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Abstract 

In this paper, we consider an allocation problem in multivariate surveys as a convex programming problem 
with non-linear objective functions and a single stochastic cost constraint. The stochastic constraint is con-
verted into an equivalent deterministic one by using chance constrained programming. The resulting multi- 
objective convex programming problem is then solved by Chebyshev approximation technique. A numerical 
example is presented to illustrate the computational procedure. 
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1. Introduction 

Optimum allocation of sample sizes to various strata in 
univariate stratified random sampling is well defined in 
the literature. But usually in real life problems more than 
one population characteristics are to be estimated, which 
may be of conflicting nature. There are situations where 
the cost of measurement varies from stratum to stratum. 
Also the cost of enumerating various characters is gener-
ally much different. Further the strata variances for the 
various characters may not be distributed in the same way. 
Allocation based on one character may not be optimum 
for the others. One way to resolve this problem is to 
search for a compromise allocation, which is in some 
sense optimum for all the characters. 

Kokan and Khan [1], Chatterjee [2], Huddleston [3], 
Bethel [4], Chromy [5] all discussed the use of convex 
programming in relation to multivariate optimal allocation 
problem. The above convex programming approaches 
give the optimal solution to the problem with given tol- 
erance limits on variances but the resulting cost may not 
be acceptable so that a further search is usually required 
for an optimal solution which falls within the budgetary 
constraint limit. 

The case when sampling variances are random in the 
constraints has been dealt with by Diaz-Garcia [6]. Javaid 
and Bakhshi [7] applied modified E-model for solving the 
multivariate allocation problem when the costs are con-

sidered random in the objective function. Bakhshi [8] find 
the optimal Sample Numbers with a Probabilistic Cost 
Constraint. 

In this paper, we consider the problem of allocating the 
sample to various strata when several characters are under 
study and the budget is fixed. We minimize the variances 
of various characters subject to the condition of given 
budget. The problem is transformed to a convex pro-
gramming problem (CPP) with several linear objective 
functions and single convex constraint. The resulting CPP 
is then solved by Chebyshev approximation approach. 

2. Formulation of the Problem 

We consider a multivariate population consisting of  
units which is divided into  disjoint strata of sizes  
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 The restrictions on the sample size from various strata 
are 
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Let us assume that the survey is to be conducted in such 
a way that the variances for all the p characters are mini-
mized for a fixed budget i.e., we have to minimize all the 
variances together given by (2.1).  

Ignoring the constant terms in (2.1), the NLP problems 
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In many practical situations the costs i  in the various 
strata are not fixed and vary from one unit to the other. Let 
us assume that i ,  are independently nor-
mally distributed random variables. So, we write the 
above problem in the following chance constrained pro-
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where 



0p , 00 1p   is a specified probability. 

3. Deterministic Equivalent Using Chance 

We have assumed that the cost ,  in the 
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4. Convex Chebyshev Approximation 

Consider p convex smooth functions 
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5. Solutions Using Chebyshev Approximation 

Th  functions in 3.7 (1) are linear. The sin-

Technique 
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by s not void. Let us tion procedure. The data used in this example is from a 
stratified random sample survey conducted in Varanasi 
district of Uttar Pradesh (U.P), India to study the distri-
bution of manurial resources among different crops and 
cultural practices (see Sukhatme[9]). Relevant data with 
respect to the two characteristics “area under rice” and 
“total cultivated area” are given in Table 1. The total num- 
ber of villages in the district was 4190. 


) to

. Suppose that the feasible region i
(4.1  (4.3) it follows that the problem (3.7) is equivalent 
to the convex Chabyshev’s approximation problem of 
finding *x   such that 

   max in max j j
j j

a V x


,       (5.1) 

where 

mj j
x

a V x 

ja  are the weights assigned to the p  variances 
according to their importance. The problem .1) is then 
equivalent to the following problem with a linear objec-
tive function: 

(5
In order to demonstrate the procedure the following 

are also assumed. The per unit travel costs ic , 
 1, , 4i    of measurement in various strata are inde-
pendently normally distributed with the following means 
and variances  1 3E c  , ,  2 4E c   3E c 5 , 
 4 7E c   and  1 0.6V c  , ,  2 0.5V c   3V c 0.7 , 
 4 0.8V c   

1LZ x 

1 1
1

2

2
1 1

(1)

subject to

( ) or 0, 1, , (2)

(3)

1 1
and , 1, , (4)

2

i

L

j j L j ij i L
i

L L
ci

i ii i

i
i

a V x x a a x x j p

c
K C

x x

x i L
N





 


 






    




  



   



 





(5.2) 

The non-linear programming problem in (5.2) is con-
ve

Let us assign the weights to the variances of the two 
characters in proportion to the inverse of the sums  
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1
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i i

S
 

2iS   which turn out to be  and  1 0.75a 

2 0.25a  . 
The total amount available for the survey  is as-

sumed as 600 units including an expected overhead cost 
 = 100 units. 

C

0t
Let the chance constraint 2.6 (2) be required to be sat-

isfied with 99% probability. Then k  is such that 
  0.99k  . The value of standard normal variable K  

corresponding to 99% confidence limits is 2.33. Thus, 
the problem (5.2) is obtained as: 

x as the objective functions in 5.2 (1) and the constraint 
5.2 (2) are linear. Further the left hand side in 5.2 (2) is 
convex. So it is possible to solve the convex programming 
problem (5.2) by using any standard convex programming 
algorithm. The optimal sample numbers thus obtained 
may turn out to be fractional. However, it is known that 
the variance functions are flat at the optimum solution. So 
for large or even moderate sample size it is enough to 
round the fractional values to the nearest integers. How-
ever, for small 1i in x  the branch and bound method 
should be applied for finding the optimal integer solution. 

6. Numerical Illustration 

 
Table 1. Data for four strata and two characteristics. 
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1iS  2

2iS  

1 1419 0.3387 4817.72 130121.15

2 619 0.1477 6251.26 7613.52 

3 1253 0.2990 3066.16 1456.40 

4 899 0.2146 56207.25 66977.72 
The following numerical example demonstrates the solu-   
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The Chebyshev point by solving the convex programming problem (6.1) is 

 * 0.02159,0.12169,0.10866,0.03882 withX X 5 119.0883ch  
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The values of sample sizes rounded to nearest integers 
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tal of 89. Corresponding to this allocation the values of 

the v iances for the two haracters ar obtained as 1V  
= 159.05, 2V  = 478.32 

Remark: We may compare these results with the com- 
promise so tion (Cochran [10]) which is obtained by 
solving the following NLP problem: 
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The integer solution is obtained as  = 44,  = 9,
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n problem in multivariate strati-
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