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Abstract 
 
The technology of QoS routing has become a great challenge in Wireless Mesh Networks (WMNs). There exist 
a lot of literatures on QoS routing in WMNs, but the current algorithms have some deficiencies, such as high 
complexity, poor scalability and flexibility. To solve the problems above, a multipath routing algorithm based on 
traffic prediction (MRATP) is proposed in WMNs. MRATP consists of three modules including an algo-
rithm on multipath routing built, a congestion discovery mechanism based on wavelet-neural network and a 
load balancing algorithm via multipath. Simulation results show that MRATP has some characteristics, such 
as better scalability, flexibility and robustness. Compared with the current algorithms, MRATP has higher 
success ratio, lower end to end delay and overhead. So MRATP can guarantee the end to end QoS of WMNs. 
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1. Introduction 
 
Wireless Mesh Networks (WMNs) is a new type of 
broadband access network, also known as wireless mesh 
networks or wireless grid networks. Evolved from 
MANETs and WLANs, WMNs could provide an easy 
and cost-effective deployment for broad access. WMNs 
have many advantages which other wireless networks 
don’t have, such as wide coverage, high reliability, 
multi-hop routing, self-organization and self-healing 
function. In addition, mesh routers support multiple types 
of network access technologies. And a variety of existing 
wireless networks and the Internet are integrated into a 
larger Internet by them like gateways. Because of the 
advantages mentioned above, WMNs are going to play 
an increasingly important role in the next wireless com-
munication systems. Since 2004, IEEE 802.11 [2], IEEE 
802.15 [3], IEEE 802.16 [4] (WiMAX) Working Groups 
have developed a series of standard protocols that sup-
port Mesh topology. Besides, the industry has also 
started to study mesh network technology. More impor-
tantly, Microsoft Research, Intel Lab in the University of 
California Berkeley and Nortel Networks have devel-
oped a variety of products of WMNs and they have 
achieved great success on markets. It’s obvious that 
Wireless Mesh Networks as the key technology that can 
solve the “last mile” problem of the wireless access have 
been increasingly widespread concerns. Because the core 

business in WMNs locates in the broadband multimedia 
services, it requires WMNs to better support QoS than 
other wireless networks. However, the inherent short-
comings of WMNs, such as dynamic topology, the limi-
tations of mobile terminals and network heterogeneity, 
make its end-to-end QoS become very difficult and chal-
lenging. If the problem is not properly solved, it will 
block the development of WMNs in future. Multipath 
routing is a key technology to ensure the packet delivery 
and load balance in networks. For example, Artigas pro-
poses an approach on how to establish security multipath 
based on Chord in the mobile P2P networks [5]. In order 
to improve balance of energy consumption, Lee proposes 
a splitting multipath routing algorithm for ad-hoc net-
work that can establish and maintain maximum disjoint 
paths. According to the algorithm, traffic load mainly 
distributes in two paths in every session [6]. Therefore, 
the multipath routing based on the traffic is feasible. But 
the current multipath routing algorithms are not suitable 
for the WMNs. So we mainly research on the approach 
of the multipath routing based on traffic prediction. 

Network traffic prediction plays an important role in 
guaranteeing network QoS. The proposed method about 
traffic prediction mainly includes time series analysis, 
regression method, gray systematic method, neural net-
work etc. These methods play an important role in solv-
ing the specific prediction task. However, the WMNs 
traffic is complicated and lacks effective mathematical 
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model. The traditional prediction method is difficult to 
put in practice. In this paper, nonlinear prediction model 
based on wavelet neural network is modeled by analyz-
ing the characteristics of WMNs traffic. A multipath 
routing algorithm based on the traffic prediction in 
Wireless Mesh Networks (MRATP) is proposed to 
guarantee the end-to-end QoS in WMNs. Our approach 
on multipath routing is a new attempt. 

The main idea of the MRATP is that a primary path 
and a few backup paths are set up from the source to 
destination by XOR distance among nodes, the band-
width and the residual energy. Firstly, a primary path is 
used to forward streaming media. When any node on the 
primary path predicts that the network may congest at the 
next moment by real-time traffic, the notification mes-
sage that the primary path is about to congest is sent to 
the source node in advance by these nodes. Then the 
backup path 1 and 2 are triggered to transmit network 
traffic by the source node successively. When the con-
gestion and fault conditions alleviate or disappear, dis-
able backup path 1 and 2 respectively. Only the primary 
path is still used to transmit data. Simulation results 
show that the traffic prediction model based on wavelet 
neural network has higher prediction accuracy and the 
model can predict the real-time traffic of WMNs. Be-
sides, compared with other QoS routing protocols, 
MRATP can improve success ratio and reduce the end-to 
-end delay and algorithm overhead by load balancing. 
Hence, it could guarantee the end-to-end QoS of WMNs. 

The rest of the paper is organized as follows. Related 
works is given in Section 2. The traffic prediction model 
for WMNs based on wavelet-neural network is built in 
Section 3. MRATP proposed in this paper is described in 
detail in Section 4. Then we evaluate our algorithm 
through simulation in Section 5 and draw a conclusion in 
Section 6 at last. 
 
2. Related Works 
 
At present, there are more and more literatures on the 
research of QoS routing protocols in WMNs. However, 
most of them are improved Ad-hoc routing protocols 
adapting to WMNs. These QoS routing protocols are 
classified into three kinds: QoS routing based on single 
objective optimization, QoS routing based on multi-ob-
jective optimization and strategy-based QoS routing. 

QoS routing based on single objective optimization is 
to discover the optimal or sub-optimal routing which 
meets a certain QoS metrics such as throughput, latency, 
packet loss rate, energy consumption. The expected 
transmission count metric (ETX) is modified into the 
expected data rate metric (EDR) in literature [7]. The 
metric takes into account the transmission interference of 
the sharing medium in wireless multi-hop network and 
the probability of transmitting simultaneously on two  

non-interfering links. Simulation results show that this 
method can significantly improve throughput of DSR 
and DSDV routing protocol. In WMNs, if the node 
moves from the current Mesh Router to another router, it 
is necessary to rediscover a new route. But rediscovery 
leads to extra delay. To solve the problem, literature [8] 
presents the pre-handoff route discovery (PRD) concept 
for AODV, which avoids these delays and enables mo-
bile nodes to set up routes in the handoff-target network 
prior to handoff. Because of time-varying characteristics, 
the average packet loss rate on wireless channel may be 
low, but its real-time packet loss rate is very high. Hence, 
it is clearly unreasonable to use the average packet loss 
rate as routing metrics. Thus, literature [9] describe two 
new metrics, called modified expected number of trans-
missions (mETX) and effective number of transmissions 
(ENT) that work well under a wide variety of channel 
conditions. A route with low average packet loss rate and 
low real-time packet loss rate is selected by the two met-
rics mETX and ENT under a wide variety of channel 
conditions. Literature [10] presents an effective heuristic 
algorithm for calculating end-to-end bandwidth on a path, 
which is used together with AODV to setup QoS routes, 
namely BW-AODV. In a QoS guaranteed session, QoS 
routing seeks a source-to-destination route with re-
quested bandwidth. For this, one-off call admission is 
introduced. If no such a route can be found, the connec-
tion request should be rejected. If there are many candi-
date routes, the path with widest bandwidth will be se-
lected. 

Because of the dynamic characteristic of WMNs, only 
one QoS metric could not meet the business needs. 
Hence, QoS routing based on multi-objective optimiza-
tion is proposed. The QoS routing usually adopts the 
method of multi-objective integration which combines 
multi-objective (such as throughput, latency, packet loss 
rate, energy consumption) into one optimization objec-
tive. The optimization of the objective is equivalent to 
such multi-objective optimization. Optimization objec-
tives often involve the combination of several QoS met-
rics with additivity or several QoS metrics with multi-
pliable property. The theoretical optimal solution can be 
got by exhaustive search algorithm. But the problem 
solving process is a NP-complete problem and its com-
plexity is exponential growth [11]. The Formula (1) 

 is the objective function of the routing al-

gorithm in literature [12]. Here,  denotes a 

path from the source node to the destination node. 
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and energy consumption.  denote the cor-

responding weights. The optimal path can be obtained by 
maximizing the objective function. Ant colony algorithm 
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(ASAR) is used to solve the objective function. Simula-
tion results prove that ASAR algorithm has better con-
vergence and significantly provides better QoS for mul-
tiple types of services. Meanwhile, ASAR can greatly 
reduce the complexity of routing algorithm. 

)))((()))(((

)))((())(())((

S,DPWcrS,DPW1r

S,DPWdrS,DPWrS,DPf

cmaxcll

dmaxdbb




 (1) 

Strategy-based QoS routing is to discover the optimal 
routing which meets QoS needs such as throughput, la-
tency using a QoS routing strategy. Its most prominent 
feature is to support the heterogeneous WMNs. That is to 
say, a QoS routing is effectively selected in the hetero-
geneous WMNs [13–16]. However, QoS routing algo-
rithms proposed in literature [13,14] can only be applied 
to heterogeneous WMNs which are composed of two 
simple networks (Ad hoc networks and cellular networks, 
wireless LAN and cellular networks). Thus, they have 
considerable limitations. 

The proposed algorithm in literature [15] introduces 
ants encountering scheme to imitate the natural process 
of information sharing between the individuals of an 
intelligent swarm. Simulation results show that the rout-
ing algorithm works well in terms of speed of conver-
gence and recovery from failure. Moreover, the proposed 
algorithm adapts to the variable traffic and performs bet-
ter than other ant-based routing. But the algorithm results 
in extra control messages. Literature [16] addresses the 
QoS multicast routing issue in WMNs. Specifically, a 
novel network graph preprocessing approach to enable 
traffic engineering and enhance the performance of QoS 
multicast routing algorithms is proposed. Simulation 
results show that the approach can significantly improve 
the performance of QoS multicast routing in WMNs. But 
constructing the Steiner multicast routing tree is a NP 
problem, which leads to extra overhead and slow con-
vergence. 

In summary, there exist some typical shortcomings for 
the routing algorithms in WMNs, such as the high com-
plexity, poor scalability, and slow convergence. Fur-
thermore at the time of network congestion or fault, the 
algorithms can’t deal with the faults immediately. It re-
sults in packet loss and poor network quality of service. 
Hence, a multipath routing algorithm based on traffic 
prediction (MRATP) is proposed in WMNs to guarantee 
the network quality of service. 
 
3. Traffic Prediction Model for WMNs 
 
3.1. Traffic Prediction Model Selection 
 
In general, the existing network traffic prediction tech-
nologies can be classified into linear prediction and 
nonlinear prediction. For linear prediction model, 

ARIMA prediction model and Kalman filter prediction 
model are very representative. Before using ARIMA 
model, it should meet a premise condition that the net-
work traffic is subject to wide linear stationary process. 
But through analysis of the collecting network traffic in 
WMNs, it’s found that the network traffic shows the fol-
lowing characteristics, such as multi-conformation, self- 
similarity, multi-scale and long-range dependence. 
Therefore ARIMA prediction model can’t accurately 
describe all the characteristics of WMNs traffic. Kalman 
filter model can effectively deal with the system noise 
and measurement noise, but it’s also unable to accurately 
describe all the characteristics of WMNs traffic. 

So we tried to use non-linear prediction model to pre-
dict the WMNs traffic. Non-linear prediction model 
mainly includes wavelet model and neural network 
model. Wavelet model can effectively improve predic-
tion accuracy of the network traffic, but it does not have 
real-time and recursive characteristics. Therefore, wave-
let prediction model can not predict real time traffic. 
Neural network model not only has strong self-learning 
and self-adaptive ability, but also has non-linear ap-
proximation function [17]. But this model has some fatal 
deficiencies, such as slow convergence and only getting 
local sub-optimal solution. The combination of the two 
prediction models, namely wavelet neural network 
(WNN), shows better performance in training and adap-
tation efficiency than other neural networks, and it is 
easy to determine its structure and avoid to settling in 
local minimum. For example, a wavelet packet multi- 
layer perception neural network is used for time series 
prediction in literature [18] firstly. A new approach 
based on wavelet transform and artificial neural network 
is proposed for power system peak-load forecasting in 
literature [19]. An adaptive wavelet neural network is 
proposed for short-term price forecasting in the electric-
ity markets in literature [20]. And the paper proves that 
the wavelet neural network model has good prediction 
properties compared to other forecasting techniques, 
such as wavelet packet multi-layer perception, radial 
basis function (RBF) neural networks and fuzzy neural 
network (FNN). Then we try to build a wavelet-neural 
network traffic prediction model for WMNs. Our contri-
butions consist of two parts. On one hand, conventional 
sigmoid function in neural network is replaced by wave-
let function as incentive function of the hidden layer in 
neural network. On the other hand, the scale and transla-
tion parameters in wavelet model are regarded as the 
weight value and threshold parameter respectively in 
neural network. 
 
3.2. Wavelet and WNN 
 
For setting up wavelet neural-network predicting model, 
we introduce the concept of wavelet and wavelet trans-
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form at first. Suppose that the Fourier transform of the 
square-integrable function    2x L R   is ˆ ( )w , it 

satisfies the condition: 

The above equation shows that a function can be ap-
proximated by orthogonal function sets. Since Equation 
(6) has a linear-in-parameter structure which can be real-

ized by a neural network, the coefficients  can be 

regarded as the weights of the neural network，called 
wavelet neural network(WNN) for r=1, and multiwavelet 
neural network for r ≥2. The proposed WNN, MWNN is 
made of three layers: the input layer, the hidden layer, 
and the output layer. The following theorem is helpful 
for us to calculate the size of the hidden layer [21]. 
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( )ab t  is the wavelet base which is generated by the 

mother wavelet and depends on parameters a and b in the 
formula, a is the translation factor, and b is the ex- pan-
sion factor. Suppose that nonlinear time series transform 

function is    2f t L R , the wavelet transform is 

defined as 

 
3.3. Traffic Prediction Model Using Wavelet- 

Neural Network 
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Figure 1. Wavelet neural network structure.    
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Because of its three-layer structure, we can get 

, . Morlet wavelet is regarded 
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  represents the collection of all the parameters in the 
formulas above. The input of the network is a time se-
ries which consists of  time series values, namely p

 11  pkk xx ,,, kx , and the output is the lk  th step 

predictive value lkx
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First of all, network traffic is collected one time every 
five minutes and the number is totally 100 times. Then 
wavelet neural network model is simulated on platform 
Matlab7.0 and 8-10-1 network structure is used in the 
model. Finally, initialization parameters are set. The 
number of steps (T) equals 8, training learning rate (lr) 
equals 0.01, momentum coefficient (mc) equals 0.95, the 
biggest training step equals 15000 epochs, training goal 
equals 0.025.The simulation results are shown in Figure 
2 and Figure 3. 
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Figure 2. One-step prediction. 
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Figure 3. Five-step prediction. 



Z. Y. LI  ET  AL. 87                                       
  

From Figure 2 and Figure 3, we can see
pr

 
 order to manage WMNs efficiently and make MRATP 

ource node and the 

 on higher 

And then M -
in

fe

 

 that traffic 
ediction curves generally coincide with the real traffic 

curve. It is proved that the wavelet neural network pre-
diction model has better prediction accuracy. 
 
4. Multi-Path Routing Algorithm Based on 

Traffic Prediction Model for WMNs 

In
more scalable, mesh nodes are deployed by three layer 
topology as shown in Figure 4. And then these nodes are 
addressed by IPv4 or IPv6. These nodes in WMNs are 
classified into Root nodes, Super nodes and Leaf nodes 
by their abilities. Root nodes not only save the informa-
tion of the adjacent Root nodes, but also save the infor-
mation of the Super nodes under their management. Su-
per nodes not only save the information of adjacent Su-
per nodes, but also save the information of Leaf nodes in 
AS. Leaf nodes only save the information of adjacent 
Leaf nodes. Firstly, the destination node is located. 
If the destination node lies in AS 

Then set up a route between the s
destination node by MRATP algorithm 

Else recursively search towards nodes
level, until you find the destination node 
RATP algorithm is used to complete rout

g discovery and reliable streaming media transmission. 
The main idea of MRATP is that a primary path and a 
w backup paths are set up from the source to destination 

by XOR distance among nodes, bandwidth and residual 
energy. As shown in Figure 5, path 1 is the primary path, 
path 2 and path 3 are backup paths respectively. Firstly, 
the primary path is used to forward streaming media. 
When any node on primary path 1 predicts that the net-
work may congest at the next moment by real-time traffic,
the notification message that the primary path is about to 
congest is sent to the source node in advance by these 
nodes. Then backup path 2 is triggered to transmit net-
work traffic by the source node. When the congestion and 
fault conditions alleviate or disappear, disable backup 
path 2 and 3 respectively. Only primary path 1 is still 
used to transmit data. If the source node receives the con-
gestion message from a node on backup path 2, it will 
activate backup path 3 to transmit traffic. 

 

 

 
Figure 5. Schematic diagram of multi-path routing for WMNs. 
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Step 1 Multipath routing algorithm 
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sub-optimal path. Make the sub-optimal path as backup 
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tion 

ork traffic at the i th moment. After the net-
w

Step 2 Congestion discovery mechanism based on traffic 
predic

Let random variable X denote network traffic. Let Xi 
denote netw

ork traffic at the same time within one month was ana-
lyzed, we find Xi obeys the normal distribution 

2( , )X XN   . The threshold Max is set by the network 
traffic. Suppose the probability of the t+l step prediction 

eding the threshold at the current time t as Pt (l) 
shown in Formula (16). 

ˆ( ) ( | , , , , )t t lP l P X Max X X X X      (16) 

value exce

m

Here, m is the mean value of m observed value
Xt. 

1 2t t t t 

s before 

   
ˆˆ )( ( )Xt l XX Max

X MaxP P
   

  
t l X X   

2

21
2

( )
Max X t

XX

X

Max te d



 





         (17)     

    ˆ( ) 1 )(
t lt X MaxP l P

               (18) 

2

21
2

1
Max X t

X te d









    

 
Step 3 Load balancing algorit  using multipath routing 

When node V  on the primary path finds the path will 

rit

 Analysis 

meters 

 to support 
e simulation of WMNs. Then Ant-based routing, 

meter Value 

hm
i

be congested at time t+l in the future using Step 2 algo-
hm, node Vi send notification message to source node 

S. Then the source node S activates backup path 2 ur-
gently. 3/4 network traffic will be transmitted along 
backup path 2. The rest 1/4 network traffic will still be 
transmitted along primary path 1 after the delay τ. With 
the rapid growth of network traffic, backup path 3 is ac-
tivated to help transmit data. On the contrary, the backup 
paths would be disabled, only the primary path is still 
used to transmit data. 
 
5. Simulation and
 
5.1. Simulation Scene and Para
 
Wireless module on NS-2.29[22] is extended
th
AODV routing protocol based on bandwidth optimiza-
tion (BW-AODV) and MRATP are implemented on the 
simulation platform. In order to evaluate the performance 
of the QoS routing in WMNs, average end-to-end delay 
and success ratio are chosen as simulation metrics. Suc-
cess ratio is the ratio of the number of data packets sent 
to the number of data packets received successfully. 
Simulation scene and experimental parameters are shown 
in Table 1. According to the experimental scene and pa-
rameters in Table 1, Otcl script is written for the simula-
tion. 

Table 1. Simulation parameters. 

Para
Number of No 40 des 
Field 2000*2000m2 

gth 

rator 
5  

600seconds 

Interface queue len
mission range 

50 
Trans 200m 

VBR Application traffic gene
Packet size 12bytes
Simulation time 

 
5 nce Evaluation 

e performance of the 
roposed algorithm MRATP with Ant-based routing and 

.2. Performa
 
In this section, we investigate th
p
BW-AODV for average end-to-end delay, which reflects 
the ability of convergence. The average end-to-end delay 
(Tend-end) includes sending delay (Ts), queuing delay (Tq) 
and transmission delay (Tp). Tend-end is shown in Formula 
(19). 

*end end s p qT T m T T                (19) 

Here, m is retransmission times. A
n links from the source node to the dest

ssume that there are 
ination node, and 

packet loss rate is p, so we can get 1

1

(1 )np
m


  

1(1 )
p

ns qp
T

end end
T

T T               (20) 

The average end-to-end delay of MR
this paper is shown in Formula (21). Here,
pa

ATP proposed in 
 M denotes the 

th number between the source node and the destination 
node. 

(MRATP)
1 ,

M
end end

end end

i

M MM N
T

T



 
      (21) 

Figure 6 compares the average end-to end delay of 
MRATP with Ant-based routing and BW-AODV. As we 
can see in Figure 6, average end-to-end delay of the 
Ant-based routing complies with cyclical variation law 
that the delay rapidly rises, then rapidly declines and 
finally stabilizes at a small delay range. The phenomenon 
is determined by the characteristics of ant colony algo-
rithm itself. Clearly, the performance of the routing algo-
rithm is stable at ideal state. But the performance of the 
algorithm is instable under the condition of the topology 
dynamic changes, which shows the algorithm can not 
guarantee QoS of WMNs. For BW-AODV and MRATP 
algorithms, their performances are relatively stable. And 
they do not appear to jitter in Figure 6. The average end- 
to-end delay of MRATP is slightly less than that of 
BW-AODV. However, when the same amount of data M 
is sent to the destination end, the total time taken by 
MRATP is much less than that of BW-AODV because 
MRATP adopts the method of multi-path streaming 
mechanism based on traffic prediction. 
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Figure 6. Average end-to-end delay of routing data packe s 
against elapsed time. 

 of the three kinds of routing algo-
thm is simulated on the platform from two aspects. One 

is

 suc-
ce

n in Figure 8. 
Th

fter 100 seconds has been signifi-
ca

s of the current QoS routing algo-
thms in WMNs, a multipath routing algorithm based on 

t

 
Then success ratio

ri
 ideal success ratio under the condition of none nodes 

or links failure. The other is success ratio under the con-
dition of traffic increasing and node or link failure. 

Ideal success ratio against elapsed time is shown in 
Figure 7. Clearly, the three algorithms have a high

ss ratio of transmission. However, MRATP has higher 
success ratio than the other algorithms. At the very be-
ginning of the running, the ant algorithm has a relatively 
low success ratio, because it needs time to accommodate 
to the network. And as the proactive ants update the 
routing table, the success ratio grows up. 

Success ratio under the condition of the traffic in-
creasing and node or link failure is show

e event of the sharp increase traffic at the 100th sec-
ond and the event of the nodes failure at the 350th sec-
ond are set in the Otcl script to evaluate self-adaptive and 
robustness features. 

As we can see from Figure 8, transmission success ra-
tio of BW-AODV a

ntly decreasing and it takes longer time to come back 
to the normal state. It shows that the algorithm has poor 
self-adaptive feature. However, the fluctuation of the 
curves of MRATP in this paper is the smallest among 
three algorithms. The simulation results and theoretical 
analysis above prove that MRATP has stronger adapta-
bility and robustness than the others. Hence it can guar-
antee the QoS routing WMNs. 
 
6. Conclusions 
 
For the deficiencie
ri
traffic prediction (MRATP) is proposed in WMNs. 
Firstly, traffic prediction model based on wavelet neural 
network is built in this paper, and then MRATP is de- 

 
Figure 7. Success ratios against elapsed time. 

 

 
Figure 8. Success ratios against elapsed time after traffic 
increasing and node failure. 

l. MRATP consists of three 
arts including an algorithm on multipath routing built, a 

gments 

supports from the National 
atural Science Foundation of China (60573141, 607730 

 
signed based on the mode
p
congestion discovery mechanism based on wavelet- 
neural network and a load balancing algorithm using 
multipath. Simulation results show that MRATP has bet-
ter adaptability and robustness when the link is broken or 
network is congested. Besides, compared with the cur-
rent algorithms, MRATP has higher scalability, success 
ratio and lower end to end delay. So MRATP can guar-
antee the end to end QoS in WMNs. But MRATP is a 
QoS routing algorithm which is under the condition of 
fixed node number and single-channel. So we will fur-
ther study multi-path routing algorithm under the condi-
tion of multi-channel and dynamic topology to ensure 
QoS in WMNs. 
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