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Abstract 

A class of upwind finite volume element method based on tetrahedron partition is put forward for a nonlinear 
convection diffusion problem. Some techniques, such as calculus of variations, commutating operators and 
the a priori estimate, are adopted. The a priori error estimate in L2-norm and H1-norm is derived to determine 
the error between the approximate solution and the true solution. 
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1. Introduction 

Consider the following nonlinear convection-diffusion 
problem: 

   tu u u g u t         F x x x J



    (1) 

  0u t t J     x x              (2) 

   00u u   x x x

3

             (3) 

where  is a bounded region with piecewise 
smooth boundary . 

R
   is a small positive constant 

and  is a smooth 
vector function on 

 u f F x x 1 2u      3f u f u  x x 
R ,  0 0 F x . 

The finite volume element method (FVEM) is a dis-
crete technique for partial differential equations, espe-
cially for those arising from physical conservation laws, 
including mass, momentum and energy. This method has 
been introduced and analyzed by R. Li and his collabo-
rators since 1980s, see [1] for details. The FVEM uses a 
volume integral formulation of the original problem and 
a finite partitioning set of covolumes to discretize the 
equations.The approximate solution is chosen out of a 
finite element spaces [1-3] The FVEM is widely used in 
computational fluid mechanics and heat transfer prob-
lems [2-5]. It possesses the important and crucial prop-
erty of inheriting the physical conservation laws of the 
original problem locally. Thus it can be expected to cap-
ture shocks, or to study other physical phenomena more 
effectively. 

On the other hand, the convection-dominated diffusion 
problem has strong hyperbolic characteristics, and there-

fore the numerical method is very difficult in mathemat-
ics and mechanics. when the central difference method, 
though it has second-order accuracy, is used to solve the 
convection-dominated diffusion problem, it produces 
numerical diffusion and oscillation near the discontinu-
ous domain, making numerical simulation failure. The 
case usually occurs when the finite element methods 
(FEM) and FVEM are used for solve the convection- 
dominated diffusion problem. 

For the two-phase plane incompressible displacement 
problem which is assumed to be -periodic, J. Douglas, 
Jr., and T.F.Russell have published some articles on the 
characteristic finite difference method and FEM to solve 
the convection-dominated diffusion problems and to 
overcome oscillation and faults likely to occur in the 
traditional method [6]. Tabata and his collaborators have 
been studying upwind schemes based triangulation for 
convection-diffusion problem since 1977 [7-11]. Yuan, 
starting from the practical exploration and development 
of oil-gas resources, put forward the upwind finite dif-
ference fractional steps methods for the two-phase three- 
dimensional compressible displacement problem [12]. 



Most of the papers known concern on the FVEM for 
one- and two-dimensional linear partial differential equa-
tions [1-4,13,14]. In recent years, M. Feistauer [15,16], 
by introducing lumping operator, constructed finite vo- 
lume-finite element method for nonlinear convection- 
diffusion problems. On the other hand, because the FEM 
costs great expense to solve the three-dimensional prob-
lems, finite difference methods (FDM) are usually used 
to approximate the problems [12]. These works inspire 
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us to look into the subject how to use the upwind FVEM 
to solve three-dimensional nonlinear convection-domi- 
nated diffusion problems. In this article, we continue to 
our work [17] and put forward an upwind FVEM for 
three-dimensional nonlinear convection-dominated dif-
fusion problems based on tetrahedron partition and its 
dual partition of . Some techniques, such as calculus 
of variations, commutating operator and the a priori error 
estimate, are adopted. The a priori error estimate in 

-norm and 



12L H -norm is derived to determine the error 
between the approximate solution and the true solution. 

The remainder of this paper is organized as follows. In 
Section 2, we put forward the upwind FVEM for prob-
lem (1). In this section, we introduce notations, construct 
tetrahedron mesh partition h  of  and its dual parti-
tion. Some auxiliary lemmas and the a priori error esti-
mate in -norm and 

T

1



2L H -norm of the scheme are 
shown In Section 3 and Section 4, respectively. In Sec-
tion 5, some concluding remarks are presented.  

Throughout this paper we use C (without or with sub- 
script) to denote a generic constant independent of dis-
crete parameters. We also adopt the standard notations of 
Sobolev spaces and norms and semi-norms as in [18, 19]. 

2. The UFVE Method 

Suppose problem (1) satisfy condition (A1): 
 1C  Continuity condition:   2 g u L R  x  is 

Lipschitz continuous w.r.t. the second variable u .  
 2C  The vector function  has 1-order con-

tinuous partial derivative w.r.t.  and u . 
 uF x

x


Suppose the true solution of problem (1) possess cer-
tain smooth and satisfy: 

 R  Regular condition: 

    2 1 2u W L H L L H     2 . 

Before presenting the numerical scheme we introduce 
some notations. For simplicity we assume   is the 
domain      0 0 0L L LX Y Z       . Firstly, Let us 
consider a family of regular tetrahedron partition  in 
the domain 

hT
 , which is a closure of . Let  be 

maximum diameter of cell of hT . For a fixed tetrahe-
dron partition 

 h

 hT K , we define a closed tetrahedron 
set   1

KN

i i
K


 and node set 

     1 2

1
0 1 1

2

1

M M M

h h i i ii i M
P P P

  
      

i



, 

where 0  is inner nodes set of  and h  boundary 
nodes set on . Let  be all edges 
set. 

 
 i 1h iE e M   E

Definition 2.1. Suppose that  is a 
set of tetrahedron partition of , the set h  is called 
regular, if there exists a positive constant 

 00hT T h h   
 T

1  independ-
ent of , such that  h

 1 0max 0
h

K K
K T

h h 


h     

where Kh  and K  are the diameter of  and the 
maximum diameter of circumscribing sphere of tetrahe-
dron , respectively. 

K

K
Definition 2.2. The two tetrahedron cells are called face- 

adjacent if they have one common face, while edge-ad- 
jacent if they have one common edge.  

Definition 2.3. The two nodes are called adjacent if 
they form one edge which belongs to h . Denote by E

i jj P   is adjacent to . i i j h

For a given tetrahedron partition hT  with nodes 
P P P  

 iP h  and edges  ie E

h P

h , we construct two kind 
of dual partitions. First, we will construct the circumcen-
ter dual partition of . T i h  , let  

  h i h iP K K T P      is a vertex of K . Let jQ  be 
a circumcenter of   h iK P . Connecting jQ  of the 
two face-adjacent tetrahedron cells which belong to 

 h iP , then we can derive a polyhedron 
iPK   which 

surrounds the node i . P jQ  are vertices of the polyhe-
dron 

iPK   which is called circumcenter dual partition 
corresponding to node i . 

ih P i h  is the 
circumcenter dual partition of hT . Denote by  the 
midpoint of  and its adjacent node 

P  T K  P 
ijP

iP jP . 
The other dual partition as follows. h  , let ke E
  h k he K K T     and k  is a edge of e K . Denote 

by 
1k  and 

2k  the vertices of the edge k  and P P e jQ  
the circumcenter of the  h kK e . Suppose 

keK   is a  

polyhedron whose vertices are   
1kP 

2kP  jQ s . 
keK   is  

called dual cell for edge . ke  
1

E

k

M

h e k
KT




  is the other  

dual partition to . hT

Let h
  be the node set of dual partition. For 

hQ  , let QK  be tetrahedron cell which includes .  Q

Let PK   and QK  be volumes of dual cell PK   and  

tetrahedron cell QK , respectively. Let  be the di-
ameter of tetrahedron cell Q

h
K . As follows, we assume 

that the partition family h  is regular, i.e., there exist 
positive constants 1 2

T
C C  independent of , such that 

the following condition (A2) satisfies:  
h

3 3
1 2

3 3
1 2

hp

Q h

C h K C h P

C h K C h Q





    




    
        (4) 

Suppose that a trial function space  1
0hU H  ,  

whose basis functions are    1

1

M

i i
P


 possessing the  

form  0 1 2 3x y z       based on  [15], and hT
  0i i hP P   . Test function space  2 hV L  is a 

piecewise constant function space corresponding to the 
dual partition hT  , whose basis functions are  

  hP P   . 
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  1

0 otherwise
PP K

P
  

 
 

 

and    0 hP P    
For the following analysis, we introduce two interpo-

lation operators. Suppose that  and  are inter-
polation operators from 

h h


1
0H  to  and , respec-

tively, satisfying  
hU hV

   
1

1

M

h i
i

u u P P


   i              (5) 

   
P h

h
K T

u u P P
 





               (6) 

Multiplying both sides of (1) by , integrating on 
dual partition cell 

v

iPK 

P
, using Green formula, and sum-

ming with respect to , we have i h

        1
0tu v a u v b u v g v v H          

d  

    (7) 

where  

  d
P Pi i

i h
K K

P

a u v u v u v s  


        x 
  (8) 

   d
i hP

K K
P Pi i

b u v v v s


        F x F d       (9) 

Converting  into [1]  F

   
0

d
u

u u    F x F x u u             (10) 

Let  

   
   

0

0

max 0 ( ) d

max 0 ( ) d

u

ij ij

u

ij ij

u u u

u u

 







      

     





x F x

x F x

u

u u 
   (11) 

where ij  is the unit outward normal vector of  

ij iPK   . For  we introduce bilinear 
form 

h h h hu U v V   

   

    
ii h

h h h h i ij
P j

ij ij h i ij ij h j

b u v v P

P u P P u P 

 

 

  

     

 

 
       (12) 

where ij  is the area of . ij

So far, we can obtain the semi-discrete upwind finite 
volume element scheme: Find  such that  



h hu U 

        ,h t h h h h h h h hu v a u v b u v g u v       x 



  (13) 

where  

  d
Pi

i h

h h h hK
P

a u v u v s 


       

Let t T N  , denote by    n nt n t u u t    n

  1 2n n
h hu u t n N      ,  1 1n n n 

t h h hu u u t    .  

If approximate solution h  is known, then  
can be found by the following full-discrete upwind finite 
volume element scheme.  

1n
hu U  n

hu

     
  

1 1

1

n n n
h t h h h h h h h

n
h h

u v a u v b u v

g u v

   



1      

   x
     (14) 

3. Auxiliary Lemmas 

Define the discrete norm and the discrete semi-norm [1] 
as follows. 

  2 22

0 0 i

P hi

h h h h ih
K T

u u u P
 

 



PK          (15) 

    22

2 11
1

E

k

M

h h k h k kh
k

u u P u P e K 



e       (16) 

2 2

1 0 1h h hh h
u u u

2

h  
             (17) 

obviously, the discrete norm and the discrete semi-norm 
are equivalent to the continuous norm and the full-norm 
on , respectively. h

Lemma 1. Suppose all cells Q

U
K  of the partition h  

satisfy conditions (A2), h

T
T   is a circumcenter dual parti-

tion. h h hu u U   , there exist positive constants 0C   
independent of h  such that  

  2

1h h h h h ha u u u u U              (18) 

  0 11h h hh h h h ha u C u u Uu u u
           (19) 

    hh h h h h h h ha u u a u u u Uu
             (20) 

Remarks: 
1) From Lemma 1, we know that  is symmet-

rical and positive definite in .  
 a 

hU

2) Let  
1
2

1h h h hu a u u   , then 
1

  is equiva-   
lent to 

1
  in .  hU

Lemma 2. Let  
1
2

0h h h hu u u    h , 
0

  is equi- 

valent to 
0
  in . hU

The proof of lemma 2 can be completed by computing 
integral on cell QK , directly. 

Theorem 1. (Trace Theorem) [20]. Suppose that   
has a piecewise Lipschitz boundary, and that  is a real 
number in range 

p
1 p   . Then there exists a constant 

, such that  C

       1

1 1 1 1
p p

p

p p

pL L W
v C v v v W



  
       

Lemma 3. For h  small enough, suppose P  is a 
random point in dual partition cell 

iPK  , 

i jij P PK K    , 

Copyright © 2011 SciRes.                                                                                AJCM 
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then  

     2

1 2
d

P Pij i i
i

K K
j

u P u s Ch u u 


     x    (21) 

Proof. From Hölder inequality, we can get that  

   

    
1
22

d

d

i

ij
i

j

j

ij
u P u s

Ch u P u s











 

 

 

 

x

x

 

Using Taylor expansion, trace theory in which we 
choose  and Hölder inequality, we can complete 
the proof of lemma 3.  

2p 

Lemma 4. For h h hu u U     there exists a positive 
constant , such that  C

   ,h h h h h hu u u u               (22) 

  0
.h h h h hu u C u u  

0



          (23) 

Proof. From the properties of the functions in , for 
each partition cell 

hU
 hK T , we know that h K

u  has 
the following expression.  

     
   

0 0 0 0 1 1 1 1

2 2 2 2 3 3 3 3

, , , , , , , , ,

, , , , , , ,

h i i i i i i i iK

i i i i i i i i

u x y z t u x y z t u x y z t

u x y z t u x y z t

 

 

 

 
(24) 

where  

  0 1 2 3

1

6l l l l la x b y c z d l i i i i
Ve

          



 

and  is the volume of tetrahedron  i.e.,  Ve
0 1 2 3i i i iP P P P

0 00

1 11

2 22

3 33

1

11

16

1

i ii

i ii

i ii

i ii

x y z

x y z
Ve

x y z

x y z

   

 0 1 2 3P l i i i i    
li

, whose coordinates are 
l l li i ix y z 

P P
, 

are four vertices of tetrahedron cell 
0 1 2 3i i i i which 

belongs to h . 0 1 2 3l  are the volume coor-
dinates which are corresponding to tetrahedron cell 

. For ,  

P P
T 

0 1 2 3i i i iP P P P l

l i i i i   

0i

1 11 1

2 20 2 0 2

3 33 3

1 11 1

2 2 20 2 0

3 3 333

1 1

1 1

1 1

1

1

1

i ii i

i ii i i i

i ii i

i ii i

i i ii i i

i i iii

y z x z

a y z b x z

y z x z

1

2

i

i

x y x y

c x y d x y

z

z

x y zx y

    

    

 

Analogously, we can define the remaining coefficients 

 1 2 3l l l la b c d l i i i      . Further,  

   
0 1 2 3

d d d
h

h h h h l
K T l i i i i

hK KPl

u u u P u x y

    
 z     

  

For simplifying numerical integral, we divide the po- 
lyhedron integral domain 

0i
PK K   into six tetrahedron 

integral domains  

0 0 1 0 1 2 0 1 2 3

0 0 1 0 1 3 0 1 2 3

0 0 2 0 1 2 0 1 2 3

0 0 2 0 2 3 0 1 2 3

0 0 3 0 1 3 0 1 2 3

1

2

3

4

5

tetrahedron

tetrahedron

tetrahedron

tetrahedron

tetrahedron

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

V P P P

V P P P

V P P P

V P P P

V P P P

P

P

P

P

P

  

  

  

  

  

0 0 3 0 2 3 0 1 2 36 tetrahedron i i i i i i i i i iV P P P P  

 

where 
0 1i i  is the midpoint of segment 

0 1i i  while 
 and 

0 1 2 3i i i i  are circumcenters of triangular surface 

0 1 2i i i  and tetrahedron 
0 1 2 3i i i i , respectively. 

Analogously, we can define the remaining points.  

P

P

P P

0 1 2i i iP
P P

P
P P P P

Noting the Equality (24), we have that  
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   

 


 


  

For simplicity, we will omit the variable  in func-
tion 

t
 u x y z t  

0 1i i  
. From volume coordinate formula, not-

ing 
2 3

1i i    , we can derive  

   
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48
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Further, 

 
7 3 3 3

3 7 3 3

3 3 7 348

3 3 3 7
h

h h h
K T

K
u u 



 
   
 
 

 

  

where  

        0 1 2 3h i h i h i h iu P u P u P u P      

and  

        0 1 2 3

T

h i h i h i h iu P u P u P u P        

From the above equality, we can complete the proof of 
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h 







Lemma 4 easily. 

4. Convergence Analysis 

Now we consider the error estimates of the approximate 
solution. Let  

   n n n n n n n n
h h h h hu u u u u u e         

Choosing  in (7), then we have  1nt t 

        1 1 1 1n n n n
tu t v a u v b u v g u v          x (25) 

Subtracting (14) from (25), we obtain that 

  
   

    
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1 1
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

  



 

 

    

    

   

    x x 

nt 



       (26) 

where .  1 1n n
h t h tr u u     

1n n Choosing h h  in Equality (26), denote 
by 1 2  and 1 2 3 4T T  the left and right hand side 
terms of Equality (26), respectively. We will analyze the 
six terms successively. 

 h hv e e  
T T  W W

For , from the definition of 1W
0

 , we have that  
2

1
1

0 0

1

2
n n
h hW e e

t
 

 

2 



          (27) 

Rewriting  as 2W

  
   
   

1 1
2

1 1

1 1

21 22 23
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   

   

   

   

   

   

       (28) 

From (20) of Lemma 1, we can get the estimate to 
 as follows. 23W

23 0W                     (29) 

From (27)-(29), we have  

2 2

1 2
0 1

2 2
1 1 1

0 1

1

2 2

1

2 4

n n
h h

n n n
h h h

t
W W e e

t

t
e e e  

      
       

2

1

n
he


     (30) 

For each terms of the right hand side of (26). Using 
interpolation theory, triangulation inequality and lemma 
4, we know that 

  2 2 2 221 1
1 0 0 0 2

n n n n
h h tt tT C e e t u h u     

Similarly, we can bound  as 2T
1 1

2 2 1

n n n
h hT Ch u e e      

Further, making use of triangulation inequality and 
important inequality, we have that  

 2 21 2
2 1 1

n n n
h hT C e e h u   

21

2



    (32) 

From the Lipschitz property of g ux  in condition 
 2C , making use of triangle inequality, important ine-
quality and Lemma 4, we have  

 2 24 1 1
4 2 0

n n n
h hT C h u e e  2

0
         (33) 

Combining (34),(35) with (36), we know that  

 2 2 2 21 2 1 4 1 2
3 1 1 2 1

n n n n
h hT C e e h u h u h        (34) 

Combining (31), (32), (33) with (34) and applying 
Sobolev space embedding theory, we know that the 

 of (26) satisfies  RHS

 
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From (30) and (35), using inverse estimate we know  
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Further, we get that  
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   (36) 

Summing from 1 to  with respect to  in the 
above inequality, we can obtain that  

N n

4 1    (31) 
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(37) 

Noting the equivalence of 
0

  and 
1

  with 
0
  
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and 

1
, respectively. Using the inverse estimate, we 

have that there exist three positive constants 


0 1 2     
such that  

2 2 2 22
0 2 1 0

 
0 10 1
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Further, (37) may be rewritten as  
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Choosing  in such way that t h 
2

0 0 12 0t h       , 

further, (38) can be rewritten as  
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where 012  . Using discrete Gronwall’s lemma, we 
know that  
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 (43) 

Noting that , combining finite element space 
interpolation theory, we can obtain the resulting error 
estimates to the approximate solution as follows.  

N t T 
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where,  
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Therefore we have the following theory.  
Theorem 2. Suppose that the solution to the problem 

(1) is sufficiently smooth. When  and  are small 
enough and satisfy the relationship . The ini-
tial value  is chosen as interpolation of , then the 
Equation (44) holds. 

h t

u
h

0

t O 
0
hu

5. Conclusions 

In this paper, we continued our work [17] and presented 
a class of upwind FVEM based on tetrahedron partition 
for a three dimensional nonlinear convection diffusion 
equation, analyzed and derived error estimate in - 
norm and 

2L
1H -norm for the method. In the ongoing work, 

we will discuss how to derive optimal error estimate in 
-norm and how to code and present numerical results 

to demonstrate the performance. 

2L
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