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Abstract 

Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by 
ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing method-
ologies do not give reliable results, these methods are solving them competitively. In this work, a matrix 
methods is presented for approximate solution of the second-order singularly-perturbed delay differential 
equations. The main characteristic of this technique is that it reduces these problems to those of solving a 
system of algebraic equations, thus greatly simplifying the problem. The error analysis and convergence for 
the proposed method is introduced. Finally some experiments and their numerical solutions are given. 
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1. Introduction 

The boundary-value problems for singularly perturbed 
delay-differential equations arise in various practical 
problems in biomechanics and physics such as in varia- 
tional problem in control theory. These problems mainly 
depend on a small positive parameter and a delay pa- 
rameter in such a way that the solution varies rapidly in 
some parts of the domain and varies slowly in some 
other parts of the domain. Moreover, this class of prob- 
lems possess boundary layers, i.e. regions of rapid 
change in the solution near one of the boundary points. 
There is a wide class of asymptotic expansion methods 
available for solving the above type problems. But there 
can be difficulties in applying these asymptotic expan- 
sion methods, such as finding the appropriate asymptotic 
expansions in the inner and outer regions, which are not 
routine exercises but require skill, insight and experi- 
mentation. The numerical treatment of singularly per- 
turbed problems present some major computational dif- 
ficulties and in recent years a large number of special- 
purpose methods have been proposed to provide accurate 
numerical solutions [1-5] by Kadalbajoo. This type of 
problem has been intensively studied analytically and it 
is known that its solution generally has a multiscale 
character; i.e. it features regions called “boundary lay- 
ers” where the solution varies rapidly. And these equa- 

tions as well as numerical methods have been studied by 
several authors [6-10]. The outer solution corresponds to 
the reduced problem, i.e., that obtained by setting the 
small perturbation parameter to zero. In recent years, the 
Chebyshev method has been used to find the approxi- 
mate solutions of differential, difference, integral and 
integro-differential-difference equations [11,12]. The main 
characteristic of this technique is that it reduces these 
problems to those of solving a system of algebraic equa- 
tions, thus greatly simplifying the problem. 

Consider the of singularly-perturbed delay differential 
equations form 

( ) ( ) ( ) ( ) ( ) = ( )y x p x y x q x y x g x          (1) 

where 0 < < 1x , with the boundary conditions 0(0) =y  , 

1(1) =y   and   is a small positive parameter 0 < 1  , 
  is also a small shifting parameter 0 < 1  , , 

, , 
( )p x

( )q x ( )r x ( )s x  and ( )f x  are sufficiently smooth 
functions. Our goal is to find an approximate solution 
expressed polynomial of degree  in the form N

*

=0

( ) = ( )
N

N r r
r

y x a T x              (2) 

where r  unknown coefficients,  is the shifted 
Chebyshev polynomials of the first kind and  is cho-
sen any positive integer such that . To obtained a 
solution (2) of the problem (1), we can use the zeroes of 

a *( )rT x

N m
N
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the shifted Chebyshev polynomials  of the first 
kind defined by  

*
1( )NT x

1

3
π

1 2
= 1 cos , = 1,, 1

2i

n i
x i N

N

           
  

    

   (3) 

2. Basic Idea 

Polynomials are the only functions that a computer can 
evaluate exactly, so we make approximate functions 
 ,a b    by polynomials. The uniform norm (or 
Chebyshev norm, maximum norm) is defined by 

 ,= max x a b ( ) .  f f x

Definition 2.1. For a given continuous function 
 ,f C a b

N
, a best approximation polynomial of degree 

 is a polynomial  *
N Np f   such that  

   * = min :N Nf p f f p p


    

It is a good idea to approximate function by polyno-
mials, because the classical Weierstrass Theorem is a 
fundamental result in the approximation of continuous 
functions by polynomials [13-15]. 

Theorem 2.2. Let  ,f C a b . Then for any > 0 , 
there exists a polynomial  for which p .f p 


   

Proof: See Ref. [13-16]. 
Theorem 2.3. For any  ,f C a b


 and  the 

best approximation polynomial 
0N 

*
Np f  exists and is 

unique. 
Proof: See Ref. [13-16]. 
Definition 2.4. Given an integer  then a grid 

set of  points are 
0 i N 

 in 
1N 

 1N    = iX x  ,a b

0( )i ix  

 such 
that 0 1 . Then points are 
called the nodes of the grid. 

< < < Nx a x x b N

Theorem 2.5. Given a function  ,f C a b
N 

 and a 
grid of  nodes,  1N   0( )i iX x , there exists a 
unique polynomial of degree , N N  XI f  such that 

   = , 0N i i XI f x f x i N   

 X
NI f  is called the interpolant (or the interpolating 

polynomial) of f  through the grid X . 
Proof: See Ref. [13-16]. 
The interpolant  X

NI f  can be express in the La-
grange form as 

     
=0

=
N

X X
N i

i
iI f f x  x  

where  X
i x  is the i-th Lagrance cardinal polynomial 

associated with the grid X : 

0,

( ) , 0 .
N

jX
i

j i j i j

x x
x i N

x x 


 



The Lagrange cardinal polynomials are such that  

  , 0 , .X
i j ijx i j N    

The best approximation polynomial  *
Np f  is also 

an interpolant of f  at  1N   nodes the error is given 
by formula: 

      *1X
N N Nf I f X f p f

 
      

where  N X  is the Lebesgue constant relative to the 
grid X , 

     ,
0

: max
N

X
N ix a b

i

X x


     

The Lebesgue constant contains all the information on 
the effects of the choice of X  on   .X

Nf I f


  
Theorem 2.6. For any choice of the grid X , there 

exist a constant  such that  > 0C

   2
ln 1

πN X N C   

)

 

Proof: See Ref. [13-16]. 
Definition 2.7. The nodal polynomial associated with 

the grid is the unique polynomial of degree ( 1N   and 
leading coefficient 1 whose zeroes are the 1N   nodes 
of X : 

 1
0

( )
N

X
N i

i

w x x x


   

Theorem 2.8. If  1 ,Nf C a b , then for any grid X  
1Nof   nodes, and for any  ,x a b , the in rpola- 

tion error at 
te

x  is  

      
 

( 1)

1( )
1 !

N
X X
N N

f
f x I f x w x

N



 


     (4) 

where  = ( ) ,x a b    and  nodal polyno-
mial associated with the grid 

1( )X
Nw x

X . 
Proof: See Ref. [13-16]. 

2.1. The Shifted Chebyshev Polynomial of the 
First Kind 

Definition 2.9. The Chebyshev polynomial of the first 
kind  is a polynomial in ( )nT x x  of degree , defined 
by the relation [17] 

n

  ( ) cos when cos .nT x n x     

If the range of the variable x  is the interval [ 1,1] , 
the range the corresponding variable   can be taken 

. Since the range  is quite often more con-
venient to use than the range , we map the inde-
pendent variable

[0,π] [0,1]
[ 1 ,1]

x in to the variable[0,1] s in [ 1,1]  
by the transformation 

  
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2.2. Chebyshev-Gauss Grid  1
2 1 or 1

2
s x x    s  

Definition 2.10. The grid 
0i i N

 such that the 

i

 X x
 


x ’s are the 1N   zeroes of the Chebyshev polynomial 
of degree 1N   is called the Chebshev-Gauss (CG) 
grid. 

and this lead to a shifted Chebyshev polynomial of the 
first kind  of degree  in *( )nT x n x  on  given 
by [17] 

[0,1]

 *( ) = ( ) = 2 1 .n n nT x T s T x   Theorem 2.11. The polynomials of degree 1N   and 
leading coefficient 1, the unique polynomial which has 
the smallest uniform norm on  is the [ 1,1] (n 1) -th 
Chebyshev polynomial divided by . 2N

Thus we have the polynomials 

* * * 2
0 1 2( ) = 1, ( ) = 2 1, ( ) = 8 8 1,T x T x x T x x x    

Proof: See Ref. [13-16]. 
It is of course possible to defined , like , 

directly by a trigonometric relation. Indeed, we obtained  

*( )nT x ( )nT x
3. Fundamental Matrix Relations 

* 2( ) cos2 when cos .nT x n x x   

This relation might alternatively be rewritten, with   
replace by 2 , in the form  

   * 2 1
( ) cos when cos 1 cos

2 2nT x x
       
 

 

Let us consider the Equation (1) and find the matrix 
forms of each term of the equation. We first consider the 
solution  and its derivative ( )Ny x ( ) ( )m

Ny x  defined by 
a truncated Chebyshev series. Then we can put series in 
the matrix form  

* (1) *(1) (2)

*(2)

( ) ( ) , ( ) ( ) , ( )

( )

N N N N N

N

y x T x A y x T x A y x

T x A

 


   (6) Note that the shifted Chebyshev polynomial  is 

neither even nor odd and indeed all powers of x from 
( )nT x

01 = x  to nx  appear in . The leading coefficient 
of 

*( )nT x
nx  in  for  to be . These poly-

nomials have the following properties: 

*
nT ( )x > 0n 2 12 n

where 
* * * *

0 1( ) = ( ) ( ) ( )N NT x T x T x T x    

1)  has exactly *
1( )nT x 1n   real zeroes on the in-

terval . The m-th zero [0,1] ,n mx  of  is located 
at  

*
1( )nT x

*(1) *(1) *(1) *(1)
( ) 0 1( ) = ( ) ( ) ( )N NT x T x T x T x    

*(2) *(2) *(2) *(2)
( ) 0 1( ) = ( ) ( ) ( )N NT x T x T x T x    

,

3
π

1 2
1 cos

2n m

n m
x

n

           
  

   

 0 1=
T

NA a a a  





 
By using (5), we obtained the corresponding matrix 

relation as follows:  

  1* *( ) ( ) and so ( ) ( )T T
N NX x DT x T x X x DT 

     (7) 2) It is well known that the relation between the pow-
ers nx  and the shifted Chebyshev polynomials  
is 

*( )nT x
where 

( ) = 1 NX x x x    
*

2 1
=0

21
=

2

n
n

n kn
k

n
( ).x T x

k 

  
 
 

          (5) 
and 

 

0

2 1

4 3 3

2 2 1 2 1 2 1

0
2 0 0 0

0

2 2
2 0 2 0

1 2

= 4 4 4
2 2 2 0

2 3 4

2 2 2
2 2 2 2

1 2
N N N N

D

N N N

N N N

 

  

       2

2

N

N

  
  

  
        
    
 

      
            

 
                          







    


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Moreover it is clearly seen that the relation between 

the matrix ( )X x  and its derivative ( ) ( )kX x , 
1 (2)(1) 2( ) = ( ) , ( ) = ( )X x X x B X x X x B        (8) 

where  

0 1 0 0

0 0 2 0

= .

0 0 0

0 0 0 0

B

N

 
 
 
 
 
 
  




    



 

The derivative of the matrix  defined in (7), by  * ( )NT x

using the relation (8), can expressed as 

   1*( ) ( ) 1( ) ( ) ( ) , 0,1, 2k k T k T
NT x X x D X x B D k

    (9) 

where , *(0) *( ) = ( )N NT x T x (0) ( ) = ( )X x X x , . By 
substituting (9) into (6), we obtain  

0 =B B

  1( ) ( ) = ( ) , = 0,1, 2k k T
Ny x X x B D A k


    (10) 

where (0) ( ) = ( )N Ny x y x . 
Moreover, we know that; 

   =X x X x B            (11) 

where 
 

0 1 2

0 1

0 2

0

0 1 2
( ) ( ) ( ) ( )

0 1 2

1 2
0 ( ) ( ) ( )

0 1 1

= 2
0 0 ( ) ( )

0 2

0 0 0 ( )
0

N

N

N

N

N

N

N

B N

N

N



   

  

 







        
           

        
                    
 

             
 
       







    



1

 

 
Using relation (8) and (11), we can write 

(1) 1( ) = ( )X x X x B B         (12) 

In a similarly way as (10) , we obtain  

        1(1) *(1) .T
Ny x T x A X x BB D A 


      (13) 

Matrix Representation of the Conditions 
Using the relation (10), the matrix form of the conditions 
given by (2) can be written as 

      

      

1

0 0

1

1 1

0 0

1 1

T

T

y X D A

y X D A

 

 





  

  
      (14) 

where  

   0 = 1 0 0X   

   1 = 1 1 1 .X   

4. Method of Solution 

We are ready to construct the fundamental matrix equa-
tion corresponding to Equation (1). For this propose, 
firstly substituting the matrix relation (10) and (13) into 
(1) we obtained  

         
       

1 12

1

T T

T

X x B D p x X x BB D

q x X x D A g x


 





 
   (15) 

For computing the Chebyshev coefficient matrix A 
numerically, the zeroes of the shifted Chebyshev poly-
nomials of the first kind defined by (3) are putting above 
relation (15) and organized. We obtained, 

 

                 
1 1 12 T T T

i i i i i iX x B D p x X x BB D q x X x D A g x
  
   

 



So, the fundamental matrix equation is gained  
 

      1 1 12 T T TEXB D PXBB D QX D A G

  
   

 

here  

                          (16) 

w
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







0

0 0

1 1

2 2

( ) 0 0 0 ( ) 0 0 0

0 ( ) 0 0 0 ( ) 0 0

= 0 0 ( ) 0 = 0 0 ( ) 0

0 0 0 ( ) 0 0 0 ( )N N

p x q x

p x q x

p x q x

p x q x

  
  
  
  
  
  
    

 
 
 

         
 

P Q  

2
00 0 0

2
11 1 1

2
22 2 2

2

( ) 0 0 01

( ) 0 01

( ) 0 0 01

( ) 0 0 01

N

N

N

N
NN N N

g xx x x

g xx x x

X G g x Ex x x

g xx x x








     
     
     
       
     
     
        





         


 

 
The fundamental matrix equation (16) for Equation(1) 

corresponds to a system of ( 1)N   algebraic equation 
for the ( 1)N   unknown ients 0 1, , , .coeffic Na a a  
Briefly we ite Equation(15) as  


 can wr

= or ;WA G W G                 (17) 

so that, for 

1T 

Briefly, the matrix form for conditions (2) are  

, = 0,1, ,p q N  

     1 12=

pq

T TEXB D PXBB D QX D

 

 

 
 

=W w

   or ; , 0,1i i i iC A C i            (18) 

where 

   1

0 1= ( ) T
i i iC X i D c c c


   iN

To obtain the solution of Equation (1) under the con-
di

 
tions (2), by replacing the rows matrices (18) by the 

last m rows of the matrix (17), we have the required aug-
mented matrix 

 
 

       

00 10 0 0

10 11 1 1

* *

22 0 2 1 2

00 01 0 0

10 11 1 1

;

;

; =
;

;

;

N

N

NN N N N

N

N

w g x

w w w g x

W G
w w w g x

c c c

c c c




  



 

      
 
 





     





 

w w 





or corresponding matrix equation  

              (19) 

If 

* *=W A G  

 * * *; 1rank W rank W G N    
w

 , then we can  
rite 

  1* *= .A W G


            (20) 

Thus the coefficients are uniquely de-
termined by Equation (2

4.1. Convergence and Error Analysis 

, = 0, ,ia i N  
0). 

Since *
1 = 1NT  , we conc


grid nodes 

lude that if we choose the  
 0i i N
x

 
 to be zero the ( 1N  )  zeroes of  

hebysthe shifted C hev polynomial 1NT  , we have *

1 2 1

1
=X

N N
w    

2

and this is the smallest possible value.  particular, In  for 
any  1 0,1Nf C   we have [14]  

 
( 1)

2 12 1 !
N

N Ny y y
N


 

 


 
1

If  1Ny   
the interpolation 

is uniformly bounded, the conv ence of erg
 towards ( )y x

besgue
Ny  when  is 

then e ely fast Also the Le  co
at ith th

 
nstant associ-

N
xtrem . 

ed w e Chebyshev-Gauss grid is small  

   2
ln 1 as .

πN X N N     

This is much better than uniform grids and close to the 
optimal value. 

4.

We can easily check the accuracy of the obtained solu-
tained the shifted Cheby-

shev polynomial of the first kind expansion is an ap-

 

2. Checking of Solution 

tions as follows: Since the ob

proximate solution of Equation (1), when the function 
( )Ny x  and its derivatives are substituted in Equation (1),

the resulting equation must be satisfied approximately, 
that is for  0,1ix    

 
          

,

i

E N

y x x

 





  0i i i i ip x y q x y x g x    

5. Illustrative Example 

To demonstrate the effect of delay on the layer behavior  
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 of the method, we consi- 
der the examples given below and solve them using the pre- 
of the solution and the efficiency

sent method and all of them were performed on the com- 
puter using a program written in Maple 9 software in the 
solving process. We have plotted the graphs of the solu-
tion of the problem for different  with different values of 
 to show the effect of delay on the boundary layer so-
lution. 

The maximum errors denoted y ,NE b   at all the grid 
ints are evaluated using the formula  po

   , 0maxN i N i iE y x     

Example 5.1. Let us consider the sec

Ny x

ond-order singu-  
 

la

under the conditions 
lution for the considered examples is not available but 

l result Figur

rly-perturbed delay differential equation [3] 

 0.25 = 0y y y x      

(0) = 1y , (1) = 0y . The exact so-

we compare numerica s in es 1(a) and (b) 
given by Kadalbajoo ([3], Example 2). In Figure 1(a), 
we show the numerical result using present method and 
for the method using by Kadalbajoo is shown in Figure 
1(b). The graphs of the solution of the considered exam-
ples for different values of delay are plotted in Figures 
1(a)-(d) to examine the questions on the effect of delay 
on the boundary layer behavior of the solution. 

   
(a)                                                          (b)     

   
(c)                                                          (d) 

Figure 1. (a) Numerical results of Example 5.1 for various 

    

  = 0.01, = 20 N ; (b) Numerical results of Example 5.1 for 
various   in [3]  = 0.01 ; (c) Numerical results of Example 5.1 for various   = 0.01, = 20 N ; (d) Numerical results 
of Example 5.1 for various   in [3]  = 0.01 .     
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ns e second er singu-

under the conditions . Its exact solu-

Example 5.2. Let us co ider th -ord
larly-perturbed delay differential equation [3]  

  0y y y x       

(0) = 1y , (1) = 1y
tion is given by  

     2 1 1 2

1 2

1 1
=

m m x m m x

m m

e e e e
y x

e e

  


 

where 

 
 1

1 1 4
=

2
m

 
 

   


 

 
 1

1 1 4
= .

2
m

 
 

   


 

We solved this problem using the method presented 
here and compared the result with the exact solution of 
the problems in Table 1. Also for = 10N , we have 
plotted the graphs of the computed solutio f the prob-
lem for 2= 2  , for different values 

n o
  in Figure 2(a) 

and we ca sily check the accuracy of the obtained 
solutions in Figure 2(b). 

Example 5.3. Let us consider the second-order singu-
la

n ea

rly-perturbed delay differential Equation [6]  

  0y y y x       

under the conditions . Its exact so-  

lution is given by  

(0) = 1y , (1) = 1y 

 
   2 1 1 2

1 2

1 1m m x m m x

m m

e e e e
y x

e e

   



 

where  

 
 1

1 1 4

2
m

 
 

  



 

 
 1

1 1 4
.

2
m

 
 

  



 

We calculated numerical results for = 0.5 
 
 and 

di

Table 1. 

splay results for some various N . Moreover, we com-
pare the results with Non-standard finite difference 
methods (NSFDMs) in Table 2 and we display results 
for = 10N , in Figure 3. 
 

2,2N
E values of Example 5.1. 

  = 10N  = 30N  22 ,
(10)E

  

82  0.315E–4 0.252E–4 0.426E–2 

102   0.138E–4 0.153E–5 0.392E–2 

122  0.134E–4 0.935E–7 0.384E–2 

142  0.133E–4 0.594E–8 0.382E–2 
 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

delta=2−8

delta=2−10

delta=2−12

delta=2−14

 
(a) 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5
x 10

−3

E
2

−2
,2

−8(10)
E

2
−2

,2
−10(10)

E
2

−2
,2

−12(10)
E

2
−2

,2
−14(10)

 
(b) 

Figure 2. (a) Numerical results of Example 5.2 for various (N = 10); (b) For , numerical results of Example 5.2 for  22 ,
(10)E


various  . 
 

Table 2. For = 0.5  , ,NE values of Example 5.3. 

  = 10N  = 2N 0  = 3N  NFSDs (N = 32) 0  = 40N NFSDs (N = 64) 

62  0.213E–0 0.222E–1 0.258E–1 0.201E–1 0.340E–1 0.170E–1 

72  0.311E–0 0.538E–1 0.347E–1 0.265E–1 0.340E–1 0.170E–1 

82  0.613E–0 0.224E–0 0.336E–1 0.218E–1 0.340E–1 0.170E–1 

92  0.941E–0 0.340E–0 0.202E–0 0.598E–1 0.340E–1 0.170E–1 

102  1.136E–0 0.656E–0 0.306E–0 0.232E–0 0.340E–1 0.170E–1 

 

 studies of the singularly-perturbed 

overall accuracy. Illustrative examples are included to 

tions by putting them back into the original equation with    

6. Conclusions 

In recent years, the
delay differential equations have attracted the attention 
of many sciences and engineers. The Chebyshev expan-
sion methods are used to solve the singularly-perturbed 
delay differential equations numerically. A considerable 
advantage of the method is that the Chebyshev polyno-
mial coefficients of the solution are found very easily by 
using computer programs in Maple 9. Shorter computa-
tion time and lower operation count results in reduction 
of cumulative truncation errors and improvement of 

demonstrate the validity and applicability of the tech-
nique. To get the best approximating solution of the 
equation, we take more forms from the Chebyshev ex-
pansion of functions, that is, the truncation limit N must 
be chosen large enough. Suggested approximations make 
this method very attractive and contributed to the good 
agreement between approximate and exact values in the 
numerical example. 

As a result, the power of the employed method is con-
firmed. We assured the correctness of the obtained solu-
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Figure 3. Numerical results of Example 5.3 for various  . 
 
the aid of Maple, it provides an extra measure of confi-
dence in the results. 
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