N. Mishra, “A Com-
pact Discretization of O(h*) for Two-Dimensional Non-
linear Triharmonic Equations,” Physica Scripta, Vol. 84,
No. 2, 2011, pp. 025002.
doi:10.1088/0031-8949/84/02/025002

R. K. Mohanty and S. Dey, “Single Cell Fourth Order Dif-
ference Approximations for (AU/X), (AU/&) and (AU/ )
of the Three Dimensional Quasi-Linear Elliptic Equation,”
Numerical Methods for Partial Differential Equations,
Vol. 16, No. 5, 2000, pp. 417-425.
doi:10.1002/1098-2426(200009)16:5<417::AID-NUM 1>
3.0.CO;2-S

R. K. Mohanty, S. Karaa and U. Arora, “Fourth Order Nine
Point Unequal Mesh Discretization for the Solution of 2D
Non-Linear Elliptic Partial Differential Equations,” Neu-
ral Parallel and Scientific Computations, Vol. 14, 2006,
pp. 453-470.

R. K. Mohanty and S. Singh, “A New Highly Accurate Dis-
cretization for Three Dimensional Singularly Perturbed
Non-linear Elliptic Partial Differential Equations,” Nume-
rical Methods for Partial Differential Equations, Vol. 22,
No. 6, 2006, pp. 1379-1395. doi:10.1002/num.20160

L. A. Hageman and D. M. Young, “Applied Iterative Me-
thods,” Dover Publications, New York, 2004.

M. K. Jain, “Numerical Solution of Differential Equa-
tions,” 2nd Edition, John Wiley, New Delhi, 1984.

C. T. Kelly, “Iterative Methods for Linear and Non-Linear
Equations,” SIAM Publications, Philadelphia, 1995.

Y. Saad, “Iterative Methods for Sparse Linear Systems,”
SIAM Publications, Philadelphia, 2003.
doi:10.1137/1.9780898718003

G. Meurant, “Computer Solution of Large Linear Systems,”
North-Holland, Amsterdam, 1999.

W. F. Spotz and G. F. Carey, “High Order Compact Scheme
for the Steady Stream-Function Vorticity Equations,” In-
ternational Journal for Numerical Methods in Enginee-
ring, Vol. 38, No. 20, 1995, pp. 3497-3512.
doi:10.1002/nme.1620382008

AJCM


http://dx.doi.org/10.1137%2F0708029
http://dx.doi.org/10.1007%2FBF02293104
http://dx.doi.org/10.1007%2FBF02293104
http://dx.doi.org/10.1090%2FS0025-5718-1972-0312751-9
http://dx.doi.org/10.1016%2F0021-9991%2884%2990015-9
http://dx.doi.org/10.1016%2F0021-9991%2884%2990015-9
http://dx.doi.org/10.1016%2F0021-9991%2884%2990015-9
http://dx.doi.org/10.1080%2F00207169608804507
http://dx.doi.org/10.1080%2F00207169608804507
http://dx.doi.org/10.1080%2F00207169608804507
http://dx.doi.org/10.1080%2F00207169808804729
http://dx.doi.org/10.1080%2F00207169808804729
http://dx.doi.org/10.1080%2F00207169808804729
http://dx.doi.org/10.1080%2F00207169808804729
http://dx.doi.org/10.1080%2F00207160108805068

