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Abstract 

In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions 
from brain magnetic resonance imaging (MRI). The technique uses textural features to describe the blocks of 
each MRI slice along with position and neighborhood features. A trained support vector machine (SVM) is 
used to discriminate between the blocks in regions of MS lesions and the blocks in non-MS lesion regions 
based on mainly the textural features with aid of the other features. The MRI slice blocks’ classification is 
used to provide an initial segmentation. A comprehensive post processing module is then utilized to refine 
and improve the quality of the initial segmentation. The main contribution of the proposed technique de- 
scribed in this paper is the use of textural features to detect MS lesions in a fully automated process without 
the need to manually define regions of interest (ROIs). In addition, the post processing module is generic 
enough to be applied to the results of any other MS segmentation technique to improve the segmentation 
quality. This technique is evaluated using ten real MRI data-sets with 10% used in the training of the tex- 
tural-based SVM. The average results for the performance evaluation of the presented technique were 0.79 
for dice similarity, 0.68 for sensitivity and 0.9 for the percentage of the detected lesion load. These results 
indicate that the proposed method would be useful in clinical practice for the detection of MS lesions from 
MRI. 
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1. Introduction 

Multiple sclerosis (MS) is a chronic idiopathic disease 
that results in multiple areas of inflammatory demyeliza- 
tion in the central nervous system (CNS) [1]. Progressive 
MS lesion formation often leads to cognitive decline and 
physical disability. Due to its sensitivity in detecting MS 
lesions, Magnetic Resonance Imaging (MRI) has become 
an effective tool for diagnosing MS and monitoring its 
progression [2,3]. Accurate manual assessment of each 
lesion in MR images would be a demanding and labori- 
ous task, and would also be subjective and have poor 
reproducibility [4]. Automatic Segmentation offers an 
attractive alternative to manual segmentation which re- 
mains a time-consuming task and suffers from intra- and 
inter-expert variability [5]. However, the progression of 
the MS lesions shows considerable variability and MS 
lesions present temporal changes in shape, location, and 

area between patients and even for the same patient [6-9]. 
This makes the automatic segmentation of MS lesions a 
challenging problem. 

Because of the importance of computer-aided MS le- 
sion detection, a number of semi-automated and auto- 
mated methods have been proposed for segmenting MS 
lesions in MR images [4,5,10-16]. Texture analysis in 
MRI has been used with some success in neuro-imaging 
to detect lesions and abnormalities. Textural analysis 
refers to a set of processes applied to characterize special 
variation patterns of voxels grayscale in an image. Tex- 
tural features have been used [17] to differentiate be- 
tween lesion white matter (LWM), normal white matter 
(NWM) and normal appearing white matter (NAWM). 
Texture classification was also used for the analysis of 
multiple sclerosis [1]. The use of textural features is 
promising to provide good results in MS lesion segmen- 
tation, especially if the Fluid Attenuated Inversion Re- 



B. A. ABDULLAH  ET  AL. 27 
 
covery (FLAIR) sequence is used where the textural at- 
tributes of the MS lesions are different from other re- 
gions in the brain. 

However, to the best of our knowledge, texture based 
approaches that have been previously reported were ap- 
plied to regions of interest (ROIs) that are manually se- 
lected by an expert to indicate potential regions including 
MS lesions, which makes the segmentation process 
semi-automated. As such, efforts are needed to automate 
the use of textural features in the detection of MS le- 
sions. 

In this paper, we propose a technique that uses textural 
features to describe the blocks of each MRI slice along 
with position and neighborhood features. A trained clas- 
sifier is used to discriminate between the blocks and de- 
tect the blocks that potentially include MS lesions mainly 
based on the textural features with aid of the other fea- 
tures. The blocks classification is used to provide an ini- 
tial coarse segmentation of the MRI slices. The textural- 
based classifier is built using Support Vector Machine 
(SVM), one of the widely used supervised learning algo-
rithms that have been utilized successfully in many ap-
plications [18,19]. Classification errors can occur in this 
initial coarse segmentation. False positives can arise be-
cause of the similarity in textural attributes between 
some healthy regions in the brain and the MS lesions 
used in training the textural-based classifier. On contrary, 
false negatives can arise from any source of noise in the 
MR images that may corrupt the textural attributes of the 
MS lesions. To overcome both types of errors, a com-
prehensive post processing module is added to improve 
the quality of the initial segmentation by addressing each 
type of error individually to generate the final MS lesion 
segmentation. All the sequences of MRI are used in the 
task of MS segmentation. FLAIR images especially axial 
slices are selected in our system. Due to the higher accu-
racy of the FLAIR imaging sequence in revealing MS 
lesions and assessing the total lesion load [20,21], axial 
FLAIR MRI were used in this paper. 

The paper consists of five sections including this in- 
troduction section. In Section 2, the details of the pro- 
posed segmentation technique are illustrated. The ex- 
perimental results are presented in Section 3 and dis- 
cussed in Section 4. The paper conclusion is stated in 
Section 5. For completeness, Appendix A provides the 
details for calculating the textural features. 

2. Materials and Methods 

2.1. Dataset 

The dataset used in this paper involves FLAIR MRI se- 
quences for ten subjects (4 males, age range: 50 - 72 and 

6 females, age range: 30 - 59). On average, each FLAIR 
MRI sequence consists of thirty seven slices that cover 
the whole brain. All the subjects were referred for brain 
MRI studies based on an earlier diagnosis of MS. The 
MS lesions were manually labeled by a neuroradiologist. 
The ten MRI studies were acquired using a 3.0T MR 
scanner under a human subject’s protocol approved by 
the institutional review board of the University Of Miami 
Miller School Of Medicine (Florida, USA). The axial 
FLAIR sequences used in this paper were acquired using 
the following imaging parameters: 9000/103/2500/256 × 
204/17/123 (repetition time ms/echo time ms/inversion 
time/matrix size/echo time length/imaging frequency). In 
clinical practice, the T2-weighted and/or FLAIR images 
have been an established routine sequence for diagnosis 
of MS lesions [22], and thus FLAIR MR imaging was 
employed in this paper. All images were acquired with a 
slice thickness of 3 mm, an interslice gap of 0.9 mm, and 
a field of view of 175 × 220 mm. Pixels are sampled to 
16-bits and resolution of 408 × 512 (pixel size 0.43 × 
0.43 mm). 

2.2. MS Lesions Segmentation Framework  

The proposed MS lesions segmentation framework is 
described in Figure 1. The MRI FLAIR slices of the 
brain are preprocessed for intensity correction to remove 
the effect of noise and differences in brightness and con- 
trast between different scans of different subjects. The 
next step is the main processing module which is used 
for the detection of initial MS lesions regions based on 
textural features. This stage generates scores for each 
voxel in the slices that represents the probability of being 
MS voxel or not. The connected voxels having non-zero 
scores form regions of MS lesions. The post processing 
step involves addressing false positive MS regions based 
on location attributes and detecting false negative MS 
regions through inter-slice comparisons using the 3D 
nature of the MRI. After that, the post processing step 
corrects the MS lesions for each slice by removing vox- 
els based on distance and grayscale features, and adding 
neighboring voxels using region growing based on gray- 
scale features and adding voxels by removing holes in 
lesion regions using lesion continuity fact. 

2.3. Preprocessing 

Due to different operating conditions from a subject to 
another, brightness and contrast of slices may vary 
among subjects. This affects performance of segmenta- 
tion that is based on textural features which are calcu- 
lated based on grayscale intensities. If a dataset is used 
for training, better histogram matching of the dataset to  
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on improving a slice from MS6 (subject dataset to be 
segmented) with reference to MS3 (subject dataset used 
in training). 

 

In addition, the preprocessing step includes the detec- 
tion of the center of mass and the sagittal plane (central 
line passing through the center in the same direction of 
the slice orientation) for each slice. These geometrical 
parameters are needed in feature extraction. 

2.4. Textural Based Detection of Initial MS 
Lesions Regions 

Each preprocessed MRI slice, is processed by a trained 
detector to get initial MS lesions regions. The detector 
engine in our method is implemented using support vec- 
tor machine. Training the detector machine is done by 
processing the training dataset and dividing its slices into 
square blocks and assigning binary class for each block. 
If the block contains at least one pixel labeled as MS, it 
is classified as MS block (class 1). Otherwise, the block 
is classified as non-MS block (class 0) if all of its pixels 
are labeled as non-MS pixels. Each block is described by 
a feature vector which mainly represents textural features 
of the block. During segmentation, the slice to be seg- 
mented is divided into square overlapping blocks and 
each block is classified by the trained engine as MS 
block or non-MS block. Figure 1. MS lesion segmentation framework. 

 
2.4.1. Block Size be segmented and the training set will lead to error re- 

duction. Statistics were previously made to measure the size of 
the multiple sclerosis lesions. The common values for the 
diameter are between 3.5 mm and 13.5 mm [24]. For any 
input MRI studies, the square w × w blocks are selected 
automatically to tightly cover the smallest possible di- 
ameter as a function of the given pixel sizes calculated 
from the input resolution and field of view. For the size 

We used our preprocessing technique used before in 
[23] that starts with applying contrast-brightness correc- 
tion to maximize the intersection between the histogram 
of the training and segmentation datasets followed by 
using 3D anisotropic filter to avoid empty histogram bins. 
Figure 2 shows the effect of the preprocessing technique  

 

   
(a)                                   (b)                                   (c) 

Figure 2. Preprocessing: (a) A slice from the reference subject MS3 (used in training); (b) A slice from subject MS6 before 
preprocessing; (c) The same slice of MS6 after preprocessing. 
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of pixels in our studies, square 8 × 8 (pixel2) blocks (3.4 
× 3.4 mm2) tightly cover the smallest possible MS lesion 
diameter. 

2.4.2. Feature Vector 
To describe each square block of the FLAIR MRI slice, a 
feature vector of thirty four features is calculated. The 
block features are categorized into three categories: twenty 
four textural features, two position features and eight 
neighboring blocks features. The features are summa- 
rized in Table 1. The textural features include histo- 
gram-based features (mean and Variance), gradient-based 
features (gradient mean and gradient Variance), run 
length-based features (gray level non-uniformity, run 
length non-uniformity) and co-occurrence matrix-based 
features (contrast, entropy and absolute value). Run leng- 
th-based features are calculated 4 times for horizontal, 
vertical, 45 degrees and 135 degrees directions. Co-oc-
currence matrix-based features are calculated using a 
pixel distance d = 1 and for the same angles as the run 
length-based features. The details for calculating the 
textural-based features are provided in Appendix A. 

The position features are the slice relative location 
with reference to the bottom slice and the radial Euclid- 
ean distance between the block top pixel and the center 
of the slice normalized by dividing it by the longest di- 
ameter of the slice. A sample labeled slice to illustrate 
the position features is shown in Figure 3. In Figure 
3(a), the block is labeled by 2, the slice center is labeled 
by 1, the radial Euclidean distance is labeled by 3 and the 
longest diameter is labeled by 4. The center and the 
longest diameter of the slice are parameter geometrically 
calculated in the preprocessing step. 
 

Table 1. Feature vector. 

Features  
Category 

Features 

Textural features 
1 Mean (Histogram based feature) 
2 Variance (Histogram based feature) 

 3 Gradient mean (Gradient based feature) 
4 Gradient variance (Gradient based feature) 

 

5 - 8 Grey level non-uniformality 
in the 4 directions (Run length based feature) 
9 - 12 Run length non-uniformality 
in the 4 directions (Run length based feature) 

 

13 - 16 Contrast in the 4 directions 
(Co-occurrence matrix based feature) 
17 - 20 Absolute value in the 4 directions 
(Co-occurrence matrix based feature) 
21 - 24 Entropy in the 4 directions 
(Co-occurrence matrix based feature) 

Position features 
25 Slice relative location 
26 Normalized radial distance 
between block and slice center 

Neighboring 
blocks features 

27 - 34 Differences in grayscale 
between the block and  
each of the 8 neighboring blocks 

The neighboring blocks features are the difference 
between the mean grayscale of the current block and the 
mean grayscale of each of the eight neighboring blocks. 
In Figure 3(b), the 3 × 3 grid circled by yellow circle  
 

 
(a) 

 
(b) 

Figure 3. Position and neighboring blocks features extr- 
action on sample slices. (a) Calculation of the normalized 
radial distance between block (2) and slice center (1) (length 
of line 3/length of line 4); (b) Calculation of the eight neigh- 
boring blocks features (difference between mean grayscale 
of the centered red block and mean grayscale of each of the 
eight neighboring green blocks in the grid circled by the 
yellow circle). 
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demonstrates the current block colored with red color and 
its eight neighboring blocks colored with green color. 

2.4.3. SVM Training and Segmentation 
Support Vector Machine (SVM) is a supervised learning 
algorithm, which has at its core a method for creating a 
predictor function from a set of training data where the 
function itself can be a binary, a multi-category, or even 
a general regression predictor. To accomplish this mathe- 
matical feat, SVMs find a hypersurface which attempts 
to split the positive and negative examples with the larg- 
est possible margin on all sides of the hyperplane. It uses 
a kernel function to transform data from input space into 
a high dimensional feature space in which it searches for 
a separating hyperplane. The radial basis function (RBF) 
kernel is selected to be the kernel of the SVM. This ker- 
nel nonlinearly maps samples into a higher dimensional 
space so it can handle the case when the relation between 
class labels and attributes is nonlinear. The library libsvm 
2.9 [25] include all the methods needed to do the imple- 
mentation, training and prediction tasks of the SVM. It is 
incorporated in our method to handle all the SVM opera- 
tions. 

2.4.3.1. Training 
The dataset of one or more subjects is used to generate 
the SVM training set. The slices of this training dataset 
are divided into n square blocks of size w × w pixels. 
SVM Training set T is composed of training entries ti (xi, 
yi) where xi is the feature vector of the block bi, yi is the 
class label of this block for i =1: n (number of blocks in- 
cluded in the training set). Our classification problem is 
binary, so yi is either 0 or 1. The training entry is said to 
be positive entry if yi is 1 and negative in the other case. 
For each slice of the training dataset, each group of con-
nected pixels labeled manually as MS pixels forms a 
lesion region. 

Blocks involved in the positive training entries (TP) 
are generated by localizing all the lesion regions and for 
each of them, the smallest rectangle that encloses the 
lesion region is divided into non-overlapping square 
blocks of size w × w pixels. Each block bi of these blocks 
is labeled by yi = 1 if any of the w2 pixels inside this 
block is manually labeled as MS pixel. Any block that 
contains at least 1 MS pixel is defined in our method as 
MS block. 

Similarly, the blocks involved in the negative training 
entries (TN) are generated by localizing the non-back- 
ground pixels that are not manually labeled as MS pixels 
and dividing them into non-overlapping square blocks of 
size w × w pixels. Each block bi of these blocks is la-
beled by yi = 0. Feature vector xi is calculated for each 
block of both positive and negative training entries. The 

positive training entries Tp contain blocks that contain 1: 
w2 MS pixels. This helps the SVM engine to learn the 
features of the blocks that either partially or completely 
contain MS pixels.  

In our case, we used one subject dataset (only 10% of 
the subjects) which consists of thirty seven slices as the 
training dataset. Since the training set entries are as many 
as the number of blocks, the training set will be large 
enough (134173 training entries against 34 features with 
ratio 3946:1) to avoid the curse of dimensionality, which 
is the problem that the performances of the pattern clas-
sification systems could deteriorate if the ratio of the 
number of training data to that of features used for the 
classifier is relatively small [26]. 

The training set entries were fed to the SVM engine to 
generate a MS classifier which is able to classify any 
square w × w block of a brain FLAIR MRI slice as MS 
block (y = 1) or non-MS block (y = 0) based on its fea-
ture vector (x). 

2.4.3.2. Segmentation 
Each of the slices of the datasets to be segmented is di-
vided into overlapping square blocks of size w × w pixels. 
The feature vector for each block is calculated. The 
trained SVM is used to predict the class labels for all the 
overlapping blocks. The block division is done in an 
overlapping manner to detect any possible MS blocks. 
For any block classified as MS block, assuming true pos-
itive classification, this does not mean that all pixels of 
the block should be classified as MS pixels because the 
SVM engine is trained to detect the blocks that contains 
MS pixels completely or partially. For each slice, all pix-
els are assigned an integer score. This score is initialized 
with a zero value. During segmentation, if any block is 
classified as MS block (y = 1), the scores of all pixels 
inside the block are incremented. As the blocks are 
overlapped, each pixel is part of w2 blocks as demon-
strated in Figure 4. Thus, the score will be any value 
from 0 to w2. 

After classification, these scores act as initial lesion 
probability maps where a large score indicates high 
probability for the pixel to be an MS pixel. Initial MS 
lesions can be generated by assigning any pixel of non- 
zero score as MS pixel. Figure 5 shows segmentation of 
sample slice from subject (MS6). Figure 5(a) shows the 
preprocessed FLAIR slice. Figure 5(b) is the ground truth 
for the lesions generated through manual segmentation. 
Figure 5(c) is the initial segmentation by considering 
any pixel of score higher than zero as MS pixel. Figure 
5(d) provides a colored evaluation of the segmentation 
where the true positive pixels are marked by blue, false 
positive are marked by red, false negatives are marked 
by green and true negatives are the background pixels. 

Copyright © 2011 SciRes.                                                                                OJMI 
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2.5. Post Processing 

 

The purpose of the post processing step is to improve 
and refine the performance of initial segmentation through 
dealing with different types of errors (false positives 
and false negatives). Figure 6 shows the initial seg-
mentation of a sample slice from subject MS5 (Figure 
6(a)) and the colored evaluation of the segmentation in 
which the false negatives and positives are marked in 
green and red colors, respectively (Figure 6(b)). Errors 
in the initial segmentation of MS lesions can be classi-
fied as: 
 Type 1: False negatives resulting from not detecting 

MS lesion regions (labeled by 1 in Figure 6(b)). 
Figure 4. All possible overlapping blocks that contain a 
pixel: for 8 × 8 blocks (w = 8), the red pixel is part of w2 = 
64 blocks. The eight bold blocks are samples where the red 
pixel lies in the coordinates (8,8) of block 1, (7,7) of block 
2 … and (1,1) of block 8. 

 Type 2: False negatives resulting from incomplete 
MS lesion regions (labeled by 2 in Figure 6(b)).  

 Type 3: False positives resulting from false MS lesion 
regions (labeled by 3 in Figure 6(b)). 

 

 
(a)                            (b)                           (c)                           (d) 

Figure 5. Initial MS lesions regions detection: (a) Preprocessed slice from MS6; (b) Ground truth; (c) Initial segmentation; (d) 
Colored evaluation of segmentation. 
 

          
(a)                                             (b) 

Figure 6. False negatives and positives in the textural segmentation (a) initial segmentation of a slice from MS5 and (b) 
colored evaluation of the initial segmentation where the different types of errors are labeled by a number matching the 
orresponding error type. c         
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 Type 4: False positives resulting from false portions 
of true MS lesion regions (labeled by 4 in Figure 
6(b)). 

The following steps, which constitute the post proc- 
essing of the MS lesion segmentation framework, are a 
set of logical operations that aim to address the different 
types of errors in the initial segmentation of MS lesions 
without adding new errors. The subject dataset used in 
training (MS3) was segmented by the textural SVM to 
get the initial segmentation which was analyzed for the 
different errors in MS lesions segmentation to formulate 
the criteria and thresholds used in post processing. This 
is summarized in the block diagram shown in Figure 7. 

Step1: Elimination of false positives resulting from 
lesion regions in uncommon locations 

In this step, errors of type 3 in MS lesions are ad- 
dressed. This type of errors in MS lesions results from 
detected MS lesion regions which are completely false. 
Some of these MS lesion regions that are located in un- 
common locations can be eliminated. Odd locations in- 
clude MS lesions outside the brain area, close to the 
brain boundary, or close to the sagittal plan [27]. In Fig- 
ure 8, step 1 of post processing is applied to the initial 
segmentation of a slice from subject MS6, shown in 
Figure 8(a) and color evaluated in Figure 8(b), to elimi- 
nate the erroneous MS lesion regions circled in yellow 
circle as they are located so close to the boundary of the 
slice. The same slice after applying step 1 of post proc- 

essing is shown in (Figures 8(c) and (d)). 
Step 2: Detection of non-detected MS lesion regions 

(false negatives) 
In this step, errors of type 1 in MS lesions are ad- 

dressed. This type of errors in MS lesions results from 
not detecting the lesion region, i.e., completely missing it. 
According to [28], in most cases the MS lesions extend 
only into one to three consecutive slices when the thick- 
ness of the slices is 3 mm. Therefore, In order to recover 
the missing MS lesion regions the initial segmentations 
of the previous and the next slices (or neighboring slices) 
are considered. The detected MS lesion regions in the 
previous and next slices are intersected based on the 
common coordinates on both slices generating a new 
slice of MS lesion regions. Any pixel in the MS lesion 
regions resulting from the intersection is assigned the 
average of the segmentation scores of the two pixels lo- 
cated at the same slice local coordinates in the intersect- 
ing slices. Each intersection lesion region is assigned a 
score which is the average of the scores of the pixels in 
the lesion region. Because of the 3D nature of the MRI 
slices and the fact that the lesion occupies a volume, the 
lesion regions generated from the intersection should be 
highly correlated to the lesion regions in the original 
slice (the slice between the intersecting slices) especially 
if the generated lesions are of high scores. If this inter- 
section leads to new regions in the current slice that have 
high scores, there will be a high probability that these 

 

 

Figure 7. Formulation of criteria and thresholds used in post processing.  
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new lesion regions are part of non-detected lesions in the 
current slice, and they should be added as initial seg- 
mentations. In Figure 9, step 2 of post processing is ap- 
plied to the initial segmentation of a slice from subject 
MS6. Figure 9(a) shows slice 12 and the circled green 
lesion is a sample for a completely non-detected MS le- 
sion region. Figures 9(b) and (c) show slices 11 and 13, 
respectively. The circled lesion regions in both of them 
are detected lesion regions in the textural segmentation 
step. When these lesion regions are intersected as shown 
in Figure 9(d), they recover part of the non-detected 
lesion region in slice 12 as shown in Figure 9(e). The 
recovered part of lesion region can act as a seed that can 
be expanded in the region growing used as part of post 
processing step 3. 

Step 3: Lesion Regions Shape Correction 
In this step, errors of type 2 and 4 in MS lesions are 

addressed. These two types of errors represent false parts 
in the segmented MS lesion regions in the form of either 
additional parts that need to be removed or incomplete 
parts that need to be detected. Both types of errors are 
addressed through shape correction of each segmented 
MS lesion region without adding or deleting MS lesion 

regions. Each detected MS lesion region in each slice is 
processed to correct its shape through the elimination of 
false positive pixels (type 4) and adding non-detected or 
false negative pixels (type 2). The shape correction of 
detected MS lesions is performed through the following 
three operations. Figure 11 will be used to illustrate the 
application of the different operations in post processing 
step 3 to a sample segmented slice from MS6. Figures 
11(i1) and (i2) show the initial colored evaluation of the 
segmentation and the initial segmentation, respectively. 
The other parts of Figure 11 will be used to illustrate the 
corresponding operations in the following discussion of 
step 3. 

(a) Elimination of the false positives on the bound- 
ary of detected MS lesion regions. 

The colored evaluation of the segmentation depicted in 
Figure 11(i1) shows that each lesion region colored in 
blue area (true positive) is surrounded by a red boundary 
(false positive). These false positive pixels on the bound- 
ary of the lesion regions may arise from the similarity 
between the textural properties (features) of non-MS 
regions and MS lesion regions. These false positive pix- 
els may also arise from blocks classified in the initial 

 

    
(a)                         (b)                            (c)                            (d) 

Figure 8. Post processing step 1: elimination of segmented lesion regions in odd locations. (a) and (b) are the slice seg- 
mentation and colored evaluation of the segmentation before applying step 1 (MS lesion regions in odd locations are circled in 
yellow). (c) and (d) are the slice segmentation and colored evaluation of the segmentation after applying step1. 
 

 
(a)                      (b)                     (c)                      (d)                     (e) 

Figure 9. Post processing step 2: detection of the non-detected lesion regions using neighboring slices. (a) Non detected lesion 
in slice 12 of MS6. (b) and (c) detected lesions in the slices 11 and 13 respectively are intersected to recover part of the non 
detected lesion region. (d) Intersection provides part a new lesion region. (e) Portion of the lesion region in the slice 12 is 
ecovered by adding (a) and (d). r 
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segmentation as MS blocks which will cause all the 
block pixels’ scores to be incremented increasing their 
probability to be MS-pixel even when some of the pixels 
in the block are not MS pixels. To eliminate these false 
positive pixels, especially on the boundary, the following 
parameters are considered for each pixel: 

1) Euclidean distance between the pixel and the lesion 
region boundary. 

2) Difference between the grayscale of the pixel and 
the mean grayscale of the lesion region. 

3) Segmentation score of the pixel at the conclusion of 

the initial segmentation step. 
Some of the pixels of the non-MS pixels on the bound- 

ary of lesion regions can be eliminated based on these 
parameters using a fuzzy engine designed for this pur- 
pose where the membership functions and the thresh-old 
values are calculated based on the analysis of the initial 
segmentation of the training subject dataset (MS3). A 
Summary of the fuzzy engine including variable fuzzi- 
fication, fuzzy rules and defuzzification is provided in 
Figure 10. The fuzzy rules output is the decision which 
is binary variable have two values; either keep the pixel 

 

 

Figure 10. Fuzzy engine used in lesion regions shape correction (step 3a): variables fuzzification, fuzzy rules and defu- 
zzification. (In fuzzy rules, X indicates don’t care condition and DECISION = KEEP means keep the pixel in the MS lesion 
region and DECISION = REMOVE means remove the pixel from the MS lesion region). 
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(i1)                         (a1)                            (b1)                            (c1) 

 
(i2)                         (a2)                            (b2)                            (c2) 

Figure 11. Post processing step 3: lesion regions shape correction. (i1) and (i2): The initial colored evaluation of the 
segmentation and the initial segmentation; (a1) and (a2): Effect of applying step 3a; (b1) and (b2): Effect of applying step 3b; 
(c1) and (c2): Effect of applying step 3c. 
 
in the lesion region (KEEP) or remove it (REMOVE). 
The defuzzification is performed using the centroid rule 
which is used in case of classification [29]. Figures 
11(a1) and (a2) show the effect of applying the fuzzy 
engine operation on a slice from MS6. The lesion regions 
became smoother after trimming the false positive pixels 
on the boundary, but some pixels inside the lesion re- 
gions were eliminated by mistake leaving some holes 
(green voxels in figure 11-a1 and black voxels in Figure 
11(a2). These holes will be addressed in operation (c) of 
step 3 of post processing, to be discussed later. Any ex- 
cessive pixels trimmed from the boundary can be recov- 
ered in operation (b) of step 3 of post processing where 
false negatives are addressed. 

(b) Elimination of the false negatives on the boun- 
dary of the lesion regions. 

The colored evaluation of the segmentation depicted in 
Figure 11(i1) shows green pixels (false negatives) con- 
nected to some of the lesion regions blue areas (true 
positives). These false negative pixels on the boundary of 
the lesion regions can arise from the dissimilarity be- 
tween the textural properties (features) of the non-de- 
tected lesion areas and the textural properties of the de- 
tected lesion region itself. To recover these pixels, region 
growing is applied for each lesion region. Any of the 

pixels neighboring to each lesion region are included in 
the closely adjacent MS lesion region if the absolute dif- 
ference between the grayscale of the pixel and the mean 
grayscale of the lesion region does not exceed the stan- 
dard deviation of the grayscale of the lesion region. The 
region growing operation is repeated recursively until no 
new pixels are added. Figures 11(b1) and (b2) show the 
effect of applying this recursive region growing opera-
tion, where most of the false negative pixels were recov-
ered. 

(c) Forcing lesion continuity to eliminate false nega- 
tives (holes) inside the lesion regions. 

For each lesion region, there may be some pixels in- 
side the region which are not detected in the initial seg- 
mentation (due to the block’s textural features being dif- 
ferent from features of MS blocks) or detected but re- 
moved as part of the elimination of false positives on the 
boundary of MS lesions during operation (a) of this step 
while trimming the lesion region. By applying the logical 
concept of lesion continuity, which means that the lesion 
cannot have inside holes, all the pixels inside the bound- 
ary of the lesion regions are assigned to be MS pixels. 
Figures 11(c1) and (c2) show the effect of applying this 
operation where all the holes were filled. 

All the operations visualized in Figure 11 shows that 
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step 3 did not add or remove any lesion regions from the 
initial segmentation but only the lesion regions became 
more completed and smoother. 

2.6. Evaluation of the Proposed Method 

To evaluate the performance of the proposed segmenta- 
tion method, the dice similarity, sensitivity and percent- 
age of the detected lesion load are calculated. The dice 
similarity (DS) is a measure of the similarity between the 
manual segmentation (X) and the automatic segmenta- 
tion (Y). The equation for the calculation can be written 
as: DS = 2  X Y X Y   

As stated in [29,30], a DS score above 0.7 is generally 
considered as very good, especially when the segmented 
structures are small. Dice Similarity is calculated in our 
evaluation module twice. The first is calculated based on 
the similarity of voxels (DSV) and the second is calcu- 
lated based on the similarity of lesion regions (DSR). DSV 
uses the number of common MS voxels between manual 
and automatic segmentation for X Y and uses the 
number of MS voxels of manual and automatic segmen-
tation for X  and Y  respectively. DSR uses the 
number of common MS lesion regions between man- ual 
and automatic segmentation for X Y  and uses the 
number of MS lesion regions of manual and auto- matic 
segmentation for X  and Y  respectively. In the con-
text of DSR, the automatically segmented lesion region 
that shares at least one pixel with a manually segmented 
lesion region is considered as a common MS lesion re-
gion since the number of MS lesion regions is more 
clinically relevant than the number of voxels [4]. For 
example, applying these definitions of DSV and DSR to 
the initial segmentations shown in Figures 11(i1) and (i2) 
yields values of 0.73 (good segmentation) and 1.0 (per-
fect segmentation), respectively. 

Sensitivity is a measure of how many lesions are de- 
tected. It can be calculated as the percentage of true posi- 
tive voxels to the total number of MS voxels in the 
ground truth. 

Percentage of detected lesion load is a measure of how 
much lesion volume is detected compared to the original 
lesion volume. The detected lesion volume takes into 
account all the positive lesions whether true or false. 
Having a percentage of detected lesion load close to 1.0 
is clinically satisfactory since it provides a relatively 
accurate measure of the MS lesions volume. 

3. Results 

The dataset of ten real FLAIR MRI axial sequences were 
used to evaluate the performance of the proposed seg- 
mentation method. The performance metrics detailed in 

Section 2.6 were calculated. The segmentation results are 
summarized in Table 2. In this table, for each study sub- 
ject, the dice similarity based on lesion regions DSR, the 
dice similarity based on voxels DSV, sensitivity and de- 
tected lesion load are given. Overall average is given for 
each of these performance metrics. 

The average metrics are 0.79 for DSR, 0.71 for DSV, 
0.68 for sensitivity and 0.9 for percentage of detected 
lesion load. The average detected lesion load indicates 
that the proposed method could detect the MS lesion 
with reasonable error rates. Although the average dice 
similarity based on voxels DSV is 0.71, which exceeds the 
minimum value for reasonably good segmentation, there 
were drops in the performance for some of the studies. 
Based on the analysis of the results for these studies, the 
MS lesions were found to be very small for these studies 
(percentage of MS lesions volume in voxels to the total 
volume in voxels less than 0.1%). 

Excellent result for the segmentation of the training set 
is a bottom line for accepting the technique. If the seg - 
mentation result of the training dataset (MS3) is removed 
from the average calculation, the average metrics would 
be (0.77 for DSR, 0.69 for DSV, 0.66 for sensitivity and 
0.88 for percentage of detected lesion load) which is still 
a very good result. However, it is included for compare- 
son with results of other techniques that includes the 
training set segmentation result in their averages.  

The effect of the post processing steps on the overall 
performance is shown in Figure 12. For each study, the 
dice similarity based on Voxels (DSV) is calculated be- 
fore and after the use of the post processing step. The 
average improvement in dice similarity of the overall 
 

Table 2. Segmentation result. 

Study

Dice Similarity
based on  

Number of 
Lesion Regions

Dice Similarity 
based on 

Number of 
Voxels 

Sensitivity 
based on 
Voxels 

Detected  
Lesion Load

based on 
Voxels (%) 

MS2 0.88 0.78 0.67 0.93 

MS3 0.96 0.93 0.89 1.1 

MS4 0.68 0.64 0.72 0.92 

MS5 0.72 0.68 0.59 0.65 

MS6 0.84 0.72 0.64 0.76 

MS7 0.77 0.67 0.63 0.91 

MS8 0.68 0.68 0.72 1.05 

MS9 0.76 0.63 0.57 0.78 

MS10 0.83 0.71 0.62 0.81 

MS11 0.75 0.68 0.74 1.12 

Average 0.79 0.71 0.68 0.90 
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Figure 12. Effect of the post processing steps on the overall segmentation performance. 
 
segmentation due to the post processing stage varies is 
12%. 

4. Discussion 

A novel method for MS lesions segmentation in FLAIR 
sequence of brain MR images has been developed. The 
segmentation process goes through three steps. The first 
step is the preprocessing which is done to improve the 
brightness and contrast of all the FLAIR slices of the 
subject dataset. The second step is the main processing 
which involves using a trained SVM to detect the initial 
MS lesions from the individual slices using feature vec- 
tor which are mainly composed of textural features. The 
third step is the post processing that aims to improve and 
refine the performance of the initial segmentation gener- 
ated through the SVM-based textural segmentation. In 
that regard, the post processing step addresses all possi- 
ble types of errors in the MS lesion segmentation results 
of the second step in order to reduce the overall errors 
including both false positives and false negatives. 

The main processing classifier uses thirty four features 
in three categories. These categories of features are se- 
lected to have analogy with the features used non-inten- 
tionally by the expert in the task of manual labeling of 
MS areas. According to our observations, when the ex- 
pert labels MS lesions in the FLAIR slice, the hyper in- 
tense areas are the potential areas to have the lesion. This 
is emulated in our technique by using the group of twenty 
four textural features. Candidate areas are filtered based 
on previous experience with the brain positions where 
most likely lesions occur; hence a group of two position 
based features is used. Besides, the expert takes into ac- 

count the difference between the intensity of the lesion 
area and the neighboring areas intensities to take final 
decision and we emulate this by using the eight neigh- 
boring features. Although both textural features and 
neighboring features are based on intensity, no redun- 
dancy exists between them as the first group is used to 
aid the classifier in the detection of special pattern areas 
while the later is used to take into account the relation of 
the intensity of the area and the neighboring areas. 

The main processing classifier uses an SVM engine. 
SVM Parameters selection and training set balancing 
directly affect the classification performance. The SVM 
penalty parameter C and the RBF kernel parameter γ are 
chosen via a grid search using cross validation as pro- 
posed in [25]. In cross validation, the training dataset are 
divided into subsets. Sequentially one subset is tested 
using the classifier trained on the remaining subsets. 
Cross validation accuracy is the percentage of data which 
are correctly classified. Various pairs of (C; γ) values are 
tried in the cross validation tests and the one with the 
best cross validation accuracy is picked. We applied the 
cross validation on the training subject (MS3) dataset. 
Using this offline exhaustive search, C and γ that pro- 
vided best accuracy in the cross validation for our tech- 
nique are 1 and 0.029 respectively. On the other hand, 
the training set used in training the SVM is highly im- 
balanced. The size of the negative training entries (TN) 
is much higher than the positive training entries (TP) due 
to the relative size of lesion with respect to the normal 
brain tissues. This affects the performance of SVM. 
However traditional approaches to overcome imbalanced 
data involve either over-sample the minority class (MS 
blocks) or under-sample the majority class (non-MS 
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blocks). The first results in a distribution that no longer 
approximates the target distribution and the later results 
in discarding instances that may contain valuable infor- 
mation. Our decision was to leave the data with neither 
over-sampling nor under-sampling to avoid biasing the 
classifier and to keep the real distribution. Future im- 
provement should address balancing the dataset with no 
added inaccuracy. 

Receiver operating characteristics (ROC) analysis was 
performed to evaluate the main processing classifier that 
generates the initial MS-blocks. Due to using overlap-
ping blocks, each slice pixel is included in 64 blocks (in 
case of using square blocks of 8 × 8 pixels). A score is 
given to each pixel equals to the number of blocks that 
encloses the pixel and classified as MS-block. To draw 
the ROC curve, a threshold is defined as the number of 
positive blocks needed to consider the pixel as MS pixel. 
This threshold was changed from 64 blocks down to 0, 
and for each case the specificity (true negatives rate) and 
sensitivity (true positives rate) were calculated in order 
to create the ROC curve as plotted in Figure 13 where 
the false positive rate (1-specificity) is on x-axis and the 
sensitivity is on y-axis. Using very high threshold leads 
to zero false positives and very low sensitivity while very 
low threshold leads to both very high false positive rate 
and sensitivity. For all tests, the ROC curve falls above 
the diagonal indicating good classification. 

Our first contribution in this method is using textural 
features without manual selection of ROI which was an 
area for future research and improvement [1]. To the best 
of our knowledge, the common use of textural features in 
MS lesions detection was previously attempted with aid 
of manual selection of regions of interests (ROIs). In the 

approach presented in this paper, overlapping square 
blocks, with adaptively determined size, are used to re- 
place these ROIs. Connected blocks classified as MS 
blocks form a lesion region. In the post processing step, 
these lesion regions are trimmed to remove extra pixels 
and/or extended to include undetected pixels, as appro- 
priate, to finally arrive at accurate, smooth, and complete 
lesion regions without the need for manual selection of 
ROIs. 

The second contribution of the presented method is the 
post processing step that is both generic and modular 
which means it is independent on the previous steps. 
Thus, it can be generalized and applied with any other 
MS lesion segmentation technique to improve the per- 
formance. In this step, different types of errors in MS 
lesion segmentation are addressed based on logical han- 
dling of both false positives and false negatives. When 
used with any other technique, the score parameter used 
in our approach can be replaced by any other parameter 
that provides the probability of the pixel being part of an 
MS lesion based on the other technique. 

One of the recent publications [4] provides a compare- 
son table between different techniques for detection of 
the multiple sclerosis lesions according to the dice simi- 
larity based on lesion regions. We quote the table with in 
Table 3 with our results added as the last line. For each 
technique, the citation is referenced and the methods 
used in segmentation are provided along with the number 
of subjects used in the evaluation and the average dice 
similarity obtained using the technique. In the original 
publication of [4], the dice similarity was calculated 
based on the common regions between the manual seg- 
mentation and the automatic segmentation and similarly  

 

 

Figure 13. ROC (Receiver Operating Characteristics) curve for main processing performance. 
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Table 3. Comparison of the automated methods for detection of MS in MR images. 

Authors Segmentation Method No. of studies Average Dice Similarity (based on lesion regions) 

Boudraa et al. 2000 [13] Fuzzy C-Means 10 0.62 

Leemput et al. 2001 [14] Stochastic model 50 0.51 

Zijdenbos et al. 2002 [15] Pipeline analysis 29 0.68 

Khayati et al. 2008 [21] 
AMM (adaptive mixtures method), 
MRF (Markov random field model) 

20 0.75 

Yamamoto et al. 2010 [4] 
Region growing, 

LSM (level set method) 
6 0.77 

Proposed method 
Texture Analysis, 

SVM (support vector machines) 
10 0.79 

 
we also used the value of DSR in the Table 3. The table 
shows that our method has an average regional dice 
similarity of 0.79 which is the highest among the past 
studies. This does not mean that our method is the best in 
terms of automatic segmentation performance because 
the comparative results in Table 3 are dependent on the 
image properties of the datasets, which are different 
among the techniques included in the table. However, the 
comparison shows the success of our method for detect- 
ing MS lesions in real MRI datasets with competitive 
results. 

5. Conclusions 

We have developed an automated method for detection 
of MS lesions in brain MR images using textural based 
SVM. The main contributions of the presented method 
are using textural features without manual selection of 
ROI and the comprehensive post processing step that 
handles different types of errors in MS lesions segmenta- 
tion that can be generalized to improve the performance 
of any other MS segmentation technique. The method 
has been tested using ten real FLAIR MRI datasets. The 
performance evaluation and comparative results with 
other automated techniques show that our method pro- 
vides competitive results for the detection of MS lesions.  
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Appendix A. Textural Features Extraction 
Techniques 

Textural features can be categorized according to the 
matrix or vector used to calculate the feature. In this sec- 
tion, we are interested with histogram, gradient, run- 
length matrix and co-occurrence based features. These 
categories include features that are selected after being 
tested to be identifying for the texture of regions that 
suffer from the multiple sclerosis lesions. For all feature 
calculations, the image is represented by a function f(x,y) 
of two space variables x and y, x = 0,1,··· N – 1 and y = 
0,1,···, M – 1. The function f(x,y) can take any value I = 
0,1,···,G – 1 where G is total number of intensity levels in 
the image. 

Histogram Based Features 

The intensity level histogram is a function h(i) providing, 
for each intensity level i, the number of pixels in the 
whole image having this intensity. 
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The histogram is a concise and simple summary of the 
statistical information contained in the image. Dividing 
the histogram h(i) by the total number of pixels in the 
image provides the approximate probability density of 
the occurrence of the intensity levels p(i), given by: 
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The following set of textural features is calculated 
from the normalized histogram: 
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Gradient Based Features 

The gradient matrix element g(x,y) is defined for each 
pixel in the image based on the neighborhood size. For a 
3 × 3 pixels neighborhood, g is defined as follows: 
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The following set of textural features is calculated 
from the gradient matrix: 

Mean of absolute gradient  
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Skewness and kurtosis of the absolute gradient can be 
calculated similar to those calculated for histogram. 

Run Length Matrix Based Features 

The run length matrix is defined for a specific direction. 
Usually a matrix is calculated for the horizontal, vertical, 
45° and 135° directions. The matrix element r(i,j) is de- 
fined as the number of times there is a run of length j 
having gray level i. Let G be the number of gray levels 
and Nr be the number of runs. The following set of tex- 
tural features is calculated from the run length matrix: 
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where the normalization coefficient C is defined as fol- 

lows: C =   
1
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Co-Occurrence Matrix Based Features 

The co-occurrence matrix is a form of second order his-
togram that is defined for certain angle θ and certain dis-
tance d. The matrix element hdθ (i, j) is the number of 
times f (x1, y1) = i and f (x2, y2) = j where (x2, y2)=(x1, y1) 
+ (dcosθ, dsinθ). Usually the co-occurrence matrix is 
calculated for d = 1 and 2 with angles θ = 0°, 45°, 90° and 
135°. When the matrix element hdθ (i, j) is divided by the 
total number of neighboring pixels, the matrix becomes 
the estimate of the joint probability codθ (i, j) of two pix-
els, a distance d apart along a given direction θ having 
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co-occurring values i and j. Let µx, µy, x  and y  de-
note the mean and standard deviation of the row and 
column sums of the matrix co, respectively. The follow- 
ing set of textural features is calculated from the co-oc- 
currence matrix: 

Angular second moment  

(AngScMom) =    
1 1 2

0 0

,
G G

i j

co i j
 

 


Contrast =    
1 1

2

0 0

,
G G

i j

i j co i j
 

 



Correlation = 
 1 1

0 0

,  G G

i j x y

ijco i j x y 
 

 

 


  

Inverse Difference = 
 
 

1 1

2
0 0

,

1

G G

i j

co i j

i j

 

   
  

Entropy =      
1

2
0 1

, log ,
rNG

i j

co i j co i j
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