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Abstract 
The intent of this paper is to propose an engineering approach to estimate 
the stress intensity factor of a micro crack emerging from an inclusion in 
relation with the morphology of the inclusion and its relative stiffness with 
the matrix. A micromechanical model, based on the FEA (finite element 
analysis) of the behavior of cracks initiated at micro structural features such 
as inclusions, has been developed using LEFM (Linear Elastic Fracture Me-
chanics) to predict the stress intensity factor of a micro crack emerging 
from an inclusion. Morphology of inclusions has important connotations in 
the development of the analysis. Stress intensity factor has been estimated 
from the FEA model for different crack geometries. Metallographic analysis 
of inclusions has been carried out to evaluate the typical inclusion geome-
try. It also suggests that micro cracks less than 1 µm behave differently than 
larger cracks. 
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1. Introduction 

Fracture toughness of high strength steels is controlled by the onset of crack in-
itiation, which depends on the local stress distribution in the vicinity of a micro 
structural stress raiser. Crack growth then occurs in a limited region, whose ex-
tent depends on the local stress variation resulting from material heterogeneities. 
The knowledge of the stress condition for a micro crack emerging from a hete-
rogeneity is then of prime importance to determine its sensitivity to microstruc-
ture.  
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2. Materials and Experimental Procedure 
2.1. Materials 

Different steels were used to measure typical inclusion size to be used to build 
the FEA model. The steels used in this metallographic study are presented in 
Table 1 for reference purpose. All these steels are commonly used in general 
industrial applications. Steel A has been subjected to rare earth inclusion shape 
control practice and presents a microstructure with fine and rounded inclusions 
as shown in Figure 1. Steels B to J are spring steels and present typical elongated 
manganese sulfide inclusions as seen on Figure 2.  

2.2. Inclusion Analysis and Calculation of Stress Concentration  
Factor  

Metallographic was used to characterize the inclusions. Polished and lightly 
etched specimens were used. A Clemex image analyzer linked to a Nikon Ephi-
phot optical microscope has been used to evaluate the morphology and distribu-
tion of inclusions. Inclusions in the transverse direction were considered due to 
their elongated shape. The stress concentration factors at inclusions have been 
calculated using the following formula [1]: 

1 2t
cK
ρ

= +                          (1) 

Kt = stress concentration factor 
c = semi-major axis of the inclusion  
ρ  = radius of the notch 
For simplicity, this equation may be written as: 

1 2t
LK
t

= +                          (2) 

 
Table 1. Chemical composition of the steels used in this study.  

CHEMICAL ANALYSIS (wt. percent) 

Steel Type C Mn P S Si Cu Ni Cr V Te Nb Mo Al Sn Ti 

A 4340 0.43 0.74 0.009 0.004 0.25 0.23 1.74 0.81 0.004 0.0021 0.001 0.24 0.034 0.010 0.003 

B 4340 0.40 0.80 0.006 0.008 0.32 0.16 1.72 0.86 0.004 - 0.002 0.21 0.026 0.009 0.002 

E 9200 0.62 0.80 0.012 0.009 0.80 0.20 0.21 0.48 - 0.01 0.032 0.05 - 0.012 - 

F 9200 0.60 0.88 0.006 0.008 0.88 0.10 0.03 0.50 0.006 0.0076 0.000 0.005 0.043 0.006 0.007 

G 9200 0.61 0.91 0.006 0.004 0.87 0.02 0.01 0.50 0.003 0.0032 0.001 0.002 0.037 0.003 0.033 

H 9200 0.57 0.96 0.010 0.006 0.81 0.08 0.05 0.45 0.017 - 0.013 0.015 - 0.007 - 

I 6150 0.50 0.70 0.008 0.010 0.19 0.16 0.06 0.82 0.164 - - 0.022 0.004 0.009 - 

J 9258 0.60 0.79 0.028 0.012 2.08 - 0.01 0.04 - - - 0.01 - - - 
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Figure 1. Round inclusion (rare earth shape control). 

 

 
Figure 2. Elongated inclusion. 

 
L = total length of the inclusion 
t = thickness of the inclusion  
The results are shown in Table 2. 

3. Calculating the Stress Intensity Factor of Micro-Crack  
Using Finite Element Analysis 

A 2D finite element mesh idealization of a 40 mm by 80 mm steel bar is shown 
in Figure 3(a). In Figure 3(b), the central portion is magnified. This mesh re-
finement is intended to represent a sequence of voids in the fracture plane (Y = 
0), either circular or elongated, depending on the selected element material. For 
example, in Figure 4 and Figure 5, grey colored elements are high Modulus 
elements, as compared to low Modulus elements in white. Therefore, Figure 4 is  
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Table 2. Typical inclusion Kt for the steels used in this study. 

STEEL Kt 

A 3.15 

I 3.78 

F 4.30 

B 4.31 

E 4.40 

H 5.14 

J 5.53 

G 5.55 

 

 
(a)                                   (b) 

Figure 3. (a) General view of the model; (b) Portion of the model at a micro-scale 
level. 
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Figure 4. Detailed view of a round void. 

 

 
Figure 5. Detailed view of an elongated void. 

 
the representation of a circular void surrounded by the metal matrix while Fig-
ure 5 represents a void elongated along the X-axis of the model. This FEA model 
consists of 20,831 6-node triangles and 8-node quadrilateral elements, both types 
quadratic.  

Materials are linear elastic and matrix elements are assumed to be 200,000 
times as rigid as void elements. Plain strain situation is assumed and uniform 
normal (+Y) stress is applied at the remote nodes illustrated in Figure 3(a). The 
remote stress is normalized per unit thickness. Restriction of nodes against Y 
motion is applied at the specimen middle line Y = 0, which is the fracture plane, 
except at cracked element nodes. Owing to this plane of symmetry, the effective 
specimen size is actually 40 mm by 160 mm.  

The no-crack, single circular void situation was first analyzed. Mesh was fur-
ther refined at the tip of the void until convergence of the local stress was at-
tained. The process finally ended with the smallest element size equal to 0.023 
µm in Figure 4 and Kt = 3.03, which is close to the stress concentration factor Kt 
= 3 for a circular hole in an infinite plate [2]. 

Cracked geometries were analyzed using the same mesh refinement. Restric-
tion against X motion was applied at a single node of the model (generally at the 
crack tip) to prevent the X rigid body motion. Different crack lengths were ana-
lyzed by detaching nodes at the crack tip along the plane of symmetry. For each 

https://doi.org/10.4236/mnsms.2019.92002


C. Lincourt et al. 
 

 

DOI: 10.4236/mnsms.2019.92002 22 Modeling and Numerical Simulation of Material Science 
 

crack configuration, a complete solution was performed. Depending on the 
boundary conditions applied, along with element stiffness, the crack length be-
comes the independent variable of the analysis, and various asymmetrical 
cracked geometries can be analyzed.  

3.1. Simulation of Voids and Inclusions  

Based on results of micro structural analysis, it was decided to simulate two ex-
treme inclusion morphologies, namely, the round and the elongated shapes. For 
round a void, the radius was set at 1 µm (refer to Figure 4). For elongated voids, 
two round voids were combined with their centers set 22 µm apart, thus creating 
a 24-µm stringer (refer to Figure 5). This void shape resembles the elongated 
manganese sulfide (MnS) stringers that are commonly observed in steels. This 
assessment is based on quantitative metallography. 

3.2. Stress Concentration Factor Kt 

The stress concentration factor is estimated as follows:  

max
tK

σ
σ∞

=                             (3) 

where maxσ  is the maximum stress calculated with FEA and σ∞  is the remote 
stress. 

Analytical expressions can be found for the stress concentration factor for the 
two types of void and, therefore, may be compared to FEA with no-crack confi-
gurations. As mentioned earlier, a round void behaves as a circular hole in an in-
finite medium, for which Kt = 3 [2]. This study found a convergent solution with 
Kt = 3.03 (a difference of only 1%). For the elongated void shown in Figure 5, 
the FEA result is Kt = 8.26. Rice [3] proposed the following equation for the 
stress concentration factor of a flat type void: 

2.43t
cK
ρ

=                          (4) 

which gives Kt = 8.42 with c = 12 µm and ρ = 1 µm as in Figure 5. Here again 
the discrepancy between FEA and analytical results is very small (a difference of 
about only 2%, refer to Table 3). 

Simulation of inclusions poses some questions. First, it is well known that 
typical inclusions in steel are considered weakly bonded to the matrix [4] while, 
in FEA models, the displacement at an interface is fully compatible between the 
two materials. Similar questions have been dealt with in FEA simulation of gra-
phite nodules in cast iron [5]. In this particular case, the nodules have been con-
sidered to behave like voids because of the weak bond and the low stiffness of the 
graphite nodules. In this study, inclusions were considered as voids in the ma-
trix. Attributing an extremely low stiffness value to an element of material data is 
a way to introduce a void in the model where otherwise it would be a steel ele-
ment, thus allowing the mesh to represent various configurations.  
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Table 3. Stress concentration factor calculated with FEA model.  

ROUND VOID ELONGATED VOID 

σMAX (MPa) Kt = σMAX/σY σMAX (MPa) Kt = σMAX/σY 

151 3.03 413 8.26 

90 1.81 104 2.09 

64 1.29 67 1.34 

3.3. Stress Intensity Factor KI 

Stress intensity factors were determined using the quadratic element mid-side 
node re-localized at the quarter position. Such crack elements were located along 
the path of the crack. The only effective one, in any simulation, is the one located 
at the crack tip. The stress intensity factor was calculated from [6], assuming that 
the state of stress is plane strain: 

( ) ( )2

2 4
4 1 B C

EK u u
Lν
π = − 

−  
                 (5) 

where uB is the crack opening displacement at the quarter node, uC is the crack 
opening displacement at the corner of the element (position C), E is the Young’s 
Modulus, ν the Poisson’s ratio and L is the element size. 

The stress intensity form factor, defined as: 

( ) IKF a
aσ π∞

=                        (6) 

with KI the SIF in mode I, as calculated from Equation (5), σ∞ , the remote 
stress and a, the crack length, was calculated from FEA results. 

4. Results and Discussion 
4.1. Stress Intensity form Factor  

The stress intensity form factor for round and elongated voids were calculated 
using Equation (6). The results are presented in Table 4. 

With the result of Table 4, we may then plot the graph of the geometrical 
correction curve against crack length. The results are presented in Figure 6. 

As it can be seen from this figure, the F curve exhibits a sudden exponential 
drop at the first three steps of propagation, after which it stabilizes as the crack 
behaviour becomes only dependent on the crack length. One particularity of this 
curve is the relatively high value of F for very short cracks.  

4.1.1. Comparison with the Results of Breiznitskii [7] and  
Tweede-Rooke [8] for Round Voids  

In this section, we want to compare the F function given by our FEA model with 
models from literature. The two references chosen are from Breitznitskii and 
Tweede-Rooke. 

The model of Breitznitskii [7] is shown in Figure 7. 
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Table 4. Geometrical correction factor F against crack length “a” for round and elongated 
voids. 

a (μm) Round void Elongated void 

0.023 28.343 29.137 

0.098 6.866 8.677 

0.199 3.357 5.402 

0.598 1.943 4.932 

1.000 2.073 4.064 

 

 
Figure 6. Geometrical correction curve against crack 
length for round void/inclusions. 

 

 
Figure 7. Model from Brezhnitskii [7]. 
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The second model used here for purpose of comparison is proposed by 
Tweede-Rooke [8] and is defined by: 

I IFaK σ π ∗=                            (7) 

where: 
FI = geometrical correction factor (in mode I) 
The geometrical factor FI is defined as: 

21 2IF F F= ∗  

where: 

( ) ( ) ( ) ( )31 2 2 2 2 1 0.2 1 3 ;F a Rε ε ε ε ε = + + ∗ + + =  , 

where R is the void radius 
and 

( ) ( )22 1 1 2 1.93 0.539 1 2 1F ε ε ε = + + + + +   

Using the applicable formula for each of these models, we may calculate the 
geometrical correction factors for all five analyzed crack configurations. These 
are presented in Table 5 and compared to the FEA results. Figure 6 is a plot 
against the crack length a. 

Though FEA results well agree with these models at large crack lengths, a sig-
nificant discrepancy is observed when it is shorter than 0.2 micron.  

At the shortest crack configuration analyzed (0.023 micron), F from FEA is at 
least eight times greater then that obtained from references while it reduces to 
twice at 0.098 micron and to almost nothing at 0.199 microns, where both F are 
almost equal. Hence, based on our FEA result, the F factor for a microscopic 
crack less than 0.2 micron emerging from a round void (with a radius of 1 mi-
cron) is significantly higher than the one predicted by the models.  

4.1.2. Comparison with the Results of Breiznitskii [7] for Elongated  
Voids 

We will use here the same approach and the same model proposed by Breitznit-
skii as presented in the previous section, the only difference being that the stress 
concentration factor Kt of the elongated void is higher. Now if we use the same 
formula given by the Breitznitskii model, we can calculate the geometrical cor-
rection factor for a micro-crack. These values are presented in Table 6 with the 
F factor calculated with the FEA model for an elongated void.  

Figure 8 presents the curve of the geometrical correction factor F against 
crack length “a” plotted with the results from Table 6.  

As for a round void, this figure reveals a significant difference for short cracks 
between the F factor calculated with FEA and the reference one. This difference 
is observed for the first 0.6 micron of growth after which the two curves merge 
together. The span over which the difference exists with the Breitznitskii model 
is longer than for the round void just because here the stress concentration fac-
tor is significantly higher. In comparison with the Breitznitskii model, the F fac-
tor calculated with the FEA model is at 0.023 micron of crack extent three times  
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Table 5. Geometrical correction factor F calculated from FEA and the models from 
Breitznitskii [7] and Tweede-Rooke [8] for a round void. 

a 
(μm) 

F 
Breitznitskii [7] 

F 
Tweede-Rooke [8] 

F (FEA) 
Round void 

0.023 3.366 3.659 28.343 

0.098 2.270 3.150 6.866 

0.199 2.370 2.657 3.357 

0.598 1.735 1.736 1.943 

1.000 1.156 1.382 2.073 

 
Table 6. Geometrical correction factor F calculated from FEA and the model from 
Breitznitskii for an elongated void. 

a (μm) F (Breitznitskii) [7] F (FEA) Elongated void 

0.023 9.357 29.072 

0.098 7.856 8.469 

0.199 5.533 4.940 

0.598 3.245 3.570 

1.000 2.560 3.995 

 

 
Figure 8. Comparison between the geometrical correction factor F versus crack length 
calculated with FEA and reference models from Breitznitskii [7] and Tweede-Rooke [8] 
for a round void. 
 
greater while it is 50% more at 0.2 micron and become finally equal around 0.6 
micron of crack growth. The difference in the F functions between the round 
and the elongated void is definitely due to the higher stress concentration factor 
magnitude for the elongated void. Except for the first propagation step where the 
F values are almost equivalent in both cases, the stress intensity factor needed to 
propagate a crack emerging from an elongated void will require a lower remote 
stress than for the round void (Figure 9). 

4.2. The Effect of Stress Raiser end Radius on the Geometrical  
Correction Factor F 

For very short cracks, FEA yielded SIF significantly higher than that predicted 
from LEFM [7] [8] [9]. For example, a typical LEFM calculation [9] gave a form  
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Figure 9. Comparison between the geometrical correction factor F versus crack length 
calculated with FEA and the reference model from Breitznitskii [7] for an elongated void. 
 
factor F(a, Kt) of 3.3 at a 0.023 µm crack emerging from a 2 µm diameter round 
void while the FEA result was 27. For crack lengths above 0.2 µm, however, both 
methods led to practically the same results. The same observation holds for 
elongated voids (with Kt = 8.34) for which a form factor of 28 was obtained. 
Therefore, it seems that, for a very short crack, the radius of the void appears to 
be the controlling SIF parameter, whereas, beyond 1 µm of propagation, this 
phenomenon disappears and the crack tip singularity combined with the stress 
concentration factor takes over.  

In view of this unexpectedly steep F function seen at very short cracks, SIF 
were alternatively estimated from the Hellen-Parks [10] virtual crack extension 
method. With this method, the J-Integral is first estimated and hence the SIF is 
derived. These numerical SIF values, either based on the crack tip opening dis-
placement formula of Leslie-Banks [6] or on the potential energy difference of 
Hellen-Parks, differed by only 8%, thus providing the same estimation whatever 
the calculation technique. 

5. Summary and Conclusions 

It has been determined that FEA can actually be applied at a micro structural 
level to describe the behavior of a micro-crack emerging from micro structural 
features that act as stress raisers. The major findings are as follows: 

1) Stress intensity factors for micro-cracks emerging from metallurgical stress 
concentrations calculated from plane strain finite element analysis (FEA) shows 
higher values in comparison with models from literature.  

2) The analysis suggests that micro-cracks smaller than 1 µm behave diffe-
rently from that of larger cracks. For a very short crack, the radius of the void 
appear to be the controlling SIF parameter, whereas, beyond 1 µm of propaga-
tion, this phenomenon disappears and the crack tip singularity combined with 
the stress concentration factor takes over.  
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