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Abstract 
The behavior of the zeros in finite Taylor series approximations of the Rie-
mann Xi function (to the zeta function), of modified Bessel functions and of 
the Gaussian (bell) function is investigated and illustrated in the complex 
domain by pictures. It can be seen how the zeros in finite approximations ap-
proach to the genuine zeros in the transition to higher-order approximation 
and in case of the Gaussian (bell) function that they go with great uniformity 
to infinity in the complex plane. A limiting transition from the modified Bes-
sel functions to a Gaussian function is discussed and represented in pictures. 
In an Appendix a new building stone to a full proof of the Riemann hypothe-
sis using the Second mean-value theorem is presented. 
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1. Introduction 

The present paper tries to find out the common ground for the zeros of the 
Riemann zeta function ( ) ( )iz x yζ ζ= +  and of the modified Bessel functions 

( )I zν  (or Bessel functions ( )J zν  of imaginary argument z) for imaginary 
argument z and, furthermore, for the absence of zeros of the Gaussian Bell 
function ( )2exp z . For the function now called Riemann zeta function ( )zζ  
which was known already to Euler but was extended by Riemann to the complex 
plane Riemann expressed the hypothesis that all nontrivial zeros of this function  

lie on the axis 1 i
2

z y= +  that means on the axis through 1
2

x =  and parallel to  
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the imaginary axis y (Riemann hypothesis) [1] [2] [3] (both with republication 
of Riemann’s paper) and many others, e.g. [4] [5] [6] [7] [8]. Riemann never 
proved his hypothesis. He introduced in [1] also a Xi function ( )zξ  which 
excludes the only singularity of the function ( )zζ  at 1z =  and its trivial 
zeros at 2, 4,z = − −   and possesses more symmetry than the zeta function 
( )zζ . Concerning their zeros it is equivalent to the nontrivial zeros of the zeta 

function. In present paper we will mainly have to do only with this Xi function 
( )zξ  which we displaced in a way that its zeros lie on the imaginary axis 

provided; the Riemann Hypothesis is correct and we denote as Xi function 
( )zΞ . With respect to the position of the zeros the function ( )zΞ  is fully 

equivalent to the nontrivial zeros of the Riemann zeta function ( )zζ  only with 
displacement of the imaginary axis to these zeros. 

The content of this article was not intended as a proof of the Riemann 
hypothesis but during the work we found a further, as it seems, essential 
building stone for its proof by the second mean-value approach which is 
represented in Appendix. The article is merely intended as an illustration to the 
zeros of a function with a possible representation in an integral form given in 
Section 2 (Equation (2.8)) with monotonically decreasing functions ( )uΩ  
satisfied by the Riemann Xi function and by the modified Bessel functions and 
explains why the Gauss bell function although it can be represented in such 
form does not possess zeros. Other kinds of interesting illustrations of the 
Riemann zeta function (and of other functions) by the Newton flow are given 
in [9] [10]. A main purpose was to understand how the zeros in the Taylor 
series approximations of such functions behave when we go from one order of 
the approximation to the next higher one. To get the possibility of a comparison 
with the pictures of zeros for functions without an integral representation of the 
mentioned form we made an analogous picture for an unorthodox entire 
function in Section 9. 

2. Basic Equations for the Considered Functions 

The Xi function ( )zΞ  to the Riemann zeta function ( )zζ  is defined by  

( ) 1 ,
2

z zξ  Ξ ≡ + 
 

                          (2.1) 

where ( )zζ  is the Riemann Xi function [1] which is related to the Riemann 
zeta function ( )zζ  by1  

( ) ( ) ( )21 !π .
2

zzz z zξ ζ
− ≡ −  

 
                     (2.2) 

The Riemann zeta function is basically defined by the following Euler product  

( )
( )

( )
1

1 2 3 4
1

11 , 2, 3, 5, 7, ,z
n n

z p p p p
p

ζ

−
∞

=

 
 ≡ − = = = =
 
 

∏          (2.3) 

 

 

1Riemann denotes the complex variable by is tσ= +  that is ( )sξ  for the Xi function and ( )sζ  
for the zeta function. 
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where np  is the sequence of prime numbers beginning with 1 2p = . The 
definition of the Riemann Xi function (2.3) is equivalent to the definition by the 
following (Dirichlet) series for complex variable iz x y= +   

( ) ( )( )
1

1 , Re 1 ,z
n

z x z
n

ζ
∞

=

= = >∑                    (2.4) 

which is convergent for 1x >  and arbitrary y and can be analytically continued 
to the whole complex z-plane. The function ( )zΞ  is an entire function which 
excludes the only singularity of ( )zζ  at 1z =  and its “trivial” zeros at 

2, 4, 6,z = − − −  . 
Next we consider the whole class of modified Bessel functions ( )I zν  of 

imaginary argument which is connected with the basic class of Bessel functions 
( )J zν  in the following slightly modified form by ( ( )! 1µ µ≡ Γ + )  

( ) ( ) ( ) ( )
2

0

2 2 1I J i , .
i ! ! 2

m

m

zz z
z z m m

ν ν

ν ν ν
ν

∞

=

     = ≡ ∈     +     
∑         (2.5) 

The functions ( )2 I z
z

ν

ν
 
 
 

 are entire functions which satisfy the differential  

equation  

( ) ( )
2 2

2 2 222 I 0 I 0.z z z z z z z
z z z z

ν

ν νν ν
   ∂ ∂ ∂        + − = ⇔ − − =        ∂ ∂ ∂           

 (2.6) 

In comparison to ( )I zν  the functions ( )2 I z
z

ν

ν
 
 
 

 exclude the zeros or  

infinities of the first ones at 0z =  but the other zeros remain the same for both 
functions. 

Finally, we consider the Gaussian functions 
2 2

exp
4

a z 
 
 

 with parameter  

2 0a >  which can be represented by the following integral representation 
(continued from the imaginary axis y to the whole complex z-plane)  

( ) ( )
2 2 2

2
202

2exp d exp ch , 0 ,
4 π

a z uu uz a
aa

+∞   
= − >   

   
∫         (2.7) 

which become Gaussian bell functions for imaginary argument iz y= . Clearly,  

the functions 
2 2

exp
4

a z 
 
 

 do not possess zeros on the imaginary axis and zeros  

at all. 
The three mentioned types of functions written as ( )zΞ  have in common 

that they are symmetrical functions in z and that they possess a representation 
by an integral of the type  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
**

0
d ch ) , ,z u u uz z z u u

+∞
Ξ = Ω = Ξ − = Ξ Ω = Ω −∫    (2.8) 

with monotonically decreasing functions ( )uΩ  for 0 u≤ ≤ ∞  that means  

( ) ( ) ( )1 2 1 20 , 0.u u u u u≤ ≤ ⇒ Ω ≥ Ω Ω → +∞ =           (2.9) 
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The Taylor series of ( )zΞ  can be written in the form  

( ) ( ) ( )( )2
2

0

1 1, d
! 2

m n
m n

m
z z u u u u

n

∞ +∞

−∞
=

Ξ = Ω Ω ≡ Ω +Ω −∑ ∫  

( ) ( ) ( )2
2 2 10

1 d , 0, 0,1,2, ,
2 !

m
m mu u u m

m
+∞

+Ω = Ω Ω = =∫      (2.10) 

where ( ), 0,1, 2,n nΩ =   are defined as the moments of the symmetrical 
function ( )uΩ  with respect to the reference point 0 0u = . A consequence of 
the definitions in (2.8) and (2.10) is  

( ) ( ) 00
0 d .u u

+∞
Ξ = Ω ≡ Ω∫                    (2.11) 

The odd moments 2 1m+Ω  of the function ( )uΩ  in the definition (2.10) 
vanish. The function ( )zΞ  at 0z =  is equal to the zeroth moment 0Ω  of 
the function ( )uΩ  and is independent of the chosen reference point. In the 
following the moments of the function ( )uΩ  play an important role. 

That ( )uΩ  is a symmetrical function in u is, in principle, not necessary since 
the integration over u in (2.8) is restricted by 0u ≥  but the symmetry permits 
to extend the integral over negative values of u using it in the form  

( ) ( ) ( ) ( ) ( ) ( )
0

1 1 1d e d ch d sh ,
2 2 2

uzz u u u u uz u u uz
+∞ +∞ +∞

−∞ −∞ −∞

=

Ξ = Ω = Ω + Ω∫ ∫ ∫


 (2.12) 

which for imaginary iz y=  is a Fourier transformation of ( )uΩ  with the 
inversion  

( ) ( ) i1 d i e ,
π

uyu y y
+∞ −

−∞
Ω = Ξ∫                    (2.13) 

if the integral exists in some sense (e.g. weak convergence). We consider this 
now more explicitly. 

The explicit representation of the Xi function ( )zΞ  to the Riemann Xi  

function ( ) 1
2

z zξ  = Ξ − 
 

 in this form (2.8) together with (2.9) is  

( ) ( ) ( )
0

d ch ,z u u uz
+∞

Ξ = Ω∫  

( ) ( ) ( ) ( )2 2 2 2 2 2

1
4exp π e 2π e 3 exp π e ,

2
u u u

n

uu n n n u
∞

=

 Ω ≡ − − = Ω − 
 

∑     (2.14) 

with the special values  

( ) ( )
0

1 10 d 0.4971207782, ,
2 2

u u
+∞  Ξ = Ω ≈ Ξ ± = 

 ∫  

( )0 1.7867876019.Ω ≈                    (2.15) 

This was derived in detail in [11]. The function ( )uΩ  together with its first 
derivative ( ) ( )1 uΩ  is represented in Figure 1. 

The function ( )uΩ  is monotonically decreasing from 0u =  on and 
decreases rapidly for u → ±∞ . The function ( )zΞ  increases rapidly for real 
z x= → ±∞  and decreases rapidly for imaginary i iz y= → ± ∞ . The symmetry  
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Figure 1. Representation of ( )uΩ  and of its first derivative 

( ) ( )1 uΩ . The function ( )uΩ  is monotonically decreasing 

for 0u ≥  and together with its derivatives vanishes rapidly 
for u → +∞ . 

 
of ( )uΩ  is not easily to see from (2.14) and it was a genuine surprise for us to 
meet such a kind of a symmetrical function (see discussion in [11]). The  

function ( )exp
2
u u − Ω 

 
, for example, is already not a symmetrical function for  

u u↔ − .  
In case of the modified Bessel functions of imaginary argument the following 

basic integral representations are known which for the functions proportional to  

( )2 I z
z

ν

ν
 
 
 

 may be written as follows (taking into account  

1 1 1 π! !
2 2 2 2

   = − =   
   

)  

( ) ( ) ( ) ( )

( ) ( )

1
1 2 2
0

0 d 1 ch

1 1 2 10 ! ! I , ,
2 2 2

z u u uz

z
z

ν

ν ν

ν

ν νν ν

−
Ξ ≡ Ω −

       = Ω − > −       
       

∫
        (2.16) 

or expressed by the Confluent Hypergeometric function ( )1 1F ; ;a c z   
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( ) ( ) 1 1

1 1! !
12 20 e F ;2 1; 2 .

! 2
zz zν ν

ν
ν ν

ν

   −        Ξ = Ω + + ± 
 

         (2.17) 

The Taylor series expansion is  

( ) ( ) ( )

2

1

1 1! !
!2 20 1 .

! ! ! 2

m

m

zz
m mν ν

ν
ν

ν ν

∞

=

   −          Ξ = Ω +  +    
∑         (2.18) 

The functions ( )zνΞ  possess the principal form  

( ) ( ) ( )
0

1d ch , ,
2

z u u uzν ν ν
+∞  Ξ = Ω > − 

 ∫               (2.19) 

with the following explicit expressions for ( )uνΩ   

( ) ( )( ) ( ) ( )
1

2 220 1 1 ,u u u u
ν

ν ν νθ
−

Ω = Ω − − = Ω −             (2.20) 

where ( )xθ  is Heaviside’s step function defined by  

( ) ( )
( )

1, 0 ,
0, 0 .

x
x

x
θ

 >≡  <
                       (2.21) 

It restricts the upper limit of integration in (2.19) according to the choice in 
(2.20) to 1u = . The functions ( )uνΩ  are equivalent to functions of 2u  only 
and are in this sense symmetrical functions of u and for real 2 1u <  we have to  

choose the real value of ( )
1

2 21 u
ν −

−  in case of non-integer 1
2

ν − . 

The first six cases of the function ( )zνΞ  with integer or semi-integer index 
ν  are  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

0
0 0 1 1

2 2

1
1 1 3 3 3

2 2

2
2

2 2 5 52 5
2 2

πI sh
0 , 0 ,

2

2 ch shπI
0 , 0 ,

2

8 3 sh 3 ch3πI
0 , 0 .

2

z z
z z

z

z z zz
z z

z z

z z z zz
z z

z z

Ξ = Ω Ξ = Ω

−
Ξ = Ω Ξ = Ω

+ −
Ξ = Ω Ξ = Ω

  (2.22) 

The function ( )1
2

z
−

Ξ  does not exist since the corresponding integral in  

(2.16) is divergent or 1 !
2

ν − 
 

 is not finite for 1
2

ν = −  but  

( ) ( )1
2

1
2

ch
lim

1 2!
2

z
z

ν
ν

−

→−

Ξ
=

 − 
 

 exists. Furthermore, we have introduced in (2.16)  

amplitudes ( )0νΩ  and we will soon see that it is favorable to choose them for 
our purpose as constant for the whole class of functions ( )zνΞ . We illustrate 
the functions ( )uνΩ  and the corresponding functions ( )zνΞ  with a certain 
important modification in next Section 3. 

It is well known that the Bessel functions ( )J zν  possess zeros only on the 
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real axis x and, correspondingly, ( )I zν  only on the imaginary axis y. For this 
there exists a direct proof using their differential equations and which is similar 
to the derivation of duality and orthogonality relations (e.g. [12] [13]). 

The considered Omega functions ( )uΩ  for the Riemann Xi function and 
( )uνΩ  for the modified Bessel functions and also for the Gaussian bell function 

have in common that they are monotonically decreasing functions for 0u ≥  up 
to ( ) 0Ω +∞ = . 

3. Modified Bessel Functions with Stretched Argument  
of the Kernel Function and Limiting Transition to  
Gaussian Bell Function 

We now calculate the even moments ,2mνΩ  of the functions ( )uνΩ  in (2.20) 
which lead to well-known integrals  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1
12 2 22

,2 0 0

2

0 1d d 1
2 ! 2 !

1 1 1 1! ! ! !
1 π2 2 2 20 0 , ! ,

2 2 ! ! 2 2! !2

m m
m

m

u u u u u u
m m

m

m m m m

νν
ν ν

ν ν

ν ν

ν ν

−+∞Ω
Ω ≡ Ω = −

       − − −                 = Ω = Ω =   + +   

∫ ∫
  (3.1) 

and in the special case 0m =  of zeroth moments  

( ),0

1 1! !
2 20 .

!ν ν

ν

ν

   −   
   Ω = Ω                       (3.2) 

These are the areas under the curves ( )uνΩ  on the positive u-axes. The 
following considerations show that it is favorable to make ,0νΩ  equal 
independently on parameter ν  and to keep ( )0νΩ  constant and we choose  

( )0 1.νΩ =                              (3.3) 

To keep in addition also ,0νΩ  constant we have now the only possibility to 
introduce a stretch factor to the variable u and we make the transformation 
(now already with choice (3.3))  

( ) ( )
1

2 22

2 2
,0,0 ,0

1 1 ,u u uu u
uu u

ν

ν ν ν
νν ν

θ
−

     
Ω →Ω = − − = Ω              

         (3.4) 

with the definition of ,0uν   

1 ,0
2

,0 1 1,0 ,0
,02 2

! , 1,
1 1! !
2 2

u
u u uν

ν

ν

ν
≡ = =

Ω   −   
   

               (3.5) 

from which follows for the zeroth moments of ( )uνΩ   

( ) ,0

1
2 2

,0 20 0
,0

d d 1 1.
u uu u u

u
ν

ν

ν ν
ν

−
+∞  

Ω ≡ Ω = − =  
 

∫ ∫               (3.6) 

The functions ( )uνΩ  are graphically represented in Figure 2 for some low  
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Figure 2. Functions ( )uνΩ  with stretched variable 
,0

uu
uν

→  in comparison to functions ( )uνΩ . G rid lines are set 

at the values ,0uν  where the finite functions ( )uνΩ  end. In the chosen scale the curve ( )uνΩ  for 
9
2

ν =  is visibly 

already hardly to distinguish from a Gaussian bell function 
2πexp

4
u 

− 
 

 and, therefore, is not drawn here. 

 

values of ν  up to 9
2

ν = . 

The corresponding transformation of the functions ( )zνΞ  using (2.16) and 
(3.3) are  

( ) ( )

( ) ( )

,0

1
2 2

,0 ,020
,0 ,0,0

,0 ,0 ,0
,0

d 1 ch

2! I .

u u u uz z u u z
u uu

u u z u z
u z

ν

ν

ν ν ν ν
ν νν

ν

ν ν ν ν ν
ν

ν

−
   

Ξ → Ξ = −        

 
= Ξ =   

 

∫
       (3.7) 

Their Taylor series are  

( ) ( )

( ) ( )

2
,0

0

2

1

!
! ! 2

! !1 ,
1 1! ! 2! !
2 2

m

m

m

m

u z
z

m m

z z
m m

ν
ν

νν

ν
ν

ν ν
ν ν

∞

=

∞

=

 
Ξ =  +  

 
 
 = + = Ξ −

+     −        

∑

∑
       (3.8) 
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or with substitution iz y=   (see also (2.5))  

( ) ( )

( )
( )

,0
,0

2

1

2i ! J

1 ! !1 .
1 1! ! 2! !
2 2

m

m

m

y u y
u y

y
m m

ν

ν ν ν
ν

ν

ν ν
ν ν

∞

=

 
Ξ =   

 

 
 −  = +

+     −        

∑



           (3.9) 

The first three functions ( )zνΞ  with integer and with semi-integer ν  are 
explicitly  

( ) ( ) ( )

( ) ( )

( ) ( )
( )

0 0 1
2

1 1 3 3
2

2
2

2 2 52 5
2

sh2I , ,
π

3 34 3 ch 2sh
2 2π 4I , ,

2 π 9

15 15512 64 75 sh 120 ch
8 89π 16I , .

3π32 16875

zzz z
z

z zz
zz z

z z

z zz z
zz z

z z

 Ξ = Ξ = 
 

    −          Ξ = Ξ = 
 

    + −          Ξ = Ξ = 
 

 

(3.10) 

The functions ( )zνΞ  on the imaginary axes iz y=  for integer and  

semi-integer index ν  up to 9
2

ν =  are illustrated in Figure 3. 

Figure 2 and Figure 3 admit the conjecture that ( )uνΩ  and ( )iyνΞ  for 
real variable y become Gaussian bell functions in the limit ν →∞ . For  

9
2

ν =  in Figure 2 the function ( )uνΩ  is in visible way already hardly to 

distinguish from the Gaussian bell function (below we see to 
2πexp

4
u 

− 
 

).  

That the mentioned approach for ν →∞  to a Gaussian bell function is really 
true we establish exactly and determine these limits. 

We now show that the new functions ( )zνΞ  in (3.7) for ν →∞  go to a 
Gaussian function that becomes a Gaussian bell function for imaginary iz y= .  

As auxiliary formulae for !
1 !
2

ν

ν − 
 

 in case of 1ν   follows  

( )

( )
1
2

1 !
! 1 1 ! 12 ,
1 11 ! 4 4 4! !
2 2ϕ ν

ϕ ν

ν
ν νν ν ν ν ν

νν ν
 ≡ − 
 ≡

 − 
  = ≈ + − ⇒ ≈ + →

−   − −   
   





 

! 2 1 2 1 π, ! ,
1 1 4 2 2π π! !
2 2

ν ν ν
ν

  ≈ + ≈ =         −   
   

       (3.11) 
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Figure 3. Functions ( )iyνΞ  for values of ν  up to 9
2

ν = . W ith increasing ν  from a certain ν  on the first zeros of ( )zνΞ  

increase (see also text) and the amplitudes of the oscillations decrease and in the limiting case ν → +∞  they vanish and the 

resulting Gaussian function 
2

exp
π
y 

− 
 

 (on the imaginary y-axis iz y= ) does not possess zeros. This Gaussian curve is not 

well to distinguish in the bulk of the other curves and is not drawn here. 
 
and analogously for 1ν    

( ) ( )( ) ( )
! 1 1 .

1 2! 1 2 1 1 1

m

m mm m
ν ν

ν ν ν ν ν
ν ν ν

−= = ≈
+ + + +     + + +    

    




 (3.12) 

Applying these approximations we find from (3.8)  

( )

2

0

2 2

0 0

2

! !lim ( ) lim 1 1! ! 2! !
2 2

2 1lim
! 2 ! ππ

exp .
π

m

m

mmm

m m

zz
m m

z z
m m

z

νν ν

ν

ν ν
ν ν

ν ν

∞

→∞ →∞ =

−∞ ∞

→∞ = =

 
 
 Ξ =

+     −        

  
= =   

   
 

=  
 

∑

∑ ∑          (3.13) 

This means that in the limiting transition ν →∞  the functions ( )zνΞ  in 
(3.7) approach to a Gaussian function according to  
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2
1 12 ! !

!2 2lim ! I exp ,
1 1! 2 π! !
2 2

z z
z

ν

νν

ν
νν

ν ν
→∞

      −               =  
        −            

       (3.14) 

or by substitution iz y=  with, in general, complex variable y  

2
1 12 ! !

!2 2lim ! J exp ,
1 1! 2 π! !
2 2

y y
y

ν

νν

ν
νν

ν ν
→∞

      −               = − 
        −            

      (3.15) 

where we use the identity 1 12 ! ! π
2 2

   = − =   
   

. From the corresponding  

limiting transition ( )lim uν ν→∞ Ω  using the definition in (3.4) we find  
1

2 22

2
2 2

1 1 1 1! ! ! !
π2 2 2 2lim 1 1 exp .

! ! 4
uu u

ν

ν

ν ν
θ

ν ν

−

→∞

                − −                         − − = −                        

 (3.16) 

We may check the transition from ( )
2πexp

4
uu

 
Ω = − 

 
 to ( )

2

exp
π
zz

 
Ξ =  

 
 

via (2.8) using the auxiliary formula (2.7) with 2 4
π

a = . 

Furthermore, we find using the approximation (3.11) that the factor between 

1 ,0
2

u  and ,0uν  in (3.5) approaches for 1ν   according to  

( ),0

1 ,0
2

! 2 1 , 1 ,
1 1 4π! !
2 2

u
u
ν ν ν ν

ν
= ≈ +
   −   
   

            (3.17) 

with a high precision and monotonically increasing without a finite limit. 
We now show that for high increasing 1ν   the first positive roots of 
( )iyννΞ  and thus also the higher roots increase. For ( )iyνΞ  this is clear since 

it is proportional to ( )J yν  and it is well known that their roots 
( ), , 1, 2,sy sν =   are situated approximately at  

,
1 π .

2 4sy sν
ν = + − − 

 
                      (3.18) 

However in ( )iyνΞ  the argument in the Bessel functions is stretched by the 
factor ,0uν  and therefore on the imaginary axis we have the functions 

( ),0J u yν ν  that diminishes the values for the roots (3.18) by the factor 1
,0uν
−  and 

with the approximation (3.17) the zeros of ( )iyνΞ  are now situated approximately 
at  

3
2

,

,0

1 π
2 4 .
4 1

s
sy

u
ν

ν

ν

ν

 + − 
 ≈

+
                      (3.19) 
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Thus the first roots ( )1s =  of ( )iyνΞ  go with ν →∞  proportional to 
ν  also to infinity. This explains more in detail why the first zeros ( )1s =  of  

the curves for ( )iyνΞ  in Figure 3 go to the limiting case 
2

exp
π
y 

− 
 

 for  

ν →∞ . 
We remind that the starting point for the derivation of the approximations 

was making equal the zeroth moments ,0νΩ  by stretching the argument of the 
functions ( )uνΩ  to new functions ( )uνΩ  leaving constant the amplitudes 

( )0νΩ . The zeros of ( )uνΩ  for ν →∞  move in this process also to infinity 
but “very slowly”. This is a good illustration why the Gaussian function  

2

exp
π
z 

 
 

 which on the imaginary axis y becomes a Gaussian bell function 

2

exp
π
y 

− 
 

 does not possess zeros at all although its Omega function 

( )
2πexp

4
uu

 
Ω = − 

 
 is monotonically decreasing. The first zero and in this way  

all other zeros are moved by the limiting transition to infinity although very 
slowly. The same is the case with the discontinuities of derivatives in the 
functions ( )uνΩ . 

4. Graphical Representations to Zeros of the Xi Function  
to Riemann Zeta Function in Approximations by  
Truncated Taylor Series 

In this Section we consider the Taylor series expansions of the Xi function 
( )zΞ  to the Riemann Xi function ( )sξ  in powers of z defined in (2.14) 

according to  

( ) ( ) ( )
( ) ( )
( )

0

2
2 2

2
0 0

d ch

0
,

2 !

m
m m

m
m m

z u u uz

z z
m

+∞

∞ ∞

= =

Ξ = Ω

Ξ
= Ω =

∫

∑ ∑
 

( ) ( )
( ) ( )
( )

2
2

2 0

01 d .
2 ! 2 !

m
m

m u u u
m m

+∞ Ξ
Ω ≡ Ω =∫              (4.1) 

The coefficients in this Taylor series are the even moments 2mΩ  of the 
function ( )uΩ  as defined. 

We truncate the Taylor series of ( )zΞ  at upper summation numbers 
m M=   

( ) 2
2 2

0
,

M
m

M m
m

z z
=

Ξ = Ω∑                      (4.2) 

and calculate all zeros of these approximations up to a certain maximal M and 
make graphical representations of their zeros. As mentioned the coefficients of 
the series are determined by the even moments 2mΩ  of the function ( )uΩ  
where the odd moments vanish automatically if we determine ( )uΩ  as 
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symmetrical functions according to (2.8) and (2.10). In the following Sections we 
discuss the same also for modified Bessel functions ( )I zν  (in particular for  

1
2

ν = ) and for the limiting transition to a Gaussian function and compare this  

with the zeros for the Xi function (2.14) to the Riemann zeta function. In each 
approximation ( )2M zΞ  of the Taylor series we find 2M complex zeros. It was 
very interesting to see which difference appears between the zeros on the 
imaginary axis and the bulk of the other zeros with increasing number M. This is 
best seen in graphical representations of the zeros. 

For the function ( )uΩ  related to the Riemann hypothesis which is explicitly 
given in (2.14) we calculated this series numerically up to 2 100M =  with 
sufficiently high precision and obtained the following numerical coefficients (we 
write here explicitly down only a few of the obtained coefficients)2  

( ) 2 2

4 4 7 6

9 8 68 48

72 50 75 52

0.497120778188314 1.14859721575727 10

1.23452018070318 10 8.32355481385527 10

3.99222655134413 10 1.05272334981972 10

4.68273888631736 10 1.97190495510121 10

z z

z z

z z

z z

−

− −

− −

− −

Ξ = + ×

+ × + ×

+ × + + ×

+ × + ×



 

79 54 82 56

85 58 89 60

92 62 158 98

162 100

7.87602897895070 10 2.98910175366638 10

1.07971892491186 10 3.71787541158066 10

1.22215971011433 10 3.09393689867254 10

5.11093592293365 10

z z

z z

z z

z

− −

− −

− −

−

+ × + ×

+ × + ×

+ × + + ×

+ × +





   

(4.3) 

It is interesting to mention that the coefficients ( ) ( )22 ! , 1, 2,mm mΩ =   
possess an absolute minimum for 21m =  with ( ) ( ) 7

4242 ! 0 1.1837577 10−Ω = ×  
and, apparently, are (“slowly”) monotonically increasing for 21 42m > = . 

The first term in (4.3) can also be written (see [11])  

( ) ( )

( )

2 2
1

1

2 4
1

1

0.497120778188313661

1 d0 exp π
2 2

1 d exp π
2
0.5 0.002879221811686339,

n

n

t n t
t

s n s

∞+∞

=

∞+∞

=

≈ Ξ = − −

= − −

≈ −

∑∫

∑∫
              (4.4) 

corresponding to the splitting of terms in the representation (2.14) of ( )zΞ  
after the substitution 2eu t s= = . 

In the truncation of the series in powers of z with the highest term 
proportional to 2Mz  we found by numerical solution of the corresponding 
algebraic equations of degree 2M the 2M complex solutions from which the 

 

 

2We made the calculations two times with “Mathematica 3” (up to 2M = 80 and 18 digits) and with 
“Mathematica 6” (up to 2M = 100 and 20 digits) with a time difference of some years. We did not get 
full agreement mainly in the last 5 digits in the higher coefficients and came already near to the limit 
of capabilities of our PC. 
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following pairs of zeros lie on the imaginary axis iz y= 3:  
 

Table 1. Zeros ik kz y= ±  on the imaginary axis for the first 2M approximations up to 
2M = 80. 

2M zeros on imaginary axis 2M zeros on imaginary axis  

2 ±i6.57881 42 ±i14.1347 

(4.5) 

4 - 44 ±i14.1347, ±i20.2528 

6 ±i8.48024 46 ±i14.1347 

8 - 48 ±i14.1347, ±i20.8469 

10 ±i10.0594 50 ±i14.1347, ±i21.0934, ±i21.8540 

12 - 52 ±i14.1347, ±i21.0123 

14 ±i11.4267 54 ±i14.1347, ±i21.0238, ±i23.0702 

16 - 56 ±i14.1347, ±i21.0218 

18 ±i12.6077 58 ±i14.1347, ±i21.0221, ±i24.0109 

20 - 60 ±i14.1347, ±i21.0220 

22 ±i13.5513 62 ±i14.1347, ±i21.0220, ±i24.7095 

24 - 64 ±i14.1347, ±i21.0220 

26 ±i14.0560 66 ±i14.1347, ±i21.0220, ±i24.9857 

28 ±i14.1530, ±i15.8936 68 ±i14.1347, ±i21.0220, ±i25.0147, ±i26.7482 

30 ±i14.1319 70 ±i14.1347, ±i21.0220, ±i25.0093 

32 ±i14.1352, ±i17.2309 72 ±i14.1347, ±i21.0220, ±i25.0102, ±i27.8069 

34 ±i14.1347 74 ±i14.1347, ±i21.0220, ±i25.0101 

36 ±i14.1347, ±i18.3765 76 ±i14.1347, ±i21.0220, ±i25.0101, ±i28.8689 

38 ±i14.1347 78 ±i14.1347, ±i21.0220, ±i25.0101 

40 ±i14.1347, ±i19.3895 80 ±i14.1347, ±i21.0220, ±i25.0101, ±i30.5405 

 
In the following we give graphical illustrations of all zeros of the Taylor 

approximations in the complex z-plane where all zeros up to a certain order 2M 
are taken into account and where one may see how the zeros change from an 
order to a higher order. 

We explain first how the following figures are made. We take a certain order 
2M of the Xi function ( )zΞ  given by the truncated Taylor series (4.2) and 
determine numerically all of its zeros and represents them by points in the 
complex ( )iz x y= + -plane where we choose the same scale on the x- and 
y-axis. Two variants are made, first the representation by isolated points and 

 

 

3From about 2 50M =  on the values given in the third and fourth column on the right-hand side 
did not become fully stable in our calculations in dependence on the number of sum terms taken 
into account in (2.14) and the chosen upper limit of integration that is rather due to the limits of our 
computer capabilities. The genuine value for the third root is near to 25.0109 instead of the stabi-
lized 25.0101 seen in the table. The fourth root is at 30.4249. Therefore, the table reflects one such 
calculation. Onto the following graphical illustrations of zeros this does not have a visible influence. 
From the series (4.3) one may guess how difficult such calculations are even for a computer. 
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second the representation by connected neighbored points. The obtained partial 
pictures are a little different for odd and even M that is represented in Figure 4 
for 29M =  and 30M = . 

Then we calculate and represent all zeros of the Taylor approximations of 
( )2M zΞ  (i.e. of ( )2 0M zΞ = ) up to a certain maximal M and represent the 

zeros in described way by isolated points and by connected neighbored points in 
each of the approximations up to the maximal M. This is made in Figure 5 and 
Figure 6 for maximal 2 60M = . These approximations capture already 
approximations of the first two nontrivial zeros of the Riemann zeta function on 
the positive y-axis at 1 14.135y ≈  and at 2 21.022y ≈  seen in Figure 5 by 
some accumulation of points at these values. Figure 6 shows the same picture 
with all neighbored points in each approximation joined as described. Since not 
all details are well recognizable in Figure 6 the same is made in Figure 7 but  
 

 

Figure 4. Zeros of ( ) ( ) ( )
0

d chz u u uz
+∞

Ξ = Ω∫  for ( )uΩ  according to (2.14) (i.e. for Riemann hypothesis) in approximation of 

the Taylor series 2
20

M m
mm
z

=
Ω∑  with 2 58M =  and 2 60M = . The obtained 58, respectively, 60 zeros are shown in the complex 

plane as points without mutual distortion of the axis lengths. In the pictures to the right-hand sides we have joined neighbored 
numbers. On the imaginary axes where it is not clear which zeros are neighbored to zeros off the axis we went in clockwise sense 
on the positive part first to the highest zero and then to the next lower zeros and so on and then from the lowest zero on the 
imaginary axis clockwise to the next complex zero. This shows also the way we went in the next picture where the details on the 
imaginary axis are not so clearly visible. The two zeros at 1 14.135y ≈ ±  and at 2 21.022y ≈ ±  on the positive and negative 

imaginary axes are already decoupled from the main bulk of zeros and the zeros at 3 25.0y ≈ ±  begin only to decouple. 

https://doi.org/10.4236/apm.2019.93013


A. Wünsche 
 

 

DOI: 10.4236/apm.2019.93013 296 Advances in Pure Mathematics 
 

 
Figure 5. Zeros of Xi function ( )zΞ  to Riemann zeta function in the first 30 approximation 

( ) 2
2 20

M m
M mm

z z
=

Ξ = Ω∑  of its Taylor series with 2 2,4, ,60M =  . The neighbored zeros are not joined in 

each approximation. We see already the beginning accumulation of points at the first two genuine zeros of 
the Riemann zeta function at 1 14.135y ≈ ±  and 2 21.022y ≈ ± . 

 

 
Figure 6. Zeros of Xi function ( )zΞ  to Riemann zeta function in the first 30 approximation 

( ) 2
2 20

M m
M mm

z z
=

Ξ = Ω∑  of its Taylor series with 2 2,4, ,60M =  . The neighbored zeros are joined in each 

approximation separately. In the immediate neighborhood of the axis the picture becomes a little confusing 
since then happens a big step to the smallest genuine zero of the Xi function and then rises up to higher 
zeros on the imaginary axis before it goes to the main bulk of zeros outside the imaginary axis. 
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Figure 7. Zeros of Xi function ( )zΞ  to Riemann zeta function in the first 20 approximation 

( ) 2
2 20

M m
M mm

z z
=

Ξ = Ω∑  of its Taylor series with 2 2,4, ,40M =  . The neighbored zeros are joined in each 

approximation separately. We see that the zeros of the main bulk in the approximations go slowly but with 
great regularity (though not proved) to infinity for M →∞  and vanish in this way as zeros of the whole 
function. Only the first zero at 1 14.135y = ±  as genuine zeros of the Riemann zeta function are seen here 
as decoupled and stabilized. 

 
only for the first 40 Taylor approximations where this is clearer to see. These 
pictures show that the zeros on the imaginary axis stabilize from order to higher 
orders at the genuine zeros of the Riemann zeta function on the y-axis and 
separate themselves from the main bulk of zeros in a considered order which do 
not lie on the imaginary axis. That this remains in this way for M →∞  is, 
clearly, only a conjecture but in Section 8 we try to understand this by some 
analytic approximations.  

In Figure 7 for the case 2 40M =  we see only one accumulation point of the 
zeros on the positive and negative y-axis corresponding to the two zeros 

1 14.135y ≈ ± . The four higher zeros on the positive y-axis (correspondingly 
negative y-axis) belong already to not yet stabilized approximations to the 
second zeros at 2 21.022y ≈ ± .  

It is interesting to compare the functions ( )uΩ  and ( )zΞ  to the Riemann 
zeta function with a corresponding Gaussian functions ( )G uΩ  and ( )G zΞ  
where the two parameters of the Gaussian function ( )G uΩ  which are the 
amplitude and the stretching of the parameter u are chosen in the way that the 
first two terms of the Taylor series approximation are equal. For the function 
( )uΩ   
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( ) ( )
( ) ( ) ( ) ( )2 4

2 4

2 4

0 0
0

2! 4!
1.78678760 16.7305008 67.6802 ,

u u u

u u

Ω Ω
Ω = Ω + + +

≈ − + −





          (4.6) 

this means for the Gaussian function ( )G uΩ   

( ) ( )
( ) ( )
( )

( )
( ) ( ) ( ) ( )( )

( )
( )

2
2

G

222
2 4

2

2

2 4

0
0 exp

2 0

00
0

2 2!2 0

1.78678760 exp 9.363452465

1.78678760 16.7305008 78.3276 .

u u

u u

u

u u

 Ω
Ω = Ω  

 Ω 

ΩΩ
= Ω + + +

Ω

≈ ⋅ −

≈ − + −





         (4.7) 

One may check that generally  

( ) ( )G 0.u uΩ ≥ Ω >                         (4.8) 

For the moments of these functions result the inequalities ( 0,1,2,m =  )  

( ) ( ) ( ) ( )2 2
G,2 G 20 0

1 1d d 0,
2 ! 2 !

m m
m mu u u u u u

m m
∞ ∞

Ω ≡ Ω > Ω = Ω >∫ ∫  

( ) ( ) ( ) ( ) ( ) ( )2 2
G G,2 20 2 ! 2 ! 0 .m m

m mm mΞ ≡ Ω > Ω ≡ Ξ             (4.9) 

The resulting function ( )G zΞ  is a Gaussian function of the complex variable 
iz x y= +   

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )

2
G 2 2

2

π 0 0
0 exp

2 0 2 0

0.517487503 exp 0.0266995535 .

z z

z

 Ω Ω
Ξ = Ω − − 

 Ω Ω 

≈ ⋅

           (4.10) 

It possesses another amplitude in comparison to ( )zΞ  (i.e. to 0.497120778). 
Clearly, as a Gaussian function it does not possess zeros on the y-axis and zeros 
at all. The ( )uΩ  function to the Riemann Xi function and the considered 
modified Bessel functions possess the common property that they vanish in 
infinity more rapidly (or are even finite) than the Omega function to a Gauss 
function. In principle, this does not exclude Omega functions which vanish less 
rapidly. For example, a function ( ) ( )( )e , 0,Re 0uu uα αΩ = ≥ >  provides  

( ) 2 2z
z

α
α

Ξ =
−

 without zeros of ( )zΞ  at all in finite regions of the complex  

plane but with poles that regarding the zeros is the same as for a Gauss function 
(see Section 8 where this is explained by motion to infinity from finite 
approximations). However, by comparison with Gauss functions we may get 
inequalities for the moments of the considered Omega functions. 

5. Zeros of the Taylor Series Approximations of the  

Function 
( )z
z

sh
  

In this Section we now come back to the modified Bessel functions ( )zνΞ  in 
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(3.7) to the Omega functions ( )uνΩ  in (3.4). From this class of functions 
which in the limit ν →∞  go to a Gaussian function we choose the function  

( )sh z
z

  

( ) ( ) ( )
1 1
2 2

sh
,

z
z z

z
Ξ = Ξ =                      (5.1) 

and give graphical representations of the zeros for its Taylor series approximations  

( ) ( ) ( )

22

1 1,2 ,2 0 02 2

1 !
2 .

12 1 ! 2! !
2

mmM M

M M m m

z zz z
m m m= =

 
    Ξ = Ξ = =  +    + 
 

∑ ∑       (5.2) 

They are represented in Figure 8 and in Figure 9 up to the approximation for 
2 60M =  with the difference that in the first all zeros are presented together 
and in the second we have joined the neighbored zeros in each approximations.  

The genuine zeros of 
( )sh z
z

 lie at 0 πz n=  according to  

 

 

Figure 8. Zeros of the function ( ) ( )
( )

2

0

sh
2 1 !

m

m

z zz
z m

∞

=
Ξ = =

+∑  in the first 30 approximations ( ) ( )
2

2 0 2 1 !

m
M

M m

zz
m=

Ξ =
+∑  of its 

Taylor series with 2 2,4, ,60M =  . The neighbors within an approximations are not joined and it is not fully easy to see which 
point belongs to a certain approximation. 
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Figure 9. Zeros of the function ( ) ( )
( )

2

0

sh
2 1 !

m

m

z zz
z m

∞

=
Ξ = =

+∑  in the first 30 approximations ( ) ( )
2

2 0 2 1 !

m
M

M m

zz
m=

Ξ =
+∑  of its 

Taylor series with 2 2,4, ,60M =  . The neighbors within each approximations are here joined. Since in each approximation a 
point on the positive imaginary goes approximately to the first zeros at 1 πy = ±  the connections on the imaginary axis are not 
easily recognizable. 

 

( ) ( )0
0

0

sh
π, 1, 2, 0.

z
z in n

z
= = ± ± ⇒ =                (5.3) 

We may expect that for other low values of index 0ν ≥  in the functions 
( )zνΞ  we get similar illustrations with small topological distortions of the  

pictures for ( ) ( )
1
2

sh z
z

z
Ξ = . 

The function 
( )sh z
z

 possesses a peculiar importance since for monotonically  

decreasing functions ( )uΩ  (for 0 u≤ < +∞  with ( ) 0Ω +∞ = ) we may apply 
the second mean-value theorem (Gauss-Bonnet theorem; see, e.g. Courant [14] 
(chap. IV), Widder [15]) to bring the integral (2.14) to the form  

( ) ( ) ( ) ( )
( )( )0

0

sh
d ch 0 .

w z z
z u u uz

z
+∞

Ξ = Ω = Ω∫             (5.4) 

Herein, ( )0w z  is a mean value function from which we may assume that it is 
an analytic function of z since the integral on the left-hand side depends 
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analytically on z. In next Section we consider shortly the problem of zeros of the 
function ( )zΞ  of the form (5.4). 

6. General Conditions for Zeros of Functions 
( )( )w z z

z
0sh

 

The problem of zeros of functions ( )zΞ  of the form (5.4) leads essentially to 
the problem of zeros of ( )( )0sh w z z  with exclusion of the zero at 0z = . If we 
separate the real and imaginary part of ( )0w z  according to  

( ) ( ) ( )0 0 0, i , , i ,w z u x y v x y z x y= + = +                 (6.1) 

and if we then separate the real and imaginary part of ( )( )0sh w z z  the function 
(5.4) can be written in the form (the separation of real and imaginary part in the 
first factor is uninteresting since a zero at 0z =  is excluded)  

( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( ){

( ) ( )( ) ( ) ( )( )}

0 0 0 0

0 0 0 0

0 0 0 0

0
i sh , , i , ,

i
0

sh , , cos , ,
i

ich , , sin , , .

x y u x y x v x y y u x y y v x y x
x y

u x y x v x y y u x y y v x y x
x y

u x y x v x y y u x y y v x y x

Ω
Ξ + = − + +

+

Ω
= − +

+

+ − +

  (6.2) 

From both forms of the right-hand side in (6.2) we find that for zeros of 
( )ix yΞ +  the following two conditions [11]  

( ) ( )0 0, , π, 1, 2, ,u x y y v x y x n n+ = = ± ±   

( ) ( )0 0, , 0,u x y x v x y y− =                    (6.3) 

have to be satisfied at the same time and this is necessary and sufficient. 
We now consider the special case of ( )zΞ  on the imaginary axis y and find 

from (6.2)  

( ) ( ) ( ) ( )( )( ) ( )
( )( )0

0 0

sin0
i sin 0, i 0, 0 .

w y y
y u y v y y

y y
Ω

Ξ = + = Ω       (6.4) 

Since due to symmetries (2.8) the function ( )iyΞ  has to be a real-valued 
function that for 0y ≠  in (6.4) is only possible if ( )0 0,v y  vanishes we find 
on the imaginary axis  

( ) ( ) ( ) ( )( ) ( ) ( )0 0 0

0
0, 0 i sin 0, d cos .v y y u y y u u uy

y
+∞Ω

= ⇒ Ξ = = Ω∫    (6.5) 

This follows also immediately by application of the second mean-value 
theorem to the integral for ( )iyΞ  where the mean value can only take on real 
values here in dependence on y as parameter. Thus for zeros on the imaginary 
axis ( )0x =  the two conditions (6.3) reduce to only one condition  

( )0 0, π, 1, 2, .u y y n n= = ± ±                     (6.6) 

The condition in the second line of (6.3) is then identically satisfied. If one 
knows the function ( )0 0,u y  one may determine the zeros on the imaginary 
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axis analytically or, at least, numerically but for many problems including the 
considered one it is not necessary to know these zeros explicitly. 

We return to the general case of general values x on the real axis with the 
conditions (6.3) for zeros. From (2.8) follows that ( )zΞ  should be an analytic 
function for all z for which the integral exists that means to satisfy the Cauchy- 
Riemann equations. For a general analytic function  
( ) ( ) ( ) ( )i , i ,w z w x y u x y v x y= + = +  one can derive by integration of the 

Cauchy-Riemann equations the following relations in case of ( )0, 0v y =  [11]  

( ) ( ) ( ) ( ), cos 0, , , sin 0, .u x y x u y v x y x u y
y y

   ∂ ∂
= = −   ∂ ∂   

     (6.7) 

Now come into play the following operator identities (operator identities are 
such identities which can be applied to arbitrary functions to provide function 
identities) [11]  

cos cos sin ,x y y x x x
y y y

     ∂ ∂ ∂
= −     ∂ ∂ ∂     

 

sin cos sin .x y x x y x
y y y

     ∂ ∂ ∂
= +     ∂ ∂ ∂     

             (6.8) 

More general identities of such kind can be derived by representing the Cosine  

and Sine functions by Exponential functions and using that exp ix
y

 ∂
± ∂ 

  

applied to analytic functions ( )f y  displace the argument of these functions to 
( )if y x±  that is discussed in [11]. Using (6.7) and (6.8) we may write the 

conditions for zeros (6.3) in the following way  

( ) ( )0 0π cos sin 0, cos 0, ,n y x x x u u x yu y
y y y

      ∂ ∂ ∂ = − =      ∂ ∂ ∂       
 

( ) ( )0 00 cos sin 0, sin 0, .x x y x u y x yu y
y y y

      ∂ ∂ ∂ = + =      ∂ ∂ ∂       
    (6.9) 

If we now apply the operator cos x
y

 ∂
 ∂ 

 to the first of these conditions and 

the operator sin x
y

 ∂
 ∂ 

 to the second one we obtain  

( ) ( )2 2
0 0cos 0, π, sin 0, 0.x yu y n x yu y

y y
   ∂ ∂

= =   ∂ ∂   
        (6.10) 

By addition of both equalities using the operator identity  

2 2cos sin 1x x
y y

   ∂ ∂
+ =   ∂ ∂   

                   (6.11) 

follows from (6.10)  

( ) ( )0 0, π, 1, 2, .yu y n n= = ± ±                    (6.12) 

This consequence for zeros results from both conditions (6.3) and provides a 
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necessary condition for the imaginary values y of all zeros for which their 
imaginary value has to agree with one of the solutions for zeros on the imaginary 
axis. Thus we have to take all solutions y for zeros on the imaginary axis which 
we denote now by 0y  and which satisfy the conditions  

( )
( )( )0 0 0

0 0 0
0

sin 0,
0, π 0,

y u y
y u y n

y
= ⇔ =           (6.13) 

and have to look for solutions x at the same time of both equations  

( ) ( )0 0 0 0, , π,u x y y v x y x n+ =  

( ) ( )0 0 0 0, , 0.u x y x v x y y− =                  (6.14) 

If one finds such solutions 0x x=  of one of the conditions then it is almost in 
all cases not a solution of the other condition and, therefore, 0 0ix y±  is then 
not a zero. Only in very few cases of 0y  depending on the function ( )uΩ  in 
(2.8) one would expect to find values 0 0x x= ≠  as solution of both conditions 
(6.14). This is a very strong restriction to the satisfaction of both conditions 
(6.14). It seems that the set of functions ( )uΩ  with such a property can be only 
a set of measure zero within the set of all possible functions ( )uΩ  in (2.8). One 
such case is when ( )uΩ  is stepwise constant and monotonically decreasing 
with equal lengths 0u  of the steps and this is the only case (Appendix A). 
The corresponding functions ( )zΞ  are then superpositions of functions  

( ) ( )0sh
, 1,2,

mu z
m

z
=   with different amplitudes. This was not correctly  

discussed in [11] and Katsnelson [16] showed an error in a short Email4 and we 
recognized it [17] but it was already seen in [11] that the possible zeros off the 
imaginary axis, i.e. 0 0 0iz x y= ±  of ( )zΞ  with 0 0x ≠ , must possess imaginary 
parts 0y  which agree with one of the zeros on the imaginary axis. Reactions 
regarding concern about the applicability of the Bonnet theorem for present case 
were expressed by others, in particular, in a nice Email by Gélinas [18] with 
appended file but I could not find it published now. This also means that the 
Riemann hypothesis which is the absence of zeros of the Riemann Xi  

function off the imaginary axis through 1
2

x =  was not correctly solved by the  

second mean-value approach to this time although it was very improbable that a 
nontrivial zero of the Riemann zeta function off the imaginary axis has exactly  

the same imaginary value as that of one on the imaginary axis through 1
2

x = .  

We add now in Appendix A a further important building stone to a full proof of 
the Riemann hypothesis by the second mean-value theorem which seems to be 

 

 

4The full text in the Email from 06.01.2017 with the subject line “Riemannsche Vermutung” was the 
following: “The result is wrong. Counterexample: 

( ) 1uΩ =  for 0 1u≤ ≤   

( )uΩ =   for 1 2u< ≤ , 0>  but small enough. 

( ) 0uΩ =  for 2u > . 
Victor Katsnelson”. 
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“deciding” (?). 

7. Zeros of Taylor Series Approximations of Gauss  
Function and Absence of Genuine Zeros  
Understood in Uncommon Way 

We now consider the Gauss function ( ) ( )2
G expz zΞ =  and calculate all zeros 

of its low-order Taylor series approximations ( )G,2M zΞ   

( ) ( )
2

G,2
0

, 1, 2, .
!

mM

M
m

zz M
m=

Ξ = =∑                   (7.1) 

In Figure 10 and Figure 11 we illustrate then their zeros up to a certain 
maximal M in the same way as we did this for the Xi function to the Riemann 
zeta function in Section 4 and for the Xi functions to the modified Bessel  

function 
( )sh z
z

 in Section 5. This provides good analogies and shows the  

 

 

Figure 10. Zeros of Gaussian Function ( ) ( )2expz zΞ =  in the first 30 approximations ( )
2

2 0 !

m
M

M m

zz
m=

Ξ = ∑  of its Taylor series 

with 2 2,4, ,60M =  . The neighbors within an approximations are here not joined and it is not easily to see which point belongs 
to a certain approximation. 
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Figure 11. Zeros of Gaussian Function ( ) ( )2expz zΞ =  in the first 30 approximations ( )
2

2 0 !

m
M

M m

zz
m=

Ξ = ∑  of its Taylor series 

with 2 2,4, ,60M =  . The neighbors within an approximations are joined in each approximation. The whole bulk of zeros in 
each approximation goes here with increasing higher approximation to infinity. 
 

essential differences in the pictures for the Gauss function to the other discussed 
functions with genuine zeros when we increase the order of approximation. It 
becomes obvious that in the limiting transition to the Gaussian function 

( )2exp z  all zeros of the finite-order Taylor approximations go to infinity with 
great uniformity from order to higher order and the Gaussian function does not 
possess genuine zeros in finite regions of the complex z-plane. In Section 3 we 
established in (3.13) a limiting transition from modified Bessel functions with 
stretched arguments to a Gauss function and it was interesting to see how the 
zeros of finite-order Taylor series approximations move from approximation to 
the next higher approximation in the limiting case to infinity. The pictures for 
the Gaussian functions are very homogenous in contrast to the considered 
functions with genuine zeros. This provides an uncommon view onto the  

absence of zeros of Gaussian functions 
2 2

exp
4

a z 
 
 

 despite a representation in  
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the form (2.7). 

8. Approximations of the Zeros from One to the Next  
Higher Orders 

The zeros in each approximation for the considered functions are either pairs 
( ) ( )i , ik k kz y y≡ −  on the imaginary axis or in majority quadruples 
( ) ( )i , i , i , ik k k k k k k k kz x y x y x y x y≡ + − − + − −  and there was no doubt which are 
pairs and which are quadruples even in case that their real part kx  is small 
compared with maximal modulus of the zeros and since the whole number of 
zeros has to be 2M. It is noticeable that new zeros on the imaginary axis when 
they first appear in the 2M-th approximation may disappear in the next higher 
( )2 2M + -th approximation from the imaginary axis and reappear then in the 
( )2 4M + -th approximation as can be also seen from Table 1. In every case 
when there appeared a new zero on the imaginary axis the next lower zeros 
began to stabilize and to decouple from the main bulk of zeros in the complex 
domain and stabilize there in each new ( )2 2M + -th approximation as we may 
see in Figures 4-7 for the Xi function ( )zΞ  to the Riemann hypothesis and in  

Figure 8 and Figure 9 for a modified Bessel function 
( )sh z
z

. In Figure 10 and  

Figure 11 for the function ( )2exp z  the zeros on the imaginary axis show a 
similar picture with alternatingly generating and not generating zeros on the 
imaginary axis from one approximation 2M to the next higher approximation 
2 2M + . The main bulk of zeros in the complex domain in all these pictures 
drifts with their modulus to infinity although very slowly that we can see in 
Figure 11. In the other pictures this is the main bulk of zeros which does not 
correspond to genuine zeros of the considered functions whereas the lower zeros 
on the imaginary axis stabilized more and more to the genuine zeros. 

To understand the discussed behavior of the zeros from order to next higher 
order we try to discuss this now in some approximation. We suppose that we 
have the Taylor series approximation of a Xi function ( )zΞ  in the order 2M in 
the form  

( ) 2
2 2

0
.

M
m

M m
m

z z
=

Ξ = Ω∑                       (8.1) 

We assume that 0z  is an exact zero in 2M-th approximation that means a 
solution of the equation  

2
2 0

0
0.

M
m

m
m

z
=

Ω =∑                          (8.2) 

Then we try to calculate next higher solutions 0z z z= + ∆  which are near to 

0z  from the next higher 2 2M +  approximation which satisfies the equation  

( ) ( )2 2 2
2 0 2 2 0

0
0.

M m M
m M

m
z z z z +

+
=

Ω + ∆ +Ω + ∆ =∑             (8.3) 

In full generality this equation would provide the 2 2M +  solutions of zeros 
from only one arbitrary solution 0z  in the considered approximation but in 
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such generality we cannot and do not want to solve it. Well soluble is the 
equation for additions to 0z  leading to a quadratic equation for z∆ . This 
provides two solutions in a neighborhood for the considered 0z . Thus we now 
make an expansion of the left-hand side in (8.3) up to quadratic terms in z∆   

( ) ( )

( ) ( )( )

22 2 1 2 2
2 0 2 0 2 0

0 0 0
0

2 2 2 1 2 2
2 2 0 0 0

0 2 2 1

2 2 1 2 ( ) .

M M M
m m m

m m m
m m m

M M M
M

z m z z m m z z

z M z z M Mz z

− −

= = =
=

+ +
+

= Ω + Ω ∆ + − Ω ∆

+Ω + + ∆ + + ∆

∑ ∑ ∑
      (8.4) 

If we neglect from the additional terms of the ( )2 2M + -th approximation 
the terms proportional to z∆  and ( )2z∆  as small terms we obtain the  

following quadratic equation for 
0

z
z
∆   

( ) ( )

2
2 2 22 0

0 2 2 0

2 20 0
2 0 2 0

0 0

2
0.

2 1 2 1

M
m

Mm
m M

M M
m m

m m
m m

m z
zz z

z zm m z m m z

+
= +

= =

Ω
  Ω∆ ∆

+ + = 
  − Ω − Ω

∑

∑ ∑
       (8.5) 

The two solutions of this equation are  

( )

( ) ( )

2
2 0

0

20
2 0

0

2
2

2 22 0
0 2 2 0

2 2
2 0 2 0

0 0

2
1
2 2 1

2
4

,
2 1 2 1

M
m

m
m

M
m

m
m

M
m

Mm
m M

M M
m m

m m
m m

m z
z

z m m z

m z
z

m m z m m z

=

=

+
= +

= =

 Ω∆ = −
 − Ω


  Ω  Ω  ± − 
  − Ω − Ω    

∑

∑

∑

∑ ∑

       (8.6) 

or more compactly written  

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

21 1 2
2 0 2 0 2 2 0

2 2 2
0 0 2 0 0 2 0 2 0

2
.

M
M M M

M M M

z z zz
z z z z z z

+
 Ξ Ξ Ω∆
 = − ± −
 Ξ Ξ Ξ 

         (8.7) 

where ( ) ( )2 0
n
M zΞ  are the n-th derivatives of ( ) ( )2

n
M zΞ  taken at 0z z= . One 

may express this also by the logarithmic derivative of ( ) ( )1
2M zΞ  that, however, is 

inconvenient since it goes into the formula as a denominator. 
For the most interesting case of points 0 0iz y=  on the imaginary axis we find 

from (8.6)  

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

2
2 0

0

20
2 0

0

2
2

1 2 22 0
2 2 00

2 2
2 0 2 0

0 0

1 2
i
2 1 2 1

1 2 4 1
.

1 ( 2 1 1 2 1

M m m
m

m
M m m

m
m

M m m
M Mm

Mm
M Mm mm m

m m
m m

m y
z
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The sum terms in braces are real ones but likely change their signs at the zeros 
(we think that it can be proved). The first sum term in braces changes a little the 
imaginary value of the root but the second term with the root with the two 
possible signs must be real or imaginary. In case of negative values of the content 
of the root it gives two imaginary values and together with the whole expression 
it provides two corrections off the imaginary axis. This can be seen in many of 
the picture for the roots. However a full discussion of the behavior from 
approximation to next higher approximation by (8.8) is complicated and has to 
describe how the roots stabilize on the imaginary axis in dependence on the 
moments. Such a discussion we cannot give to this time. 

9. About the Zeros of an Unorthodox Function in Their  
Taylor Series Approximations 

We consider here shortly for comparison with the pictures for the up to now 
discussed functions with a representation of the principal form (2.8) the 
following unorthodox entire function of an essential other kind  

( )
0

,
!

n

n

zf z
n

∞

=

= ∑                            (9.1) 

with respect to the zeros in its finite Taylor series approximations. This function 
plays a role for the calculation of the properties of coherent phase states [19]. 

The function ( )f z  in (9.1) possesses even and odd powers of variable z and, 
therefore it is not symmetrical with mirror symmetry to the real and imaginary 
axis but only symmetrical to the real axis. Taking separately the even and odd 
powers of z and applying the duplication formula for the factorials one may 
represent (9.1) in the form  

( ) ( )
1 2
4

0

! !π , 0 1,
1 12 ! 2! !
2 2

m

m
m

z m z mf z f
m m m

∞

=

 
 
 = + =
    − +        

∑       (9.2) 

with the possible approximations in the coefficients for 1m  (see (3.11))  
1 1
4 4! 1 ! 3, .

1 14 4! !
2 2

m mm m
m m

−
   ≈ + ≈ +         − +   

   

           (9.3) 

This shows that ( )f z  for real positive 0z x= >  grows moderately faster  

than the function 
2

exp
2
x 

 
 

. Therefore, the function ( )
2

exp
2
z f z

 
− 
 

 is  

moderately increasing for real 0z x= >  and moderately decreasing for 
0z x= <  with the Taylor series  

( ) ( )
( )

12 2
4

0 0

1 ! ! !exp π ,
1 12 ! !2 ! 2! !
2 2

l ml l

l
l m

lz z m z mf z
m l ml m m

−∞

= =

 
 −   − = +   −      − +        

∑ ∑  (9.4) 
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and, clearly, possesses the same zeros as the function ( )f z . 
We now give a graphical representation of the zeros of the Taylor series 

approximations  

( )
0

,
!

nN

N
n

zf z
n=

= ∑                         (9.5) 

of the function ( )f z  up to 120N =  in Figure 12. Apparently, the 
computer calculated correctly up to this high approximation that we judged only 
from the optical impression of the figure in comparison to figures of such kind 
for smaller values N. To join neighbored points of each Taylor series approximation, 
at least, for such high maximal N becomes unfavorable. 

In Figure 12 we see the first three pairs of zeros as some accumulation points.  
 

 

Figure 12. Zeros of unorthodox though entire function ( ) 0 !

n

n

zf z
n

∞

=
= ∑  in its first 120 Taylor approximations 

( ) 0 !

n
N

N n

zf z
n=

= ∑  with 1,2, ,120N =  . The first pairs of zeros at 1 1.71697 i3.18011z = ± , 2 2.88669 i4.09032z = ± , 

3 3.75716 i4.81893z = ±  appear as accumulation points in this scheme. 
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Up to now we calculated only the first 4 pairs of zeros with sufficient accuracy 
[19] but S. Skorokhodov from the “Computing Centre of the Russian Academy 
of Sciences” calculated much more pairs of zeros with an essentially higher 
accuracy as he informed me in a nice email with the calculated zeros in the 
appended file [20] (see also [19]). These zeros agreed with my few in lower 
accuracy calculated zeros5. 

10. Conclusions 

In this article we illustrated the behavior of the zeros for low-order Taylor series 
approximations of the Xi function ( )zΞ  as equivalent to the Riemann zeta 
function ( )zζ  (in view of their nontrivial zeros) and the same of the modified  

Bessel functions ( )2 I z
z

ν

ν
 
 
 

. By scaling of the variable z in the modified Bessel  

functions we derived by limiting transition ν →∞  the Gaussian function 
proportional to ( )2exp z  (with additional scaling of variable z). The considerations 
do not pretend to be a proof of the Riemann hypothesis but support the belief to 
its validity. 

There are some bothering problems connected with the zeros of the Riemann 
zeta function and of functions ( )zΞ  of the kind (2.8) with symmetrical 
functions ( )uΩ  which are monotonically decreasing up to their vanishing on 
the u-axis and which are the differences between strictly monotonically and 
discontinuously vanishing of these functions. The application of the second  

mean-value theorem leads to the Bessel function of the kind ( ) ( )
1
2

shπ I
2

z
z

z z
=   

with only zeros on the imaginary axis. One may imagine how the mapping onto 
these function by the second mean-value theorem transforms continuously 
functions with zeros only on the imaginary axis to the mentioned Bessel 
function but it is difficult to imagine how this is implemented in this Bessel 
function for functions of the basic integral representation (2.8) with additional 
zeros outside the imaginary axis but in Appendix A it is shown how this 
apparent contradiction can be solved by a limiting transition. It seems that the 
presence of zeros off the imaginary axis is restricted to step-wise discontinuous 
monotonically decreasing functions with periodic steps where the ( )uΩ   

function to 
( )sh z
z

 itself is step-wise discontinuous and this vanishes in the  

limiting transition to step lengths zero. Is the second mean-value theorem 
applicable to include such cases? We think that it is applicable. 

The time is now mature for a final solution of all aspects of the Riemann 
hypothesis concerning the nontrivial zeros of the Riemann zeta function. 
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Appendix A: Stepwise Constant Functions ( )uΩ  and a  
Further Building Stone for the Proof of the Riemann  
Hypothesis 

In this Appendix we deal with the general case of monotonically decreasing 
nonnegative real-valued ladder functions ( )uΩ  with equal step lengths which 
satisfy the condition  

( ) ( ) ( )1 2 1 20 , 0,u u u u≤ ≤ ⇒ Ω ≥ Ω Ω ∞ =            (A.1) 

with small improvements in comparison to [17], in particular, also in the 
notations. 

Thus we consider now the following stepwise constant functions ( )uΩ  with 
equal step lengths 0u  and with monotonically decreasing discrete amplitude  

platforms ( )0
1 , 0,1, 2,
2

n u n  Ω + =  
  

   

( ) ( ) ( )( ){ }0 0 0
0

1 1 ,
2n

u n u u nu u n uθ θ
∞

=

  Ω = Ω + − − − +  
  

∑        (A.2) 

where ( )xθ  denotes the Heaviside step function. The function ( )zΞ  
possesses then the form  

( ) ( ) ( )

( )( ) ( ){ }

( )( )

0

0 0 0
0

0 0 0
0

d ch

1 1 sh 1 sh
2

1 1 3 sh 1 .
2 2

n

n

z u u uz

n u n u z nu z
z

n u n u n u z
z

+∞

∞

=

∞

=

Ξ = Ω

  = Ω + + −  
  

       = Ω + −Ω + +       
       

∫

∑

∑

     (A.3) 

Due to monotonicity all amplitudes 0 0
1 3
2 2

n u n u      Ω + −Ω +      
      

 in front  

of ( )( )0sh 1n u z+  are nonnegative. We calculate now these functions more in 
detail. Using the relation  

( )( ) ( ) ( )( )sh 1 sh U ch ,nn w w w+ =                  (A.4) 

to the Chebyshev polynomial ( )Un w  we find from (A.3)  

( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )( )

( )

0
0 0 0

0

2 20
0 0 0

0 0

0
0

0

sh 1 3 U ch
2 2

sh 1 !1 3 2ch
2 2 ! 2 !

sh 1 3
2 2

n
n

n
k

n k

n k

n

u z
z n u n u u z

z

u z n k
n u n u u z

z k n k

u z
n u n

z

∞

=

 
 ∞   −

= =

∞

=

       Ξ = Ω + −Ω +       
       

− −       = Ω + −Ω +        −       

    = Ω + −Ω +   
   

∑

∑ ∑

∑ ( )( )0 0
0
ch 2 .

n

l
u n l u z

=

  
−  

  
∑

 

(A.5) 

The stable zeros on the imaginary axis under variation of u0 are determined by 
( )0 π, 1, 2,u y m m= = ± ±   but due to symmetry y y↔ −  we discuss  

sometimes so as if we take into account only positive y. We now bring the factor 
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which determines these zeros in (A.5) to the left-hand side and consider the 
zeros of the second factor by its separation in real and imaginary part  

( )
( )

( )( ) ( )( ){
( )( ) ( )( )}

0 0
00

0 0
0

0 0

1 3
sh 2 2

ch 2 cos 2

ish 2 sin 2 .

n

n

l

z z
n u n u

u z

n l u x n l u y

n l u x n l u y

∞

=

=

Ξ        = Ω + −Ω +       
       

⋅ − −

+ − −

∑

∑           (A.6) 

If we insert for y any zero my  on the imaginary axis determined by 

0 πmu y m=  with 0m ≠  then the imaginary part in (A.6) vanishes and we find  

( ) ( )
( )( )

( )( )( )( )

0 0
00

2
0

0

i π i π 1 3
2 2sh i π

ch 2 1 .

n

n n l m

l

x m x m
n u n u

u x m

n l u x

∞

=

−

=

+ Ξ +        = Ω + −Ω +       +        

⋅ − −

∑

∑
     (A.7) 

In dependence on the chosen m and the amplitudes  

( )0
1 , 0,1, 2,
2

n u n  Ω + =  
  

  one may solve the equations  

( ) ( )( )0 0 0
0 0

1 3 1 ch 2 0,
2 2

n nm

n l
n u n u n l u x

∞

= =

       Ω + −Ω + − − =       
       

∑ ∑    (A.8) 

and all solutions 0x x=  provide zeros 0 0 i πz x m= +  of ( )zΞ  for the Omega 
function in (A.2) off the imaginary axis. If we here formally insert 0m =  on the  

left-hand side of (A.8) we see using 0 0
1 3 0
2 2

n u n u      Ω + −Ω + >      
      

 that  

this left-hand side becomes positive with no solution for x at all. If we make the 
steps 0u  smaller then the first zero 1z y=  on the imaginary axis grows  

according to 1
0

πy
u

= . For the limiting transition 0 0u →  and 1y →∞  it is  

not important that we choose the amplitude differences in the middle between  

two steps as 0 0
1 3
2 2

n u n u      Ω + −Ω +      
      

 and this could be, e.g. also  

( ) ( )( )0 01nu n uΩ −Ω + . 
In Figure A1 we illustrate this by a stepwise function ( )uΩ  of the kind (A.2) 

which approximates the Omega function (2.14) to the Riemann zeta function. If 
we now make the length 0u  of the steps smaller then the first imaginary zero  

1y  of the ladder approximation becomes larger according to 
0

π
m

my
u

=  and  

goes for 0 0u →  to infinity and since any zero 0 0 i mz x y= +  off the imaginary 
axis must possess an imaginary value which is the same as from zeros of the 
imaginary axis [11] (see also (6.12)) such values 0z  also go to infinity in the 
complex plane. Therefore, in the limiting case when 0 0u →  and the ladder 
curve approaches the function ( )uΩ  exactly their zeros off the imaginary also 
have to go to infinity and they vanish from the pictures of finite-valued zeros in  
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Figure A1. Omega function to Riemann Xi function (2.14) approximated by stepwise 
constant functions. The steps of equal length 0u  are here chosen 0 0.05u =  and 
0.025 and the first zero 1y  of the approximation curve of ( )zΞ  on the 

imaginary axis are here at 1
0

π 62.83y
u

= ≈  and 1
0

π 125.66y
u

= ≈ . With step length 

0 0u →  the imaginary parts of possible zeros off the imaginary axis for the 
ladder approximations of ( )uΩ  to the ( )zΞ  functions go to infinity when they 
approaches to the exact function ( )uΩ . 
 
the complex plane. This concerns many functions among them also the Xi 
function to the Riemann hypothesis. 

For the modified Bessel function where this is known from other more direct 
proofs, e.g. [12] [13] this is only an affirmation. This also means that for any 
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function ( )zΞ  with an Omega function ( )uΩ  which is different from the 
described stepwise constant ladder functions with equal step length (A.2) by the 
same limiting procedure 0 0u →  follows that all zeros off the imaginary axis y 
are absent in the complex z-plane, for example:  

( ) ( ) ( )
2

2

shch 11 , for 0 1 1 2 .
0, for 0 2

2

z
zu u

u z
zu z

  
  −− ≤ ≤   Ω = ↔ Ξ = = ≥  

 
 

  (A.9) 

For this function ( )uΩ  it is directly seen that ( )zΞ  possesses zeros only on 
the imaginary axis. Only for the monotonically decreasing ladder functions (A.2) 
as mentioned the described limiting transition 0 0u →  does not lead to other 
functions than (A.2) and only these functions may possess zeros outside the 
imaginary axis which y values in addition have to agree with one of the zeros on 
the imaginary axis. 

We could not find a reason why the Second mean-value theorem should not 
be applicable to the problem of zeros in the Riemann hypothesis and for other 
described functions. 
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