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Abstract 
In this paper, an expanded optimal control policy is proposed to study the 
coupled tanks system, where the random disturbance is added into the sys-
tem. Since the dynamics of the coupled tanks system can be formulated as a 
nonlinear system, determination of the optimal water level in the tanks is 
useful for the operation decision. On this point of view, the coupled tanks 
system dynamics is usually linearized to give the steady state operating 
height. In our approach, a model-based optimal control problem, which is 
adding with adjusted parameters, is considered to obtain the true operating 
height of the real coupled tanks system. During the computation procedure, 
the differences between the real plant and the model used are measured re-
peatedly, where the optimal solution of the model used is updated. On this 
basis, system optimization and parameter estimation are integrated. At the 
end of the iteration, the iterative solution approximates to the correct optimal 
solution of the original optimal control problem, in spite of model-reality 
differences. In conclusion, the efficiency of the approach proposed is shown. 
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1. Introduction 

A coupled tanks system, which consists of a joint of two tanks together through 
pipes in order to reserve water at the operating height level, is an important 
study in the control engineering and process industries [1]. The applications of 
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the coupled tanks system have been widely used in the real-world process, for 
example, petrochemical, waste-water treatment, and purification [2] [3]. Essen-
tially, the coupled tanks modeling provides a configurable process control expe-
riment to engineers and researchers such that a wide array of modeling and con-
trol-related laboratory works on liquid control can be performed in advance [1]. 

Theoretically, the dynamics of the coupled tanks system is formulated into a 
system of differential equations. The inflow and the outflow of the coupled tanks 
system are monitored in a simulation way in which the balance between the 
change rate of the water height level and the water flow in and out can be meas-
ured precisely. In addition to this, the water flow rate shall be controlled such 
that the equilibrium of the steady state along the operating height level is estab-
lished. In literature, there are many studies on this steady state of the water level 
that are carried out. See for more detail in [4] [5] [6]. 

In practice, the experimental works on the coupled tanks system, which cover 
the inflow and the outflow, are affected by some disturbances, such as inaccura-
cy of apparatus, man-made error and unfamiliar skill, and would give the inap-
propriate results [7]. Due to these reasons, the steady-state of the operating 
height level in the coupled tanks system is not easy to be addressed [8]. There-
fore, approximating the operating height level in the coupled tanks system as 
accurately as possible attracts the interest of engineers and researchers. 

Therefore, in this paper, an expanded optimal control policy, which takes into 
account different structures and parameters [9] [10] [11], is proposed for deter-
mining the steady-state of the operating height level of a couple tanks system 
with random disturbance. In our approach, the adjusted parameters are added to 
the model used. Accordingly, the expanded optimal control model is further de-
fined [12] [13] [14]. Especially, the optimal control policy, which is known as the 
expanded optimal control policy, is designed for solving the expanded optimal 
control model iteratively. On this basis, an illustrative example of the coupled 
tanks system, which is disturbed by the random noise, is presented. As a result, 
the optimal operating height level of the coupled tanks system is determined. 
Hence, the efficiency of the approach proposed is highly recommended. 

The structure of the paper is organized as follows. In Section 2, the problem 
on the coupled tanks system is described, where the related mathematical model 
is formulated. In Section 3, the expanded optimal control model, which is added 
the adjusted parameters into the model used, is introduced. From the iterative 
calculation, the expanded optimal control policy, which determines the optimal 
operating height level in the coupled tanks system, is obtained. In Section 4, the 
illustrative example of the coupled tanks system is discussed. The result shows 
the application of the approach proposed. Finally, some concluding remarks are 
made. 

2. Problem Statement 

Consider that two tanks are joined to be the coupled tanks system [3] [4] [5] [6]. 
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The system states are the water level H1 in Tank 1 and the water level H2 in Tank 
2. The control input is the pump flow rate iQ  and the variable to be controlled 
is the second state, which is the water level H2, with disturbances that are caused 
by variations in the rate of flow out of the system by Valve B or by changes in 
Valve C. Hence, a mathematical model shall be built for each of the tank water 
levels. Figure 1 shows the system plant that is determined by relating the flow 

iQ  into the tanks to the flow cQ  leaving the valve at the tank bottom. 
The flow balance equation for Tank 1 is given by 

1
1

d
d i b
HA Q Q
t
= −                          (1) 

where 1A  is the cross-sectional area of Tank 1, bQ  is the flow rate of water 
from Tank 1 to Tank 2 through Valve B. While, for Tank 2, the flow balance eq-
uation is given by 

2
2

d
d b c
HA Q Q
t

= −                         (2) 

where 2A  is the cross-sectional area of Tank 2, cQ  is the flow rate of water out 
of Tank 2 through Valve C. The system plant comes from the two flow balances 
and the nonlinear equations for flows through the valves. 

With the assumption that the valves are ideal orifice, the flows through the 
valves will be related to the water levels in the tanks by the following expressions: 

( )1 22b db bQ C a g H H= −  and 22c dc cQ C a gH=            (3) 

where ba  and ca  are, respectively, the cross sectional areas of the orifice at 
Valves B and C, and dbC  and dcC  are the discharge coefficients of Valves B 
and C, respectively. These coefficients take into account all fluid characteristics, 
losses and irregularities in the system to make the two sides of (1) and (2) bal-
ance. The gravitational constant is given by g = 9.80 m/s2. In addition to this, the 
two flow balances for ideal valves, which are given by (1) and (2), are rewritten 
by 
 

 
Figure 1. A coupled tanks system. 
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( )1
1 1 2

d
2

d i db b
HA Q C a g H H
t
= − −                 (4) 

( )2
2 1 2 2

d
2 2

d db b dc c
HA C a g H H C a gH
t

= − −            (5) 

Here, (4) and (5) describe the coupled tanks system dynamics in the nonlinear 
manner with ideal equations for the valves. In practice, the cross sectional area is 
given by the dimensions of the valve and the flow channel, which could be more 
complicated. 

Denote ( )T
1 2x x x=  with 1 1 2 2,x H x H= =  as the heights of water level in 

the tanks, iu Q=  is the control input, and let 

1 2db ba C a g=  and 2 2dc ca C a g= .              (6) 

In presence of the random disturbances, the system plant dynamics in (4) and 
(5) is rewritten as 

1 1
1 2 1

 1  1

d
d
x au x x
t A A

ω= − − +                      (7) 

2 1 2
1 2 2 2

2 2

d
d
x a ax x x
t A A

ω= − − +                    (8) 

where ( )T
1 2ω ω ω=  is the Gaussian random variable with zero mean and co-

variance Qω . Hence, this problem of controlling the water level in Tank 2 can 
be formulated as an optimal control problem, which is referred to as Problem 
(P), given below [11] [12]: 

Problem (P): Find the optimal control input u, which is the flow rate, to mi-
nimize the cost function 

( )( ) ( )( )( )1

0

2 2

0 2 2
1 d
2

t s s
t

J x t x r u t u t= − + −∫               (9) 

subject to the system dynamics (7) and (8) with the output measurement 2y x= , 
where 2

sx  and su  are the steady states of the value, r is the positive weight 
coefficient, 0t  is the initial time and 1t  is the fixed terminal time. 

Notice that the structure of Problem (P) is complex and nonlinear. Solving 
Problem (P) would be computational demanding. However, the optimal solution 
of Problem (P) could be obtained through solving its simplified model, which is 
referred to as Problem (M), given by 

( )( ) ( )( )( )1

0

2 2

1 2 2

1 21 1 15

3 3 42 2 2

2

sub

1min d
2

ect to
0

j

t s s
tu

J x t x r u t u t

k kx x k
u

k k kx x
y x

α
α

= − + −

−       
= + +       − −        

=

∫




        (10) 

with 

1
1 2

 1 1 22 s s

ak k
A x x

= =
−

, 1
3

2 1 22 s s

ak
A x x

=
−

, 2
4

2 22 s

ak
A x

= , 1
5 1k A−=   (11) 

where ( )T

1 2
s s sx x x=  and su  are the steady states of the value, whereas, 
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( )T
1 2α α α=  is the adjustable parameter. 

Refer to this simplified model, it is highlighted that the aim of adding the ad-
justable parameter into the model used in Problem (M) is to measure the differ-
ences between the system plant and the linear model used repeatedly. By virtue 
of this, the optimal solution of the model used could be updated in order to ap-
proximate the correct optimal solution of Problem (P), in spite of model-reality 
differences [9]-[14]. 

3. System Optimization with Parameter Estimation 

Now, refer to the cost function in (9) or (10), setting the weighting coefficient 
matrices Q and R, and the state transition matrix A and the control coefficient 
matrix B, respectively, to be 

0 0
0 1

Q  
=  
 

, R r= , 1 2

3 3 4

k k
A

k k k
− 

=  − − 
, 5

0
k

B  
=  
 

.     (12) 

Let ( )T
1 2f f f=  represents the system dynamics function of the coupled 

tanks system, that is, 

( ) ( )( ) 1
1 1 2

1 1

,
auf x t u t x x

A A
= − −                 (13) 

( ) ( )( ) 1 2
2 1 2 2

2 2

,
a af x t u t x x x
A A

= − − .             (14) 

Let us define an expanded optimal control problem, which is referred to as 
Problem (E), given by 

( )( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )

1

0

T T

2

2 2
1 2

1min
2

1 1 d
2 2

t s s s s
tu

J x t x Q x t x u t u R u t u

r u t v t r x t z t t

= − − + − −

+ − + −

∫
 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

subject to

, ,

x t Ax t Bu t t

y t Cx t

Az t Bv t t f z t v t t

v t u t

z t x t

α

α

= + +

=

+ + =

=

=



         (15) 

where ( ) 2v t ∈ℜ  and ( ) 2z t ∈ℜ  are introduced to separate the control varia-
ble and the state variable in the optimization problem from the respective signals 
in the parameter estimations problem, and ⋅  denotes the usual Euclidean  

norm. The terms ( ) ( ) 2
1

1
2

r u t v t−  and ( ) ( ) 2
2

1
2

r x t z t−  with 1r ∈ℜ  and  

2r ∈ℜ  are introduced to improve the convexity and to facilitate the conver-
gence of the resulting iterative algorithm. It is important to note that the algo-
rithm is designed in such a way that the constraints ( ) ( )v t u t=  and 
( ) ( )z t x t=  are satisfied due on the termination of iterations, assuming conver-

gence is achieved. The state constraint ( )z t  and the control constraint ( )v t  
are used for the computation of the parameter estimation and the matching 
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scheme, while the corresponding state constraint ( )x t  and control constraint 
( )u t  are reserved for optimizing the linear model-based optimal control prob-

lem. Hence, system optimization and parameter estimation are mutually interac-
tive. 

3.1. Necessary Conditions 

Define the Hamiltonian function by 

( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

T T

2 2 T
1 2

T T

1
2

1 1
2 2

s s s sH t x t x Q x t x u t u R u t u

r u t v t r x t z t t u t

t x t p t Ax t Bu t t

λ

β α

= − − + − −

+ − + − −

− + + +

   (16) 

where ( ) 2p t ∈ℜ  is the Lagrange multiplier. Then, the augmented cost function 
for the cost function in (15) becomes 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1

0

T T

T

T T

, ,

d

t
a t

J H t p t x t t y t Cx t

t f z t v t t Az t Bv t t

t v t t z t t

θ

µ α

λ β

= − + −

+ − − −

+ +

∫ 

       (17) 

where ( ) ( ) ( ), ,p t t tµ λ  and ( )tβ  are the appropriate multipliers to be deter-
mined later. 

Applying the calculus of variation [14] [15] [16], the following necessary con-
ditions for optimality are obtained. 

a) Stationarity: 

( ) ( )( ) ( ) ( ) ( )( ) ( )T
10 s

u H t R u t u B p t r u t v t tλ= ∇ = − + + − −     (18) 

b) Co-state equation: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )T
2

s
xp t H t Q x t x A p t r x t z t tβ− = ∇ = − + + − −   (19) 

c) State equation: 

( ) ( ) ( ) ( ) ( )px t H t Ax t Bu t tα= ∇ = + +              (20) 

d) Output equation: 
( ) ( )y t Cx t= .                       (21) 

e) Boundary condition: 

( )0x t  and ( )1p t  are given.               (22) 

f) Adjustable parameter equation: 

( ) ( )( ) ( ) ( ) ( ), ,f z t v t t Az t Bv t tα= + +               (23) 

g) Multiplier equations: 

( ) ( )
T

ˆft B p t
v

λ ∂ = − − ∂ 
,                    (24) 

( ) ( )
T

ˆft A p t
z

β ∂ = − − ∂ 
.                    (25) 
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h) Separable variables: 

( ) ( )z t x t= , ( ) ( )v t u t= , ( ) ( )p̂ t p t=               (26) 

with ( ) ( )ˆt p tµ =  and ( ) 0tθ = . 

3.2. Modified Optimal Control Problem 

From the necessary conditions (18)-(22), a modified optimal control problem, 
which is referred to as Problem (MM), is defined by 

( )( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1

0

T T

3

2 2
1 2

T T

1min
2

1 1
2 2

subject to

d

t s s s s
tu

J x t x Q x t x u t u R u t u

r u t v t r x t z t

t u t t x t t

x t Ax t Bu t t

y t Cx t

λ β

α

= − − + − −

+ − + −

− −

= + +

=

∫



   (27) 

with the specified ( ) ( ) ( ) ( ), , ,t t t v tα λ β  and ( )z t , where the boundary condi-
tions ( )0x t  and ( )1p t  are given. 

3.3. Optimal Control Law 

The optimal control law for Problem (MM), which is known as the expanded 
optimal control policy, is a feedback control [9]-[14]. This control law is stated 
in the following theorem. 

Theorem 1 (Expanded optimal control policy): Assume that the expanded 
optimal control policy exists. Then, this optimal control law is the feedback con-
trol law for Problem (MM), given by 

( ) ( ) ( ) ( )ffu t K t x t u t= − +                    (28) 

where 

( ) ( ) ( )1 T 1 1 s
ff a a a au t R B s t R t R Ruλ− − −= − + +              (29) 

( ) ( )1 T
aK t R B S t−=                       (30) 

( ) ( ) ( ) ( ) ( )T
aS t S t A A S t Q S t BK t= − − − +             (31) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

T T

1

a a

s s
a a

s t A BK t s t K t t t S t t

S t BR Ru Q x

λ β α
−

= − − − + −

− +



    (32) 

with the boundary conditions ( )1 0S t =  and ( )0 0s t = , and 

( ) ( ) ( ) ( ) ( ) ( )1 2 2 2 1 2, , , .a a a aR R r I Q Q r I t t r v t t t r z tλ λ β β= + = + = + = +  

Proof: From the necessary condition (18), the optimal control is written by 

( ) ( ) ( )1 T 1 1 s
a a a au t R B p t R t R Ruλ− − −= − + + .             (33) 

Applying the sweep method [15] [16], 

( ) ( ) ( ) ( )p t S t x t s t= +                     (34) 

into (33), after some algebraic manipulations, the feedback control law (28) is 
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obtained, where (29) and (30) are satisfied. 
Also, substitute (34) into the costate equation (19) to yield 

( ) ( )( ) ( ) ( ) ( )( ) ( )Ts
a ap t Q x t x A S t x t s t tβ− = − + + −       (35) 

Differentiating both sides (34) with respect to t gives 

( ) ( ) ( ) ( ) ( ) ( )p t S t x t S t x t s t= + +

                 (36) 

Notice that (35) and (36) are equivalent. That is, 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )Ts
a aS t x t S t x t s t Q x t x A S t x t s t tβ− − − = − + + −

  (37) 

Then, consider the state equation (20) and the feedback control (28) in (37). 
After doing some algebraic manipulations by taking into account (29) and (30), 
then (31) and (32) are satisfied. This completes the proof. 

Now, taking (28) into (20), the state equation becomes 

( ) ( )( ) ( ) ( ) ( )ffx t A BK t x t Bu t tα= − + +             (38) 

with the output measurement 

( ) ( )y t Cx t= .                       (39) 

3.4. Iterative Procedure 

From the discussion above, the calculation procedure is summarized as an itera-
tive algorithm given below. 

Algorithm 1: Iterative algorithm 
Data 0 0 1 1 2, , , , , , , , , , , ,v z pA B C Q R x t t r r k k k  and f. 
Step 0 Compute a nominal solution. Assuming that ( ) 1 20, 0, 0t r rα = = = , 

compute ( )K t  and ( )S t , respectively, from (30) and (31), and solve Problem 
(M) defined in (10) to obtain ( ) ( ) ( )0 0 0, ,u t x t p t . Set 0i = , ( ) ( )0 0v t u t= , 
( ) ( )0 0z t x t= , ( ) ( )0 0p̂ t p t= , for [ ]0 1,t t t∈ . 
Step 1: Compute the parameter ( )itα  from (23). This is called the parameter 

estimation step. 
Step 2: Compute the multipliers ( )itλ  and ( )itβ  from (24) and (25). 
Step 3: Using ( ) ( ) ( ) ( ), , ,i i i it t t v tα λ β  and ( )iz t , solve Problem (MM) de-

fined in (27) by using the result that is presented in Theorem 1. This is called the 
system optimization step. 

1) Solve (32) forward to obtain ( )is t  and solve (29) to obtain ( )i
ffu t . 

2) Use (28) to obtain the new control ( )iu t . 
3) Use (38) to obtain the new state ( )ix t . 
4) Use (34) to obtain the new costate ( )ip t . 
5) Use (39) to obtain the new output ( )iy t . 
Step 4: Test the convergence and update the optimal solution of Problem (P). 

In order to provide a mechanism for regulating convergence, a simple relaxation 
method is employed: 
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1

1

1ˆ ˆ ˆ

i t i i
v

i t i i
z

i t i i
p

v t v t k u t v t

z t z t k x t z t

p t p t k p t p t

+

+

+

= + −

= + −

= + −

              (40) 

where ( ], , 0,1v z pk k k ∈  are scalar gains. If ( ) ( )1i iv t v t+ =  within a given toler-
ance, stop; else set 1i i= + , and repeat the procedure staring from Step 1. 

Remarks: 
a) The nominal solution can be the optimal solution that is obtained from the 

standard linear quadratic regulator (LQR) optimal control problem. 
b) The off-line computation for solving (30) and (31) is done at Step 0 before 

the iteration begins with assuming ( ) ( )0, 0t tα λ= =  and ( ) 0tβ = . 
c) The numerical scheme for solving the ordinary differential equations of 
( )S t  and ( )s t  can be used. 
d) The relaxation method given in (40) establishes a matching scheme for the 

updating of the iterative solution. 

4. Result and Discussion 

For the numerical illustration, the physical parameters of the coupled tanks sys-
tem are shown in Table 1 [4]. The steady states of the value are set at 

( )T4.569 3.655sx =  and 3.322su = , while the weight of coefficient is r = 1 
and the time given is [ ]0,1t∈ . 

Follow from this, the algorithm proposed is applied to obtain the optimal op-
erating height level in the coupled tanks system. For doing this task, the algo-
rithm proposed is implemented in the MATLAB 2016 R1 environment in Win-
dow 8.1 Pro with the processor 2.10 GHz and the 64-bit operating system. Refer 
to Table 1, the system parameters used are calculated and given as follow: 

0.019442 0.019442
0.019442 0.024302

A
− 

=  − 
, 

0.010695
0.000000

B  
=  
 

 and ( )0 1C = . 

The simulation result is shown in Table 2. The final cost gives a smaller value 
than the original cost, which saves about 0.039 percent of the original cost spent. 

Figure 2 shows the trajectory of control input for the coupled tanks. The con-
trol input reduces its value dramatically from 3.33 units and then increases 
gradually after 0.2 seconds. It takes 0.6 seconds to converge to the steady state 
value 3.322su = . This behavior of the control input indicates that the flow rate, 
which is pumped into Tank 1 for the first 0.2 second, is moved into Tank 2 and 
reaches at the steady state after 0.8 seconds. 

In addition to this, the water in Tank 2 is controlled at the steady-state value 

2 3.655x =  units as shown in Figure 3 and Figure 4. It can be seen that the 
original state trajectory is disturbed by the random disturbances. Nonetheless, 
the expected state trajectory, which is measured from the origin, is increased ob-
viously in such a way that controlling the steady-state value of the water level in 
the second tank is made. 
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Table 1. Physical parameters of coupled tanks system. 

Parameter Symbol Value Unit 

Tank 1 cross-sectional area A1 93.50 × 10−4 m2 

Tank 2 cross-sectional area A2 93.50 × 10−4 m2 

Valve B orifice cross-sectional area ab 7.850 × 10–5 m2 

Valve C orifice cross-sectional area ac 7.850 × 10–5 m2 

Discharge coefficient Valve B orifice Cdb 1.0  

Discharge coefficient Valve C orifice Cdc 0.5  

Gravitational constant g 9.80 ms–2 

 
Table 2. Simulation result. 

Number of Iterations Final Cost Original Cost Elapsed Time (s) 

6 82.975622 83.007735 1.356591 

 

 
Figure 2. Control trajectory. 

 

 
Figure 3. State trajectory. 

 
Figure 5 shows the stationary condition of the optimality. It verifies that the 

iterative algorithm proposed is efficient and the final solution is the optimal so-
lution. As a result, the iterative algorithm proposed is applicable to making the 
decision on the operating height of the coupled tanks system. 
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Figure 4. Output trajectory. 

 

 
Figure 5. Stationary condition of optimality. 

5. Concluding Remarks 

The use of the expanded optimal control policy in determining the operating 
height level in the coupled tanks system was discussed in this paper. The special 
feature of this expanded optimal control policy is that the model used, which is a 
linear model, has a different structure compared to the original problem, which 
is a nonlinear model. By adding the adjusted parameters into the model used, 
the differences between the model used and the original model could be meas-
ured iteratively. As a result, the flow rate of the coupled tanks system is con-
trolled and the operating height level is achieved, in spite of model-reality dif-
ferences. In conclusion, the efficiency of the expanded optimal control policy is 
highly presented. 

Nonetheless, the optimal operating height level obtained by the algorithm 
proposed is the expected solution of the coupled tanks system, where the system 
is disturbed by the random noises. Apparently, this expected solution approx-
imates to the steady-state value. In fact, an optimal solution of the coupled tanks 
system with random disturbance could be further improved by using the filter-
ing techniques. Therefore, it is suggested to determine the optimal filtering solu-
tion of the coupled tanks system with the random disturbance in future research. 
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