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Abstract 

This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled ap- 
proach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At 
each internal grid point, the solution u(x, y, z) and its Laplacian 2u  are obtained. The resulting stencil al- 
gorithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The 
present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discre- 
tize the derivative boundary conditions near the boundary. We also show that special treatment is required to 
handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method 
is tested on three problems and compares very favourably with the corresponding second order approxima- 
tion which we also discuss using coupled approach. 
 
Keywords: Three-Dimensional Non-Linear Biharmonic Equation, Finite Differences, Fourth Order Accuracy, 

Compact Discretization, Block-Block-Tridiagonal, Tangential Derivatives, Laplacian, Stream 
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1. Introduction 

We are interested to develop a new algorithm for solving 
the three-dimensional non-linear biharmonic partial dif- 
ferential equation 
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defined in the solution region  
  , , 0 , , 1x y z x y z     with boundary , where  
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mensional Laplacians of u in . We assume that the 
solution u(x, y, z) is smooth enough to maintain the order 
and accuracy of the algorithm as high as possible under 
consideration. 



The Dirichlet boundary conditions are given by 
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The nonlinear biharmonic equation is a fourth order 
elliptic partial differential equation which occurs in many 
areas of physics and applied mathematics, especially in 
elasticity theory and stokes flow problems. It occurs with 
fluid flowing over an obstacle or with the movement of a 
natural or artificial body. Common examples are the 
flows past an airplane, a submarine, an automobile, or 
wind blowing past a high-rise building. Till about three 
and half decades ago, second order accuracy was consid- 
ered to be sufficient for most biharmonic problems. In 
particular, the central difference schemes have been the 
most popular ones because of their straightforwardness  
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in application. Though for problems having well behaved 
solutions, the solution may be of poor quality for con- 
vection dominated flows, or for high Reynolds number if 
the mesh is not sufficiently refined. Again, higher order 
discretization is generally associated with non-compact 
stencil which increase the band-width of the resultant 
coefficient matrix. Both mesh refinement and increased 
matrix band-width invariably lead to a large number of 
arithmetic operations. Thus neither a lower order accu- 
rate method on a fine mesh nor a higher order accurate 
one on a non-compact stencil seems to be computation- 
ally cost-effective. This is where higher order compact 
(HOC) finite difference methods become important. A 
compact finite difference schemes is one which utilizes 
grid points located only directly adjacent to the node 
about which differences are taken. In addition, if the 
scheme has an accuracy greater than two, it is termed as 
HOC method. The higher order accuracy of the HOC 
methods combined with the compactness of the differ- 
ence stencils yields highly accurate numerical solutions 
on relatively coarser grids with greater computational 
efficiency. A compact difference scheme is one that is 
restricted to the patch of cells immediately surrounding 
any given node and does not extend further. Most stan- 
dard difference schemes such as the central difference 
scheme for second order elliptic partial differential equa- 
tions are compact. The high order compact method con- 
sidered here is different in that the governing differential 
equation is used to approximate the lower order deriva- 
tive terms with the imbedding technique. The scheme is 
difficult to develop due to the need for extensive alge- 
braic manipulation, especially for non-linear problems. 
However, once high-order method developed, it can be 
incorporated easily in application. Various approaches 
for the numerical solution of 2D biharmonic problems 
has been discussed in the literature. Not many authors 
have tried to solve the three-dimensional biharmonic 
problems. The reason is that for high order approxima- 
tion it is difficult to discretize the nonlinear biharmonic 
equation as well as the associated boundary conditions 
using a single computational cell. Another reason of ne-
cessity is that three-dimensional problems require large 
computing power and place huge amount of memory 
requirements on the computational systems. Such com- 
puting power has only recently begun to become avail- 
able for academic research. Smith [1] and Ehrlich [2,3] 
have used coupled approach and solved 2D biharmonic 
equation using second order accurate finite difference 
equations. Bauer and Riess [4] have used block iterative 
method to solve block 5-diagonal matrices for the solu- 
tion of 2D biharmonic problem of first kind. Glowinski 
and Pironneau [5] have developed a stable lower order 
numerical method for the first biharmonic problem. Later, 
kwon et al. [6], Stephenson [7], and Mohanty et al. [8-12] 

have developed certain second- and fourth-order finite 
difference methods for the solution of two and three di-
mensional biharmonic problems using single compact 
cells. Recently, using more grid points Singh et al [13] 
and Khattar et al. [14] have discussed the fourth order 
numerical methods for the solution of 2D and 3D bihar- 
monic problems of second kind. Further, using coupled 
approach Mohanty [15] has derived a new nine point 
fourth order finite difference method for the solution of 
non-linear biharmonic problems of second kind. In most 
recently, using nine point compact cell Mohanty et al. [16] 
have discussed fourth order finite difference method for 
the solution of nonlinear 2D triharmonic problems. Ear- 
lier, Mohanty et al. [17-19] have developed fourth order 
compact difference schemes for the solution of multi- 
dimensional non-linear elliptic partial differential equa-
tions. Fourth order compact difference schemes have 
become quite popular as against the other lower order 
accurate schemes which require high mesh refinement 
and hence are computationally inefficient. On the other 
hand, the higher order accuracy of the fourth order com-
pact methods combined with the compactness of the dif-
ference stencil yields highly accurate numerical solutions 
on relatively coarser grids with greater computational 
efficiency. A conventional approach for solving the 3D 
biharmonic equation is to discretize the differential Equa- 
tion (1) on a uniform grid using 125-point approxima- 
tions with truncation error of order . This approxima- 
tion connect the values of central point in terms of 124 
neighbouring values of u in 5 5  cubic grid. We 
note that the central value of u is connected to grid points 
two grids away in each direction from the central point 
and the difference approximations needs to be modified 
at grid points near the boundaries. There are serious 
computational difficulties with solution of the linear and 
non-linear systems obtained through 125-point discreti-
zation of the 3D biharmonic equation. Approximations 
using compact cells avoid these difficulties. The compact 
approach involves discretizing the biharmonic equations 
using not just the grid values of the unknown solution u 
but also the values of the derivatives 

2h

5 

xx , u yy  and u zz  
at selected grid points (see Mohanty and Pandey [10]). It 
is required to solve the system of four equations to obtain 
the solutions of 

u

, xxu u , yy  and u zzu . In this paper, we 
write the original differential equation in a coupled man-
ner and introduce new concepts to handle the boundary 
conditions without discretizing them. For fourth order 
approximations we use only 19-point compact cell (see 
Figure 1). No approximations for derivatives need to be 
carried out at the boundaries and the given Dirichlet 
boundary conditions are exactly satisfied. The main ad- 
vantage of this work is that we require to solve a system 
of two equations, whereas in our previous work [10], we 
were required to solve a system of four equations to ob-  
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Figure 1. 19-point 3D single computational cell. 
 
tain the numerical solution of u(x, y, z). Thus the pro- 
posed method requires less algebraic operations as com- 
pared to the method discussed in [10]. In Section 2, we 
give the formulation of the method. The complete deri- 
vation of the method is carried out in Section 3. In order 
to validate the proposed fourth order method and test its 
robustness, we solve three problems in Section 4 and 
also discussed stability analysis briefly for a model pro- 
blem. Concluding remarks are presented in Section 5. 

2. Formulation of the Fourth Order 
Discretization 

Consider the three-dimensional solution region  , 
which is replaced by a set of grid points (xl, ym, zn), 
where h > 0 is the mesh sizes in x-, y- and z- directions, 
and grid points are defined by xl = lh, ym = mh, zn = nh; l, 
m, n = 0 (1) N + 1 with (N + 1) h = 1. Let , ,l m n  and 

, ,l m n  be the approximate and exact solution values of 
u(x, y, z) at the grid point (xl, ym, zn ), respectively. 

u
U

The Dirichlet boundary conditions are given by (2). 
Since the grid lines are parallel to coordinate axes and 
the values of u are exactly known on the boundary, this 
implies, the successive tangential partial derivatives of u 
are known exactly on the boundary. For example, on the 
plane y = 0, the values of u(x, 0, z) and  are 
known, i.e., the values of xu x , ,  

, ,··· etc are known on the plane  

( ,0, )yyu x z
, )z ( ,0zu x( ,0 , )z

( ,0, )xxu x z ( ,0, )zzu x z
y = 0. This implies, the values of u(x, 0, z) and  

      2 ,0, ,0, ,0, ,0,xx yy zzu x z u x z u x z u x z   

2u


  are 
known on the plane y=0. Similarly the values of u and 

 are known on all plane sides of the cubic region 
. 
Let us denote . Then we re- 

formulate the boundary value problems (1) and (2) in a 
coupled manner as 
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.     (3b) 

subject to the Dirichlet boundary conditions prescribed 
by 

     , , , , , , , ,u a x y z v c x y z x y z   .   (4) 

Let at the grid points (xl, ym, zn), the approximate and 
exact solution values of v(x, y, z) be denoted as  
and , respectively. 

, ,l m nv

, ,l m n

In order to obtain fourth order approximations on the 
19-point compact cell for the system of non-linear dif- 
ferential Equations (3a) and (3b), we need the following 
approximations: 

V
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Then we need to evaluate 

 1, , 1, , 1, , 1, , 1, , 1, , 1, ,1 1, , 1, ,, , , , , , , , , ,l m n xl m n xl m n yl m n yl m n zl m n zl m nl m n l m n l m nF f x y z U V U V U V U V                  (23) 
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Further, we define 
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Then at each internal grid point (xl, ym, zn) of the solu-
tion region , the given system of differential Equa-

tions (3) are discretized by 
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where  6
, ,l m nT O h . Note that, the approximations 

(30a) and (30b) require only 19-grid points with a single 
computational cell. Incorporating the Dirichlet boundary 
conditions given by (4) into the difference methods (30a) 
and (30b), we obtain the sparse system of tri-block-block 
diagonal matrix equations in coupled form, which can be 

solved by appropriate iterative methods (see [20-24]). 

3. Derivation of the Fourth Order 
Approximations 

At the grid point  , ,l m nx y z , let us denote 

(1) (2) (1) (2)
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, , , , , , , ,
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        (31) 

Further, at the grid point  , ,l m nx y z , we define 

 , , , , , , , , , , , , , , , , , ,, , , , , , , , , ,l m n l m n l m n l m n xl m n xl m n yl m n yl m n zl m n zl m nF f x y z U V U V U V U V               (32) 

Using Taylor expansion about the grid point  , ,l m nx y z , we first obtain 

   
2

6
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Now by the help of the approximations (8a)-(16b), 
from (23)-(25), we obtain 
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Let us consider the linear combination 
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yl m n yl m n l m n l m n

xxl m n xxl m n

zzl m n zzl m n

U U ha V V

ha U U

ha U U

 

 

 

  

 

 

,    (38a) 

 
 
 

, 1, , 1,, , , , 21

, 1, , 1,22

, 1, , 1,23

l m n l m nyl m n yl m n

xxl m n xxl m n

zzl m n zzl m n

V V hb F F

hb V V

hb V V

 

 

 

  

 

 

,   (38b) 

 
 
 

, , , , 31 , , 1 , , 1

, , 1 , , 132

, , 1 , , 133

zl m n zl m n l m n l m n

xxl m n xxl m n

yyl m n yyl m n

U U ha V V

ha U U

ha U U

 

 

 

  

 

 

,    (39a) 

 
 
 

, , 1 , , 1, , , , 31

, , 1 , , 132

, , 1 , , 133

l m n l m nzl m n zl m n

xxl m n xxl m n

yyl m n yyl m n

V V hb F F

hb V V

hb V V

 

 

 

  

 

 

   (39b) 

where  and i, j = 1, 2, 3 are parameters to be 
determ . 

Now using the approximations (5a)-(7b), (1
and (34)-(36), from (37a)-(39b), we obtain 

ija
ined

ijb ; 

7a)-(22b) 

 4
, , , , 46

xl m n xl m nU U T O h  ,       (40a) 
2h



 
2

4
, , , , 56

xl m n xl m n

h
V V T O h   ,        (40b) 

 
2

4
, , , , 66

yl m n yl m n

h
U U T O h   ,       (41a) 

 
2

4
, , , , 76

yl m n yl m n

h
V V T O h   ,        (41b) 

 
2

4
, , , , 86

zl m n zl m n

h
U U T O h   ,       (42a) 

  .       (42b) 
2

4
, , , , 96

zl m n zl m n

h
V V T O h  

where 

   
 

4 11 300 11 12 120

11 13 102

1 12 12

12

T a U a a

a a U

   

 
, 

U

     11 300 11 12 120 11 13 1021 12 12 12T b V b b V b b      , V5

   
 

6 21 030 21 22 210

21 23 012

1 12 12

12

T a U a a

a a U

   

 

U
, 

     7 21 030 21 22 210 21 23 0121 12 12 12T b V b b V b b      V , 

   
 

8 31 003 31 32 201

31 33 021

1 12 12

12

T a U a a

a a U

   

 

U
, 

     9 31 003 31 32 201 31 33 0211 12 12 12T b V b b V b b      V

By the help of the approximations (40a)-(42b), from 
(29), we get 

. 

 
2

4
, , , , 106

l m n l m n

h
F F T O    h      (43  

w

ly, by the help of the relations (34)-(36) and (43), 
0b) and (33), we obtain the local truncation error 

)

here 

10T  (1) (2) (1) (2)
4 , , 5 , , 6 , , 7 , ,

(1) (2)
8 , , 9 , ,

l m n l m n l m n l m n

l m n l m n

T T T T

T T

   

 

  

 
. 

Final
from (3

   
4

6
, , 1 2 3 103

6
l m n

h
T T T T T O


      h  (44)    

The proposed difference methods (30a) and (30b) are 
to be of  4O h , the coefficient of 4h  in (44) must be 
zero and obtain a relation we 
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Substituting the values of  and  in (45),  

e val

1 2 3 103 0T T T T         (45) 

1T , 2 3,T T 10T

we obtain th ues of parameters 1 1

1

12ia b


   for i = 

1, 2, 3 and 

i

1
a b   for 

12ij ij i = 1, 2, 

th

3 and j = 2, 3, and  

e local truncation error (44) reduces to  6
,l mT O h .  

We may summarize the results as fo
,n 

llows: 
int finite di

methods (30a) and (30b) with the approximations listed 

 of the non-li- 
t boundar

co

    (46) 

 the 
ab



Theorem 1: The compact 19-po fference 

in (5a)-(29) are of 4 for the numerical solutions of O h
 , ,u x y z and its Laplacian 

near biharmonic Equation (1) with Diri y 
 2 , ,u x y z

chle
nditions (2). 

4. Stability Consideration and Results of 
Computational Experiments 

Let us consider the test equation 

 4  , , , , ,0 , , 1u x y z G x y z x y z    

Applying the proposed method (30a) and (30b) to
ove equation, we obtain 

, 1, 1 1, , 1 , ,2l m n l m n l mU U U     1 1, , 1

, 1, 1 1, 1, , 1, 1, 1,

, 1, 1 1, , 1

, , 1 1, , 1 , 1, 1

2

2 24 2

2

n l m n

l m n l m n l m n l m n

l m n l m n

l m n l m n l m n

U

U U U U

U U U U

U U U

  

      

  

    



   

   

  

1, , , , 1, , 1, 1,

, 1, 1, 1,2
l m n l m n l m n l m n

l m n l m nU U U U
   

     

 

2

1, , 1, , , 1, , 1,

, , 1 , , 1 , ,

[
2

6 ]

, , 1 1

l m n l m n l m n l m n

l m n l m n l m n

h
V V V V

V V V

l m n N

   

 

   

  



   (47a) 

 

, 1, 1 1, , 1 , , 1 1, , 1

, 1, 1 1, 1, , 1, 1, 1,

1, , , , 1, , 1, 1,

, 1, 1, 1, , 1, 1 1, , 1

, , 1 1, , 1 , 1, 1

2

2

2 24 2

2

2

l m n l m n l m n l m n

l m n l m n l m n l m n

l m n l m n l m n l m n

l m n l m n l m n l m n

l m n l m n l m n

V V V V

V V V V

V V V V

V V V V

V V V

      

      

 

      

    

  

   

   

   

  

 

2

1, , 1, , , 1, , 1,

, , 1 , , 1 , ,

2

6

, , 1 1

l m n l m n l m n l m

l m n l m n l m n

h
G G G G

G G G

l m n N

   

 

   

   


 

n

  (47b) 

where , ... etc. 
An ) and (47b) can be written as 

 , , , ,l m n l m nG G x y z
iterative method for (47a

     
2

k+1 k k24 = 
2

h
 Iu Au Bv RHU  

     k+1 k k24 = Iv 0u + Av RHV  
   k k

      (48b) 

where are solution vectors and RHU, RHV 
are righ e vectors consists of boundary and ho- 
mogenous function values.  

Above iterative method in matrix form can be written 
as 

,u v  
t hand sid

 

 

 

 

k+1 k

k+1 k

   
    

      

U U
G R

V V
 H        (49) 

where 
2

1
, RH  .2

h    
 24  
RHUA B

G =  

We denote I = [0, 1, 0] as the Nth order 
and H = [1, 2, 1] and Q = [2, 0, 2] as Nth o
nal matrices, and C = [I, H, I] and D = [H
Nth order block-tridiagonal matrices, whe

te 

   
RHV

0 A

identity matrix 
rder tridiago-

, Q, H] as the 
re, in general, 

we deno

b c

 , ,

N N

a b c

a b c

a b 

a b c

 
 
 
 
 
 
  0

  

0

as Nth 
given by

order tridiagonal matrix whose eigen values are 
  

π
2 cos , 1,2,

1

j
b ac j N

N
    

 .      (50)   

The eigenvalues of I, H and Q are 1(N-times),  
 2 2cos πk h and 4  cos πk h ,  1 1k N  respectively, 

where (N + 1)h = 1. 
The eigenvalues of C and D are given by 

     2 2 cos π cos π ; , 1 1jk j h k h j k N        (51a)  

and 

      
 

4 cos π cos π ) cos π cos π

, 1 1

jk j h k h j h k h

j k N

     


(51b) 

The matrix A = [C, D, C] associated with the iteration 
matrix G is a Nth order block-block-tridiagonal matrix 
whose eigenvalues are given by 

   2 cos π ; , , 1 1ijk jk jk i h i j k N      

or, 

   
   

     

4 cos π cos π

cos

π cos π cos π ;

i h j h

k h k h i h

 
 
π cos π cos π

cos π cos

ijk

k h i h j h

j h
      (48a)  , , 1 1i j k N

  


 




 (52) 
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Similarly, the eigenvalues of the matrix B as
 iteration matrix G are given by 

where   G is the spectral radius of G. sociated 
The c teristic equation of the matrix G is given by with the

     
 

6 2 cos π cos π cos π ;

, , 1 1

ijk i h j h k h

i j k N

      


 

harac

 
21

24 48

1
 (53) 

24 ijk   0

Thus the eigenvalues of G are given by

det 0; , , 1 1
h

ijk ijk i j k N
   

      (54) 

 The iterative method (49) is stable as long as   1 G , 

                 π cos π cos π cos π cos π cos π ;i h j h j h k h k h i h   (55) 

The maximum values of all eigenvalues of G ccur at 
.  

Hence,  

1 1
24 6 cos π cos π cos π cosijk ijk i h j h k h       

 o
1j k i 

     cos π
max. 1 cos π 1

2ijk

h
h     G  ,  (56) 

which is satisfied for all variable angles πh . Hence the 
ite

the system of 
differential Equations (3a) and (3b) are straightforward 
and can be written in a coupled manner 

         (57a) 

rative method (48a)-(48b) is stable. 
The second order approximations for 

 
 

2 4
, , 1 , 1, 1, , , , 1, , , 1, , , 1 , ,6 ,

, , 1 1

l m n l m n l m n l m n l m n l m n l m n l m nU U U U U U U h V O h

l m n N

            


 

   
 

, , , ,

, , 1 1

l m n l m n l m n

l m n N

, , 1 , 1, 1, , , , 1, , , 1, , , 1

2 4
, , , , , , , , , , , ,

6

, , , , , , , , , ,

l m n l m n l m n l m n l m n l m n l m n

xl m n xl m n yl m n yl m n zl m n zl m n

V V V V V V V

h f x y z U V U V U V U V O h

          

            (57b) 

Note that, the second order approximations (57a) and 
(57b) require only 7-grid points on a single co
tional cell (see Figure 1). 

By combining the difference equations at each internal 
grid points, we obtain a large sparse system of matrix to 
solve. At each interior mesh point, we have two un- 
knowns u and , that is, the number of bands 
with non-zero en increased, and so is the size of 
the final matrix for the same mesh size. However, by this 
new method, the value of the Laplacian, which is often 
of interest, is also computed. 

Whenever 

mputa- 

2u v 
tries is 

 , , , , , , , , , ,x x y y z zf x y z u v u v u v u v  is linear 
(or, non-linear) in , , , ,x xu v u v  , ,y y zu v u  and zv , the 
difference Equations (30a) and (30b) form a linear (or, 
non-linear) system. To solve such a system or indeed to 
de

 

double precision arithmetic. 
Test Problem 1: (Biharmonic problem) 

calculated maximum absolute errors ( l -norm) for dif- 
ferent grid sizes. All computations were performed using 

 

4 4 4 4 4 4u
4 4 4 2 2 2 2 2 2

2

, , ,0 , , 1

u u u u u

x y z x y y z z x

G x y z x y z

     
              

  

 (58) 

The exact solution is  



     , , 1 cos 2π 1 cos 2π 1 cos 2πu x y z x y z    . 

The maximum absolute errors are tabulated in Table 
1. 
 

Table 1. Test Problem 1: The maximum absolute errors. 

h  4 -methodO h   2 -methodO h  

1/8 
U 

2u  
0.1065(–01) 
0.6145(+00) 

0.1089(–01) 
0.2932(+02) 

1/16 
U 

2u  
0.6659(–03) 
0.3776(–01) 

0.2614(+00) 
0.7121(+0

monstrate the existence of a solution, we use iterative 
methods. In this section, we solve the following three test 
problems in the region 0 < x, y, z < 1, whose exact solu- 
tions are known. The Dirichlet boundary conditions and 
right hand side homogeneous functions are obtained by 
using the exact solutions. We have also compared the 
numerical results obtained by proposed fourth order ap- 
proximations (30a) and (30b) with the numerical results 
ob o

1) 

U
tained by c ximations 

(57a) and (57b). In all ered 
(0) u 0  as the initial approximation and the iterations 

were stopped when the absolute error tolerance  
   

rresponding second order appro
 cases, we have consid  

1 1210k k  u u  was achieved. In all cases, we have 

1/32 2u
 

  0.2349(v02) 0.1767(+01) 

1/64 
U 

2u

0.4157(–04) 0.6469(–01) 

  
0.2586(–05) 
0.1466(–03)

0.1611(–01) 
 0.4410(+00) 
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blems) 



2

Test Problem 2: (Variable coefficient pro

   
  
   


   

4 2

2

2

2

1

1

1

1 sin

1 sin , , ,

xxx xyy xzz

xxy yyy yzz

xxz yyz zzz

 21 sin

0 , , 1

x y

z

u x u u u

y u u u

z u u u

x u y

z u G x y z

    

   

   

 

  

 
u

     (59a) 

The exact solution is  

x y z 

 

       , , sin π sin π sin πu x y z x y z   . 

4 2

4 4

(1 cos )( )

(1 co

(1 cos )( )

(1 ) (1

( , , 1

xxx xyy xzz

yyy yzz

xxz yyz zzz

2s )( xxy

2

4 )

)

) (1

, ),0 ,

x y z

u x u u u

u u

z u u u

y u

x u y  u

G x y z

    



   

   

  

 

z u

z x y

  

  (59b) 

The exact solution is u(x, y, z) = ex y z  . 
re tabulaThe m

Test Problem 3: (Navier-Stokes model equation in 
terms of stream function  ) (see [25]) 

41
( ) (

( , , ), 0 , , 1

)y xxx xyy x xxy yyy
eR

G x y z x y z

          

  
     (60) 

The exact solution is      , , e sin π sin πxx y z y z  . 
The maximum absolute errors are tabulated in Table 3 

for various values of Reynolds number . eR

5. Concluding Remarks 

In this paper, using coupled approach we discuss a new 
fourth order 19-point compact finite difference approxi- 
mation for the solution of 3D non-linear biharmonic el- 
liptic partial differential equations. The method is de- 
rived on a single computational cell using the values of u 
and 2u as the unknowns. We have obtained the nu- 
merical solution of 2u  as a by-product, which is quite 
often of interest in many physical problems. Our method 
is applied to solve several problems including Navier 
Stokes model equation in terms of stream function   
and enables us to obtain high accuracy solutions with 
great efficiency. Numerical results confirm that the pro-  ax m abso a e 2. imu lute errors ted in Tabl

 
em 2: The maximum absolute errors. 

Problem (59a) Problem (59b) 

Table 2. Test Probl

h 
  4 -MethodO h   2 -MethodO h   4 -MethodO h   2 -MethodO h  

1/4 
u 0.7778(–02) 

0.1161(+00) 
0.1078(+00) 

+01) 
0.1464(–04) 
0.6745(–03) 

0.5088(–02) 
0.3249(–01) 2u  0.1562(

1/8 
U 0.4655(–03) 

0.6952(–02) 
0.2578(–01) 
0.3812(+00) 

0.8861(–06) 
0.4195(-04) 

0.1444(–02) 
0.1016(–01) 

1/16 
U 0.2877(–04) 

0.4551(–03) 
0.6377(–02) 
0.9474(–01) 

0.5529(–07) 
0.2626(–05) 

0.3699(–03) 
0.2577(–02) 

0.1797(–05) 
0.2836(–04) 

0.1590(–02) 
0.2393(–01) 

0.3456(–08) 
0.1666(–06) 

0.9353(–04) 
0.6467(–03) 

2u  

2u  

1/32 
U 

2u  

 
Table 3. Test Problem 3: The maximum absolute errors. 

 4 -MethodO h   2 -MethodO h  
h 

210eR   4 6 810 ,10 ,10eR   2 4 6 810 ,10 ,10 ,10eR   

  
2  

0.1808(–03) 
0.3332(–02) 

0.1880(–03) 
0.3524(–02) 

Over Flow 1/8 

1/16 
  

2  0.2079(–0
0.1134(–04) 

3) 
0.1202(–04) 
0.2253(–03) 

Over Flow 

1/32 
  

2  
0.7095(–06) 
0.1299(–04) 

0.7545(–06) 
1413(–04) 

Over Flow 

1/64 

0.

  
2  

0.4432(–07) 
0.8127(–0

0.4705(–07) 
0.8808(–06) 

w 
6) 

Over Flo
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posed fourth order method produces oscillation free so-
lution for large Reynolds number, whereas the second or- 
der method is unstable. 
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