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Abstract 

In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary 
conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is ap- 
proximated by 19-points and 27-points fourth order finite difference approximation schemes and the result- 
ing large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal 
system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions 
and the numerical results obtained show that the method produces accurate results. It is shown that 19-point 
formula produces comparable results with 27-point formula, though computational efforts are more in 
27-point formula. 
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Algorithm 

1. Introduction 

Poisson’s equation in three dimensional Cartesian coor- 
dinates system plays an important role due to its wide 
range of application in areas like ideal fluid flow, heat 
conduction, elasticity, electrostatics, gravitation and other 
science fields especially in physics and engineering. For 
Dirichlet’s and mixed boundary conditions, the solution 
of Poisson’s equation exists and it is unique. Using some 
existing methods like variable separable or Green’s func- 
tion we can find the solutions of Poisson’s equation ana- 
lytically even though at times it is difficult and tedious 
from the point view of practical applications for some 
boundary conditions [1-4]. For further applications, it 
seems very plausible to treat numerically in order to ob- 
tain good and accurate solution of Poisson’s equation. 
The advantages of numerical treatment is to reduce com- 
plexities of the problem, secure more accurate results and 
use modern computers for further analysis [1,2,5]. 

If possible, direct methods are certainly preferable to 
iterative methods when several sets of equations with the 
same coefficients matrix but different right-hand sides 
have to be solved. It is well known that direct methods 
solve the system of equations in a known number of 
arithmetic operations, and errors in the solution arise 
entirely from rounding-off errors introduced during the 

computation [1,5-7]. 
Researchers in this area have tried to solve Poisson’s 

equation numerically by transforming the partial differ- 
ential equation to its equivalent finite difference (or finite 
element or others) approximation to get in terms of an 
algebraic equation. When we approximate the Poisson’s 
equation by its finite difference approximation, in fact, 
we obtain a large number of system of linear equations 
[2,5-7]. In order to solve the two dimensional Poisson’s 
equation numerically several attempts have been made, 
Hockney [8] has devised an efficient direct method 
which uses the reduction process, Buneman developed 
an efficient direct method for solving the reduced system 
of equations.[5,6,9(unpublished)]; Buzbee et al. [10] de- 
veloped an efficient and accurate direct methods to solve 
certain elliptic partial difference equations over a rectan- 
gle with Dirichlet’s, Neumann or periodic boundary con- 
ditions; Averbuch et al. [11] on a rectangular domain and 
McKenney et al. [12] on complex geometries have de- 
veloped a fast Poisson Solver. The fast Fourier transform 
can also be used to compute the solution to the discrete 
system very efficiently provided that the number of mesh 
points in each dimension is a power of small prime (This 
technique is the basis for several “fast Poisson solver” 
software packages) [7]. Skolermo [13] has developed a 
method based on the relation between the Fourier coeffi- 
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cients for the solution and those for the right-hand side. 
In this method the Fast Fourier Transform is used for the 
computation and its influence on the accuracy of the so-
lution. Greengard and Lee [14] have developed a direct, 
adaptive solver for the Poisson equation which can 
achieve any prescribed order of accuracy. Their method 
is based on a domain decomposition approach using lo- 
cal spectral approximation, as well as potential theory 
and the fast multipole method. 

To solve the three dimensional Poisson’s equations in 
Cartesian coordinate systems using finite difference ap- 
proximations; for instance, Spotz and Carey [15] have 
developed an approximation using central difference 
scheme to obtain a 19-point stencil and a 27-point stencil 
with some modification on the right hand side terms; 
Braverman et al. [16] established an arbitrary order accu- 
racy fast 3D Poisson Solver on a rectangular box and 
their  method is based on the application of the discrete 
Fourier transform accompanied by a subtraction tech- 
nique which allows reducing the errors associated with 
the Gibbs phenomenon; Sutmann and Steffen [17] have 
developed compact approximation schemes for the La- 
place operator of fourth- and sixth-order based on Padé 
approximation of the Taylor expansion for the discre-
tized Laplace operator; Jun Zhang [18] has developed a 
multigrid solution for Poisson’s equation and their fi- 
nite difference approximation is based on uniform mesh 
size and they have solved the resulting system of linear 
equations by a residual or multigrid method. 

The aim of this paper is to develop a fourth order finite 
difference approximation schemes and the resulting large 
algebraic system of linear equations is treated system- 
aticcally in order to get a block tri-diagonal system [19] 
and extend the Hockney’s method to solve the three di- 
mensional Poisson’s equation on Cartesian coordinate 
systems. It is shown that the discussed method produces 
very good results. It is found that, in general, 27-points 
scheme produces better results than 19-points scheme but 
19-point scheme also shows comparable results. 

2. Finite Difference Approximation 

Consider the Poisson equation  
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and this is a 19-point stencil scheme. 
The Poisson’s Equation (1) now is approximated by its 

equivalent systems of linear equations either (6a) or (6b) 
and these equations now will be treated in order to form a 
block tri-diagonal matrix. We can find the eigenvalues 
and eigenvectors of these block tri-diagonal matrices 
easily. 

Now we solve these two different systems of linear 
equations systematically. 

On simplifying (5), 
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Taking first in the X-direction, next Y-direction and 
lastly Z-direction in (6a) and (6b), we get a large system 
of linear equations (the number of equations actually 
depends on the values of m, n and p); and this system of 
equations can be written in matrix form (for both schemes) 
as 
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1 2 1, ,R R S 2S

π
400 200 2(80 20 )cos

1i

i
r r

m
         

 

π
80 20 2(20 2 )cos

1i

i
r r

m
        

 

π
100 40 2(8 10 )cos

1i

i
r r

m
        

 

π
8 10 2(2 )cos

1i

i
r r

m
          

  π
32 16 2 6 2 cos

1i

i
r r

m
         

 

π
6 2 4cos

1i

i
r

m
       

 

  π
8 4 2 1 cos

1i

i
r r

m
        

 

1i r    
Let  diag , , ,Q Q Q   

mn
is a matrix o rder  f o

mn  
Thus   satisfy T I    

 , , , 1 2 3diag , nR  T     (say) 

where  

 1 2 3diag , , , ,i m       

and  

 1 2 3diag , , , ,T
n        (say) 

  where

 1 2 3diag , , , ,i m       

Here 
π

2 cos
1i i i

i

m
        

 

and 
π

2 cos
1i i i

i

m
          

Let 
T

k k k

T
k k k

U V U V

B B B B



 





 
 

 k

k

       (9) 

where 

   




11 21 1 12 22 2

1 2                       

k k k m k k k m

T

nk nk mnk

V v v v v v

v v v

  

        

kv

in order to find the solutions of Equation (1), we solve 
Equations (6a) and (6b). 

Consider Equation (7) and using (8) we can write  in  it
terms of the matrices R  and S  as 

1 2 1RU SU B 
 

1 2 3SU RU S BU 2 
 

2 3 4SU RU SU B3              (10)

 
1p p pSU RU B  

 TPre multiplying (10) by and usi  ng (9), we get 

1 2V V B1   
 

1 2 3 2V V V B   
 

2 3 4V V V B3              (11) 

1p p pV V B  
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Each equation of (11) again can be written as 

1 2i ij i ij ijv v b   1

 
1 2 3 2i ij i ij i ij ijv v v b    

 
2 3 4i ij i ij i ij ijv v v b      3          (12) 

( 1)i ij p i ijp ijpv v   
 

b

For n an

For  collect now from each equation 
of s i.e. for , and get 

1, 2,3, ,i m  ,
2,3, ,k p . 



1, 2,3, ,j    d  
1,

1, 2,3, ,k p  
 the first equation (12), 1, 1i j 

1 11( 1) 1k kv v v b            (13a) 

 (12) fo

11 1 11( 1) 11k k

Again collect the equations from r 2, 1i j 
and get 

 

2 21( 1) 2 21 2 21( 1) 21k k k k 

Continuing in the same fashion and collecting t  
equations

v v v b    

he
 at some point of , we get 

     (13b) 

 ,i j

( 1) ( 1)i ij k i ijk i ij k ijk 

And collecting the las quations (i.e. for ,i m

v v v b         

t e

    (13c) 

  
j n ), we get 

( 1) ( 1)m mn k m mnk m mn k mnk 

(13a)-(13d) are tri-diag
ce we so

v v v    

All these set of Equations onal 
ones and hen lve for  by using
algorithm, and with the help (9) ag we get a
th

n’s by its fourth order 
pproximations scheme 
e eigenvalues and eigenvectors of the 

 algorithm;  
for 

ce ap oxim  
irect 

on r from 
ro

 

es in which the analytical 
solutions of are known to us in order to test the 

b     (13d) 

ijkv
ain 

 Thomas 
ll ijku  and 

is solves (6a) and (6b) as desired. 
By doing this we generally reduce the number of com- 

putations and computational time. 

4. Algorithm 

1) Approximate the Poisson equatio
finite difference a

2) Calculate th
block tri-diagonal matrices; 

3) Find the modal matrix Q and  ; 
4) Pre multiply ,R S  and kB  by T  and get sys-

tems of linear equations;  
5) Solve the system by using Thomas
6) Calculate back , ,i j ku . 
Since we used finite differen pr ation to ap-

proximate the Poisson equation’s and this method is d
 in  solution arises only e, it is sure that the erro  the

unding off errors. By doing this we generally reduce the 
number of computations and computational time. 

5. Numerical Results 

A computational experiment is done on six selected

examples for both schem
u  

efficiency and adaptability of the proposed method. The 
computed solution is found for the entire interior grid 
points but results are reported with regard to the maxi- 
mum absolute errors for corresponding choice of ,m n , p  
and the computed solutions are given in Tables 1-6. 

Example 1. Suppose 2 0u   with the boundary con- 
ditions  

     , ,0, , ,0y z u x z u x y 

 
0,u

   , ,1 1, , ,1, 1u x y u y z u x z   
 

The analytical solution is and its results 
are shown in Table 1 below.

Example 2. Consider

 , , 1u x y z   
 

 2 0u   with 

     , , 0z u x y 0, , ,0, 0u y z u x    

     ,1, ,1z x y xy1, , , , ,u y z yz u x z u x    

The analytical solution is  and its re- 
sults are shown in Table 2

Example 3. Suppose  with the 
bo

 , ,u x y z xyz
 below. 

 2 2u xy xz yz   
undary conditions 

   0, z  , ,0 0,u x y0, , ,u y z u x    

and 

      
   

1, , 1 , ,1, 1

                     , ,1 1

u y z yz y z u z z z z

u x y xy x y

    

  
 



The analytical solution is 
and its results are shown in Ta

Example 4. Suppose 

 , , ( )u x y z xyz x y z    
ble 3 below. 

2 6u   and given the boundary 
conditions 

    20, , , , ,2 2 2, 0 �u y z y z x z    z u x

   2 2 2 2, ,0 1, , 1 ,,y x y u y z y z      u x

   2 2 2,1, 1 , , ,1 1u x z x z u x y x 2y       

2 2The analytical solution is 2  and 
its results are shown in Table 4

Example 5. Suppose z  with the 
bo

 , ,u x y z x y  
 below. 

z

 22 si πnπu xy 
undary conditions 

     0, , ,0, , ,0u y z u x z u x y  , ,1 0u x y     

     in π , ,1, sin(π )z u x z x z  1, , su y z y

The analytical solution is  and its results 
are shown in Table 5 belo

Example 6. Suppose  

 πu xysin z
w. 

   22 sin π sin3πu x    π sin zy π

 with boundary conditions 
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Table 1. The maximum absolute error for Example 1. 

e 1 Scheme 2  , ,m n p  Schem

(9,9,9) 1.99840e–015 1.55431e–015 

(9,9,19) 5 2. 5 

(  

 1.55431e–01 22045e–01

(9,9,29) 1.90958e–014 7.88258e–015 

(9,9,39) 5.10703e–015 5.66214e–015 

(19,19,9) 7.54952e–015 9.54792e–015 

19,19,19) 1.55431e–015 1.19904e–014 

(19,19,29) 6.43929e–015 2.15383e–014 

(19,19,39) 7.21645e–015 234257e–014 

(29,29,9) 1.69864e–014 1.11022e–014 

(29,29,19) 9.43690e–015 4.66294e–015 

(29,29,29) 1.63203e–014 6.66134e–015 

(29,29,39) 3.96350e–014 8.43769e–015 

(39,39,9) 6.43929e–015 5.77316e–015 

(39,39,19) 2.33147e–014 2.88658e–015 

(39,39,29) 4.46310e–014 1.62093e–014 

(39,39,39) 3.29736e–014 1.39888e–014 

 
Table 2. The maximum absolute error for Example 2. 

Scheme 1 Scheme 2  , ,m n p  

(9,9,9) 5.55112e–016 5.55112e–016 

(9,9,19)  5.  

(  

 7.77156e–016 55112e–016

(9,9,29) 2.83107e–015 1.30451e–015 

(9,9,39) 1.72085e–015 1. 16573e–015 

(19,19,9) 1.27676e–015 1.55431e–015 

19,19,19) 2.33147e–015 1.99840e–015 

(19,19,29) 1.38778e–015 3.38618e–015 

(19,19,39) 1.33227e–015 3.99680e–015 

(29,29,9) 2.44249e–015 1.52656e–015 

(29,29,19) 1.77636e–015 2.02616e–015 

(29,29,29) 2.80331e–015 1.67921e–015 

(29,29,39) 6.16174e–015 2.08167e–015 

(39,39,9) 1.24900e–015 1.66533e–015 

(39,39,19) 3.69149e–015 1.88738e–015 

(39,39,29) 7.54952e–015 3.05311e–015 

(39,39,39) 6.59195e–015 4.49640e–015 

Table 3. The max rror f . imum absolute e or Example 3

 , ,m n p  Scheme 1 Scheme 2 

(9,9,9) 1.11022e–015 1.33227e–015 

(9,9,19) 5 1. 5 

(  

 1.55431e–01 11022.e–01

(9,9,29) 5.13478e–015 2.88658e–015 

(9,9,39) 3.83027e–015 2.88658e–015 

(19,19,9) 2.77556e–015 3.05311e–015 

19,19,19) 4.77396e–015 4.10783e–015 

(19,19,29) 3.55271e–015 6.71685e–015 

(19,19,39) 3.10862e–015 7.99361e–015 

(29,29,9) 4.71845e–015 3.10862e–015 

(29,29,19) 3.94129e–015 4.44089e–015 

(29,29,29) 5.27356e–014 4.44089e–015 

(29,29,39) 1.24623e–014 4.44089e–015 

(39,39,9) 3.10862e–015 4.44089e–015 

(39,39,19) 7.82707e–015 4.99600e–015 

(39,39,29) 1.49880e–014 6.32827e–015 

(39,39,39) 1.37113e–014 1.03251e–014 

 
e ma te error  4. Table 4. Th ximum absolu  for Example

 , ,m n p  Scheme 1 Scheme 2 

(9,9,9) 2.55351e–015 1.77636e–015 

(9,9,19)  2.  

(  

 3.10862e–015 22045e–015

(9,9,29) 1.74305e–014 7.43849e–015 

(9,9,39) 6.88338e–015 5.88418e–015 

(19,19,9) 7.54952e–015 9.32587e–015 

19,19,19) 1.44329e–014 1.28786e–015 

(19,19,29) 6.99441e–015 2.14273e–014 

(19,19,39) 7.77156e–015 2.28706e–014 

(29,29,9) 1.48770e–014 9.99201e–015 

(29,29,19) 9.32587e–015 8.43769e–015 

(29,29,29) 1.58762e–014 8.88178e–015 

(29,29,39) 3.67484e–014 1.02141e–014 

(39,39,9) 7.32747e–015 7.43849e–015 

(39,39,19) 2.17604e–014 7.10543e–015 

(39,39,29) 4.39648e–014 1.78746e–014 

(39,39,39) 3.39728e–014 1.79856e–014 
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T e maxi  error f . able 5. Th mum absolute or Example 5

 , ,m n p  Scheme 1 Scheme 2 

(9,9,9) 5.89952e–006 5.90013e–006 

(9,9,19)  3.  

(  

 3.67647e–007 67666e–007

(9,9,29) 7.25822e–008 7.25853e–008 

(9,9,39) 2.29611e–008 2.2962e–008 

(19,19,9) 5.92320e–006 5.9233e–006 

19,19,19) 3.69122e–007 3.69124e–007 

(19,19,29) 7.28734e–008 7.28737e–008 

(19,19,39) 2.30532e–008 2.30533e–008 

(29,29,9) 5.94508e–006 5.94513e–006 

(29,29,19) 3.70486e–007 3.70487e–007 

(29,29,29) 7.31427e–008 7.31428e–008 

(29,29,39) 2.31384e–008 2.31384e–008 

(39,39,9) 5.94513e–006 5.94515e–006 

(39,39,19) 3.70489e–007 3.70489e–007 

(39,39,29) 7.31432e–008 7.31433e–008 

(39,39,39) 2.31386e–008 2.31386e–008 

 
Tab e maximu rror fo

Scheme 1 Scheme 2 

le 6. Th m absolute e r Example 6. 

 , ,m n p  

(9,9,9) 4.07466e–005 9.56601e–005 

(9,9,19)  3.

(  

 2.80105e–005 9912e–005 

(9,9,29) 2.73312e–005 2.79092e–005 

(9,9,39) 2.72169e–005 2.35847e–005 

(19,19,9) 1.52747e–005 1.01614e–005 

19,19,19) 2.53918e–006 5.93387e–006 

(19,19,29) 1.85988e–006 3.47172e–006 

(19,19,39) 1.74565e–006 2.48652e–006 

(29,29,9) 1.3916e–005 3.32432e–006 

(29,29,19) 1.18059e–006 1.88497e–006 

(29,29,29) 5.01294e–007 1.17049e–006 

(29,29,39) 3.87057e–007 7.96897e–007 

(39,39,9) 1.36876e–005 7.87013e–006 

(39,39,19) 9.52114e–007 6.34406e–007 

(39,39,29) 2.72819e–007 5.30167e–007 

(39,39,39) 1.58582e–007 3.70168e–007 

    1, ,y z u x 


, ,0,

, ,1

z u z

u x y

  

  
 

 ,1,u x z

  , ,0x y u

0,u y

0

The analytical solution is 

      , , sin πx sin πy sin πu x y z z  
an able 6 above. 

This example VI was considered as a test problem in [7] 
and [18], and the results show that our meth  is more 

eme the step 
siz

In this work, the three dimensional Poisson’s equation in 
 systems is approximated by a fourth 

order finite difference approximation scheme. Here we 

[1] L. Collatz, “The Numerical Treatment of Differential Equa- 
r Verlag, Berlin, 1960. 

[2] M. K. Jain, “Numerical Solution of Differential Equa- 

d its results are shown in T

od
accurate than their methods and in their sch

e is the same for all dimensions but in our case 
Z-direction can have a different step length. 

6. Conclusions 

Cartesian coordinate

used to approximate the Poisson’s equation by a 27- 
points scheme and a 19-points scheme, and in doing this 
by the very nature of finite difference method for elliptic 
partial differential equations, it resulted in transforming 
the Poisson’s equation (1) in to a large number of alge- 
braic systems of linear Equations (6a) or (6b) which 
forms a block tri-diagonal matrix in both schemes. These 
block tri-diagonal matrices are quite comfortable to find 
the eigenvalues and eigenvectors in order to extend 
Hockney’s method to three dimensions, and we have suc- 
cessfully reduced matrix A to a tri-diagonal one and by 
the help of Thomas Algorithm we solved the Poisson’s 
equation. The main advantage of this method is that we 
have used a direct method to solve the Poisson’s equa- 
tion for which the error in the solution arises only from 
rounding off errors; because it’s a direct method the so- 
lution of (1) is sure to converge as we are always solving 
(1) by transforming it in to a diagonally dominant tri- 
diagonal system of linear equations; and it reduces the 
number of computations and computational time. It is 
found that this method produces very good results for 
fourth order approximations and tested on six examples. 
Actually it is shown that the discussed method, in gen- 
eral, for 27-points scheme produces better results than 
19-points scheme but 19-point scheme has also shown 
comparable results. 

Therefore, this method is suitable to find the solution 
of any three dimensional Poisson’s equation in Cartesian 
coordinates system. 
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