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Abstract 
One of the methods for calculating electromagnetic wave dispersion in mul-
ti-layer structures is the transfer matrix method. In this paper, we use the 
transfer matrix method for second harmonic generation in a nonlinear mul-
tilayer structure. The nonlinear photonic crystals investigated in this paper 
are as one-dimensional multi-layered structures including ferroelectric mate-
rials such as LiTaO3. Our goal is to investigate the effect of the disorder on the 
transmission spectrum of electromagnetic waves. Our results showed that po-
sitional disorder has different effects on the transmitting band and the gap 
band. The disorder in the transmitting band reduces the transmission coeffi-
cient of the waves and increases the transmission coefficient of the waves in 
the gap band. Such work has not yet been done on nonlinear photonic crys-
tals producing the second harmonic. 
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1. Introduction 

In recent decades, the study of the transmission of waves in random systems has 
been highly studied because it plays an important role in understanding the opt-
ical, mechanical, magnetic, and electrical properties of materials. The most im-
portant theory in this case is Anderson’s theory. This theory is about electrons 
crossing in random systems [1] [2]. Although Anderson’s theory was initially 
about the transmission of electron waves in disordered systems, it was later ex-
tended to other waves such as electromagnetic and acoustic waves. 
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A weak disorder in 3D devices does not turn all of the extended modes into 
localized modes. That is; there is a series of transmission modes in the system. 
For strong disorder, due to the incoherent interference of waves, transmitted 
modes are exponentially localized. For one-dimensional systems, Anderson’s 
theory shows that all the passing modes are exponentially localized for any de-
gree of disorder [2] [3]. 

There are several models for one dimensional multi-layer system in which 
exponential localization is violated. For example a one-dimensional system with 
the periodic period consisting of two parts is known as a random-dimer model 
[4] [5]. In this type of system, there are modes that disorder does not affect them. 
Another model that violates Anderson’s localization in disordered one-dimensional 
systems is a long-range correlation model [6] [7]. The tight-binding 1D model 
also violates the exponential localization in one-dimensional systems that occur 
for any disorder [8] [9]. Finally, the last model that produces non-localized 
states, unlike the one-dimensional Anderson model prediction, is called the 
“necklace” model [10]. This model has been used in a multilayer dielectric 
structure [11]. 

A periodic structure with a transmission spectrum that does not have any 
propagating modes in certain frequency regions is called the photonic crystal 
[12]. Frequency spectrum, in which there are no propagating modes, is known as 
photonic band gap. Due to the vectorial nature of the electromagnetic waves, 
compared with the scalar nature of electron waves, the emission of electromag-
netic waves in photonic crystals depends on its polarization and the wave prop-
agation angle [13]. 

In a binary multi-layer structure made up of dielectric slabs, in which the opt-
ical lengths of the layers are equal, putting the disorder in the order of the layers 
leads to the appearance of necklace modes in the photonic band gap [14]. By 
placing a positional disorder in a multilayer structure, when the optical length of 
layer is equal to a quarter wavelength, a series of transmission modes through 
the photonic band gap are created [15]. 

Photonic crystals contain ferroelectric materials, due to the unique properties 
that compensate for the phase mismatch in the second harmonic generation, 
which have been much considered. Second harmonic generation is investigated 
in multilayer nonlinear structures including ferroelectrics such as LiNbO3, KTi-
OPO4 and strontium barium niobate [16] [17]. 

But until now, the effect of the disorder on the second harmonic generation 
(SHG) in the photonic crystals including ferroelectric materials has not been 
studied. We investigate the effects of positional disorder on the transmission 
spectrum of one-dimensional structures composed of lithium tantalite (LiTaO3). 
We study a binary disordered system composed of N periods. Using the transfer 
matrix method, we draw the transmission spectrum of the electromagnetic wave 
as a function of the incoming wave frequency. We study the effect of the posi-
tional disorder on the transmission of an electromagnetic wave that collides ver-
tically on the surface of the structure, so that during the initial wave propagation 
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in the nonlinear structure, a second harmonic wave is also produced. 
This paper is organized as follows in Section 2 we focus on the details of the 

model and we derive the related transfer matrix. We also explain how we calcu-
late the Transmission coefficient. In Section 3 we present and discuss our nu-
merical results. Finally, Section 4 ends the paper with a summary of our results. 

2. Model and Method 

In this section, we study a multi-layered nonlinear structure, which changes the 
nonlinear parameter sign periodically in layers. In this structure, the scales of li-
near and nonlinear parameters are the same. The nonlinear structure is divided 
into N periods of thickness d, and each period is divided into two homogeneous 
sections, Figure 1. Thickness and linear parameter (refractive index) and nonli-
near parameter (second order susceptibility) for Section 1 are, respectively, Id , 

( )r
In  and ( )2χ , while those for Section 2 are, IId , ( )r

IIn  and ( )2χ− , while 
,r f s=  is use for the fundamental field and second harmonic field, respectively. 

Due to the fact that the refractive index of regions I ( ( )r
In ) and II ( ( )r

IIn ) are not 
equal, its reflection will occur at each layer interface, resulting in between the 
transmitted and reflective waves in each layer, the phenomenon of interference 
will appear. 

It is assumed that an electromagnetic wave with frequency ω incident from 
the left-hand side of the system and propagates in the direction of the z axis, so 
that the polarization of the electric field is in the x-axis direction. Our numerical 
calculations are based on the nonlinear transfer matrix method (TMM) [18] [19]. 
In this method, the SHG process is divided into three stages: 1) First, the funda-
mental field (FF), with the propagation in the structure, causes the macroscopic 
polarization of matter. 2) Since the material is non-linear, then the second-order 
nonlinear polarization is created in matter. And this nonlinear polarization ra-
diates the second harmonic (SH) field in the structure. 3) This second harmonic 
field is propagated in the device, and it comes out in the form of a second har-
monic signal. 

In the first stage of the second harmonic generation, the fundamental and 
second harmonic fields follow the following equations: 

( ) ( ) ( )

( )

2
22 2

2 2 02

2
2

02

2
2 NL

NL

c

c

ω ω
ω ω

ωω
ω ω

ε ω
µ ω

ε ω
µ ω

∇× ∇× − =

∇× ∇× − =

E E P

E E P
             (1) 

In which, ωε , 2ωε , NL
ωP , and 2

NL
ωP  are permittivity and nonlinear polariza-

tion at FF and SH frequencies. Because the nonlinear process is weak. As a result, 
the nonlinear process has no significant effect on the intensity of the fundamen-
tal pump field (Given that the material we have used in this paper is ferroelectric 
(LiTaO3), whose second-order non-linear coefficient ( )2χ  is 13.8 pm/V. 
Therefore, in our calculations, we used the source approximation without de-
creasing (strong source approximation) to solve non-linear equations and  
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Figure 1. Multi-layered nonlinear structure. In each layer, the vectors represent the non-
linear polarization direction. 

 
obtaining the transmission coefficient. That is, the second-order nonlinear coeffi-
cient is small, so the nonlinear process does not have a significant effect on the ini-
tial wave intensity). So here we are using the non-depleted pump wave approxima-
tion, 2E Eω ω . Therefore, the above equations for the m-th layer are as follows 

( )( ) ( )

( )( ) ( ) ( )

2 2

2

2 2 2 2
02

d 0
d

d 2
d

f f
m m

s s
m m NL

k E z
z

k E z
z

ωµ ω

 
+ = 

 
 

+ = − 
 

P
               (2) 

where ( ) ( ) ( )
0

f f f
m mk n k= , ( ) ( ) ( )

0
s s s

m mk n k= , ( )
0

fk cω= , and ( )
0 2sk cω= . and also, 

( )f
mn  and ( )s

mn  show the refractive index of the pump waves and the second 
harmonic, respectively in the mth slab; c, the speed of light is in vacuum 

The first equation of coupling Equations (2) gives the fundamental electric 
field in the mth layer. 

( )
( ) ( )( ) ( ) ( )( )1 1e e

f f
m m m mi k z z t i k z z tf f f

m m mE E E
ω ω− −− − − − −+ −= +             (3) 

where 0z  is zero, 1m m mz z d−= +  and md  is the thickness of the mth layer. 
( )f
mE +  is the magnitude of forward plane wave and ( )f

mE −  is the magnitude of 
backward plane wave at the left interface of the mth layer. 

According to the continuity conditions on the boundary of the layers, we have 
the following matrix relation between the electric and magnetic fields passing 
through odd layer to even layer: 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
2 1 2 2

121 1 1 1 1
2 1 2 2

1
2

f f f
I II I IIm m i

f f f
m m iI I II I II

n n n nE E E
T

E E En n n n n

+ + +
−
− − −
−

   + −    
 = =      − +      

       (4) 

Using the matrix of dynamics and the matrix of propagation that are as follows. 

( ) ( )

1 1
m f f

m m

D
n n
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The general transfer matrix for the multi-layer structure is as follows 

( )1 1 1
0 0

N

II II II I I IT D D P D D P D D− − −=                  (5) 

This transfer matrix connects the fields at the beginning and the end of the 
structure, as follows 

0

0

f f
t
f f

t

E E
T

E E

+ +

− −

   
=   

   
                       (6) 

For harmonic fields that is produced in the structure, we use Equation (2) 
with ( ) ( ) ( ) ( ) ( )

222
0, exp 2f

NL m mP z t E z i tω ε χ ω = −   that yields to: 
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In which: 
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1 1 1,II II II I I I II II II IIS G Q G G Q G N G Q G− − −= =  

In this section, we determined the method of obtaining the amplitude of the 
second harmonic field in the nonlinear multi-layer structure. We can not ac-
tually measure this quantity, but the intensity of the second harmonic is mea-
surable (In this paper, which is a theoretical work, the intensity of the waves is 
obtained using the electromagnetic magnitude (intensity is proportional to the 
square of the field magnitude). The purpose of writing the phrase “measurable 
intensity of electromagnetic waves” is that in the laboratory, researchers measure 
the intensity of electromagnetic waves. In fact, this sentence is presented for 
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comparison with laboratory work). Using the intensity of waves, we have the 
following definitions for the nonlinear reflectance and nonlinear transmittance: 

( )

( )

2

2

r
NL harm

pump

t
NL harm

pump

I
R

I

I
T

I

=

=

                        (8) 

where ,t r
harmI  and pumpI  are the intensities of the reflected or transmitted har-

monic and pump fields, respectively. 
In our structure, it is assumed that the nonlinear photonic crystal are com-

posed of periodically poled lithium tantalite (LiTaO3) crystal, whose nonlinear 
susceptibility is ( )2 13.8 pm Vχ =  and The refractive index for lithium tantalite 
(LiTaO3) is given by the following dispersion formula [20]: 

( ) ( )
( )

2 2
2 2 22

,
B b T En T A D

FC c T
λ λ

λλ

+
= + + +

−− +  
          (9) 

where 4.5284A = , 37.2449 10B −= × , 0.2453C = , 22.3670 10D −= − × ,  
27.7690 10E −= × , 0.1838F = , ( ) ( )282.6794 10 273.15b T T−= × + ,  

( ) ( )281.6234 10 273.15c T T−= × + . 
Periodic polar ferroelectric (LiTaO3) crystals are described by modulations of 

the nonlinear susceptibilities. An optoelectronic effect is used to produce the 
photonic band gap structure. This effect is the origin of the modulation of the 
refractive index of the layers in the photonic crystal. If the electric field E is ap-
plied in the direction of the optical axis of the material, correction of refractive 
index and new refractive index (in odd layers) are as follows: 

3
1 1 33

1
2

n n n n n r E= + ∆ = −                    (10) 

where 33r  is the optoelectronic coefficient of the material and E is the electric 
field amplitude. Similar to the nonlinear optical coefficient, the optoelectronic 
coefficient of the material in different layers has different signs. So in reverse 
(even) layers the optoelectronic coefficient changes sign and the refractive index 
in these layers is written as follows: 

3
2 2 33

1
2

n n n n n r E= + ∆ = +                  (11) 

3. Numerical Results 

We investigate a random binary structure constructed of N lithium tantalite 
(LiTaO3) layers. The positional disorder in the structure means the probability 
that the ith layer is Layer I or Layer II is equal. In order to have an overall picture 
of the role played by disorder, and to illustrate the effect of disorder in the non-
linear multi-layered structure, we compare the transmission spectrum of a peri-
odic structure with alternating layers I and II with a disordered structure, as 
shown in Figure 2 for the structure with N = 70 layers. 
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Figure 2. Transmission spectrum of periodic (red) and random (blue) binary structure 
with N = 70 layers. For the random system, to calculate the transmission coefficient 
quantity, averaging operations are performed on 3000 systems with different ordering. 
The placement of disorder has different effects on the transmitting and gap bands. The 
disorder results in the appearance of transmission modes in the middle of the gap band. 

 
The transmission spectrum for periodic structures is a sequence of transmit-

ting and stop bands. In the transmitting band, there is a frequency in which the 
optical length of each layer is an integer multiple of half the wavelength in the 
vacuum. In other words, the phase change in each layer is equal to mπ, that m is 
the member of the integers. The nonlinear multi-layer structure for this incom-
ing wave frequency is completely transparent. In the center of the stop bands, 
there are frequencies in which the optical length of each layer is odd multiples of 
one quarter wavelength. As a result, the phase change in these layers is equal to 
( )2 π1m + . For the random system, to calculate the Transmission coefficient 
quantity, averaging operations are performed on 3000 systems with different 
ordering (Figure 2). The placement of disorder has different effects on the 
transmitting and gap bands. Firstly, the disorder does not affect the frequency in 
the transmitting band in which the optical length of each layer is an integer mul-
tiple of half the wavelength. In other words, in a periodic and random structure 
at this frequency, the transmission coefficient is equal to the unit. Note that at 
this frequency, for each layer, the transfer matrix is a unit matrix (I). In this 
mode, independent of the existence and absence of disorder in the structure, is 
similar to the violation of Anderson localization in the random-dimer model. 
But, by placing disorder in the structure, the width of the transmission band is 
reduced. In the forbidden (gap) band, the disorder leads to the emergence of a 
series of transmitting modes. These mods are known as necklace modes. 

In order to see the different effects of positional disorder in the transmitting 
band and the forbidden band, we plot the average transmission coefficient 
around the half- and quarter-wavelength modes as a function of the disorder in-
tensity. In Figure 3 and Figure 4, q shows the disorder strength, in other words, 
q is equal to the probability that in the periodic structure (I, II, I, II, I, II, ∙∙∙, I, II), 
the ith layer, replaced with another layer. So 0q =  is related to the periodic 
structure and 1 2q =  is a structure with complete disorder. The results are 
shown in Figure 3 and Figure 4 for N = 70. In order to obtain the transmission  
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Figure 3. The average transmission coefficient as a function of the severity of the disorder, 
for the transmitting band. In this case, when the disorder increases, the transmission 
coefficient decreases, so Anderson’s localization is established. The averaging is per-
formed on 3000 structures in different order and N = 70. 
 

 
Figure 4. The average transmission coefficient as a function of the severity of the disorder, 
for the forbidden (gap) band. In quarter-wavelength modes, with increasing disorder, a 
series of transmitting modes are created, and thus a weak transmittance occurs at these 
frequencies. The averaging is performed on 3000 structures in different order and N = 70. 
 
coefficient in random structures, the averaging is performed on 3000 structures 
in different order. Figure 3 for the transmitting band and Figure 4 for forbidden 
band. 

For the average transmission coefficient around the half-wavelength reson-
ance, when the disorder increases, the transmission coefficient decreases, so 
Anderson’s localization is established (Figure 3). Meanwhile, disorder effect in 
an around the quarter-wavelength resonance mode have a completely reverse 
result. As the disorder increases, the average transmittance increases (Figure 4). 
The reason for this is the appearance of transmitting modes in the forbidden 
band (Because in the periodic structure, in the gap band, the interference of the 
waves is non constructive. Using a disorder in the arrangement of the layers, the 
periodic structure that causes non-constructive interference of the waves and the 
transmission coefficient 0 in this frequency region (gaps) collapses. And with 
increasing disorder, the effect of the structure on the non-constructive interfe-
rence of the waves decreases. As a result, the waves interact constructively. And 
there is a series of poorly transmitted modes in the gap band). 

Figure 3 shows the average transmission coefficient in the transmitting band 
according to Anderson’s localization. In this case, the average transmittance 
coefficient decreases monotonically with increasing intensity disorder. 
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(a) 

 
(b) 

Figure 5. Transmission coefficient for different values of the disorder intensity. The 
number of layers is 70 and the averaging is performed on 2500 structures in different or-
der. Figure 5(a) shows strong intensity disorder, in which case Anderson’s theory is vi-
olated in the band gap. Figure 5(b) is for weak intensity disorders, in which case Ander-
son’s localization is established. 

 
While Figure 4 is a violation of Anderson’s theory, the disorder result in the 

emergence of a few resonance necklace modes that creates a small transmittance 
in gap band. 

Figure 5 shows the transmission coefficient as a function of the collision wa-
velength for different degrees of disorder. By increasing Severity of disorder, the 
bandwidth of transmission is reduced and a series of necklace mode is created in 
the gap bands which cause a slight increase in the transmission coefficient of 
electromagnetic waves. Figure 5(b) is for weak intensity disorders, in which case 
Anderson’s localization is established. Figure 5(a) shows strong intensity dis-
order, in which case Anderson’s theory is violated in the band gap. 

4. Results 

We studied the transmittance spectra in a nonlinear structure composed of tan-
talum lithium (LiTaO3). This system is a binary structure with N layer. The effect 
of disorder on the transmitting and forbidden bands is quite distinct. For the 
transmission band, the disorder in the frequency at which the coefficient of 
transmission is equal to 1 does not affect. At this frequency, the transfer matrix 
of each layer is equal to the unit matrix (I). The lack of sensitivity of this fully 
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resonance mode is similar to the violation of Anderson’s theory in the ran-
dom-dimer model. However, the width of the transmittance band in a disor-
dered system is narrower than the width of the transmittance band of the peri-
odic system. For the gap band, disorder lead to the appearance of several modes 
in the center of the band. These modes are called necklace modes, which are 
based on the hybridization of degenerate modes localized. The transmittance in 
the stop (gap) band increases with the disorder intensity. The transmittance in 
the transmitting band decreases with the disorder intensity. 
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