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Abstract 
We apply a canonical transformation Hubble’s law to turn it into a quantum 
equation and derive its solutions in a homogenous universe (assumptions 
analogous to the FLRW universe). The eigenfunctions of Hubble’s law are al-
so stationary states (eigenfunctions of the Hamiltonian). The study of these 
solutions reveals many striking results, including: 1) By enforcing boundary 
conditions at the cosmic horizon, we derive a fundamental lower limit to the 

uncertainty in any rest mass (or measurement thereof) 0
2

min
22πHm cδ −=  . 

This implies a lower limit also to the mean particle mass which we call the 
mass quantum m

68
in 2 5.1 10

H
m mδ −≡ = ×  kg. 2) We postulate that particles 

with finite mass can be regarded as a composition of a large number of mass 
quanta and deduce a relation between mass uncertainty 0mδ  and mass 0m :  

0 0 Hm m m mδ δ . 3) This uncertainty leads naturally to localization of the 

composite mass, with the radius of localization proportional to the inverse 

square root of mass ( ) 1
0 0πlocr m H −=  . We associate this localization with 

the classical localization of a massive particle. 4) We derive an expression for 
the critical mass where there is a crossover from quantum behavior to classic-

al behavior ( )1 5
crossover

2 5 3 5 3 5
01 π6 9m Hρ −=  , where ρ  is the material mass 

density. The classical sizes derived in 4) are consistent with empirical results 
for our universe. We note the theory described here has no free parameters, 
hence it points to a new fundamental equation of the universe, essentially de-
fining the mass quantum. It is a pure quantum theory that does not invoke 
general relativity at any stage, and the derivation uses mathematics accessible 
to an upper level undergraduate student in physics. 
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1. Introduction 

Why do ordinary objects appear to follow classical space-time trajectories but 
very small objects follow quantum (wavelike) trajectories? Here we derive a 
quantitative theory that provides one answer to this question. Generally, this 
paper is motivated by topics of great current interest at the very foundations of 
physics: Is quantum theory (QT) applicable not only at microscopic length scales 
but also at large, even cosmological length scales? Does the expansion of the un-
iverse have any implications for microscopic particles? 

Regarding length scale, in a recent review article [1] Legget writes, “as pointed 
out by Schrödinger in 1935 in his famous ‘cat’ paper [2], there is no good reason 
to accept (the) division of the world into a microscopic regime where QT reigns 
and a macroscopic one governed by classical physics.” On the other hand, [3] 
reminds us, “it is safe to state, in any case, that quantum superpositions of truly 
massive, complex objects are terra incognita”. Whether or not QT prevails at all 
length scales is now a topic of intense interest, motivating experimental tests of 
quantum mechanics at mesoscopic scales [1] [3] [4] [5]. In this paper, we take 
the rule that QT applies at all length scales as a premise of the theory. 

Whether or not the Hubble expansion has an impact at microscopic scales is 
another area of controversy. According to Nobelist Leon Lederman, “The ex-
pansion of the universe doesn’t actually affect the spaces between particles. The 
universe’s expansion is not a force that will rip particles, molecules, or even ob-
jects apart [6].” Meanwhile, theories of “phantom energy” predict precisely the 
opposite [7]. This paper takes the latter view as a premise of the theory, which 
we paraphrase, in a universe where the Hubble parameter 0 0H > , the statio-
nary states of all massive free particles are modified compared to stationary 
states in flat space ( )0 0H = . Some other works assuming cosmological expan-
sion affecting quantum systems are found in [8] [9] [10]. Outside the domain of 
general relativity, C. L. Herzenberg has developed a theory that predicts classical 
localization from the universe’ expansion [11] [12]. The mechanism of Herzen-
berg’s theory is unrelated to the theory presented here. 

The single-particle theory presented here approximates a more general quan-
tum field theory whose derivation we leave for the future. We consider spin-zero 
bosons and quasi-particles on any length scale, from elementary Higgs bosons, 
to composite bosons such as the ground state 1H atom, to very large spin zero 
quasiparticles such as nonrotating stars. 

Another important feature is what this theory leaves out. This is a pure quan-
tum theory that makes no reference to General Relativity (GR) or even the con-
cept of gravity. Again, we view this work as an approximation of a complete theory 
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including GR that can be addressed in future work. We emphasize that our 
theory does not change or overturn GR; it simply ignores it. At first this might 
appear to be inconsistent with our use of Hubble’s natural law in the derivation. 
But Hubble’s law (redshift increases with distance) is an empirical result from 
astronomical observations, and its validity is independent of whatever theory is 
used to explain it. We are therefore justified in our use of Hubble’s law without 
reference to gravity. However, we shall sometimes borrow colloquial termi-
nology from GR (e.g. “flat space”) when it improves flow and creates no am-
biguities. 

To the best of our knowledge, this derivation of free particle states in expand-
ing space is new. To make this paper accessible to the widest possible audience, 
we try to keep the mathematics and framework as simple as possible. This sin-
gle-particle derivation is accessible to the student with only an undergraduate 
level understanding of QT1 and avoids potential conflicts between QT and GR as 
those theories are known to be incompatible. 

A unique feature of this derivation is how the stationary states are derived by 
enforcing consistency with observational evidence, without resorting to Hamil-
tonian or Lagrangian mechanics. As we shall see, this is a useful trick since we do 
not know how to model expanding space with an exact pseudo-potential energy 
function. Instead, the results of our theory permit derivation of an exact pseu-
dopotential that, when applied to flat space, results in the same stationary states 
as for an expanding universe. 

Outline of the Rest of the Paper 

In Section 2, we apply the canonical substitutions to turn Hubble’s law into a 
quantum operator equation, and then present its eigenfunctions. We follow a 
straightforward path to determination of the time part of the wavefunctions, 
their energies and momenta. For example, we find that two co-moving observers 
may measure different values for the energy and momentum for the same par-
ticle. We then show the correspondence between our stationary states and the 
stationary states in flat space, i.e. plane waves. 

In part 3, we apply the boundary condition that the wavefunctions must va-
nish at the cosmic horizon. This boundary condition places a lower limit on the 
uncertainty of the particle rest mass, and implies the existence of a mass quan-
tum, which is the smallest particle rest mass allowed by the theory. The mass 
quantum and its uncertainty point to a simple method to estimate the mass un-
certainty 0mδ  for an arbitrary rest mass 0m . We see how the mass uncertainty 
leads to a natural localization of the particle, which we identify with (a lower 
limit to) the classical localization of the particle. For macroscopic objects, locali-
zation radii are very small compared to the object size, and so their trajectories 
take on classical behavior. For convenience of reference we call this new theory, 
“localization theory”. 

 

 

1Besides new physics, we suggest that this derivation is a topic suitable for undergraduate or gradu-
ate courses in QT as an example of how to bring one of the major principles of cosmology into QT. 
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We derive an expression for the critical mass where we predict a crossover 
from quantum behavior to classical behavior, and it depends on material density. 
These results are in broad agreement with the observed universe. 

In the discussion section, we show the close relationship between localization 
theory and the very successful theory of quantum decoherence as competing ex-
planations for classical localization. We note that in the non-relativistic regime, 
our results agree with a particular version of decoherence theory called “sponta-
neous quantum collapse.” 

Finally, we consider how localization theory may impact gravitational attrac-
tion and measurements of the gravitational constant G in some limiting situa-
tions. Here and at various points in the paper we make predictions for the out-
comes of a variety of real experiments that could support or conflict with the 
theory. The main part of the paper ends with some concluding remarks. 

We move several of the less critical sections of the derivation into appendices. 
In Appendix 2, we list a set of criticisms of the derivation and provide some ini-
tial responses. We consider normalization, completeness and orthogonality of 
our wavefunctions. In Appendix 3 we outline the derivation of a pseudopotential 
that can be used in flat space calculations which has stationary states have the 
same form as those in expanding space. 

Appendix 1 presents an alternative derivation for the value of the mass quantum 
that takes a very different approach than that in the main text. The coarse agree-
ment between the two derivations lends further support to our conclusion that the 
classical localization arises from the finite size and finite age of our universe. 

2. Quantization of Hubble’s Law 

Hubble’s natural law, ( ) 0H=v r r , is an interpretation consistent with electro-
magnetic observations of distant galaxies. It states that distant bodies are reced-
ing from any observer with a radial velocity equal to the distance of separation 
multiplied by the Hubble constant 0H  (neglecting proper motion). Although 

0H  is known to vary slowly with time, we approximate it with a constant 
18

0 2.2 10H −= ×  Hz (except in Appendix 1). To describe the expansion of the 
universe, this paper uses only Hubble’s natural law, and does not appeal to the 
theory of general relativity (GR). 

To begin, we consider finite set of noninteracting classical test particles2 (mass 
density~0, temperature = 0, pressure = 0) in a large empty void between galax-
ies.3 The condition for a stationary particle configuration is evidently: If each test 
particle p has an inwardly directed velocity 

0p pH= −v r ,                         (1) 

 

 

2Test particles have such small mass that the gravitational influence of those particles can be neg-
lected. For a cloud of test particles, we require that the cloud’s density is small enough so that the 
gravitational effect of the particle swarm is also negligibly small. 
3Although we do not refer to general relativity, our assumptions are quite similar to those for a 
Friedmann-Lemaître-Robertson-Walker Universe. We shall ignore any the gravitational effects 
caused by inhomogeneities in the rest of the mass in the universe. 
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then the Hubble expansion is cancelled exactly and the particle configuration is 
time independent. This condition for stationarity is key to the derivation that 
follows. 

We quantize Equation (1) for a single particle (instead of a set) with arbitrary 
rest mass 0m , where it’s probability density is spread out over a large region in 
the void. The vector pr  is now interpreted as the center of mass position for the 
wavefunction. We multiply through Equation (1) by the relativistic mass 0mγ  
(Lorentz factor 1 2 21 v cγ − −≡ − ) and rearrange to obtain 

0 00 H mγ= +rp r .                    (2) 

where ( ).→ − pr r r  
We make the canonical substitution r ri= −p ∇ , and multiply on the right 

by the particle wavefunction ( ),r tΨ  to obtain the quantum equivalent of Equ-
ation (2) 

( )
( )

( )
1

0 0 0 0

21
0

0 , ,
1

r r
m H r m c H c r

i r t i r t
H c r

γ −

−

 
  = − ∇ + Ψ = − ∇ + Ψ     − 

 

 

 

 (3) 

In (3) we have put the particle center of mass at the origin ( 0p =r ) and re-
placed the velocity in γ  using Equation (1). Equation (3) is the quantum ver-
sion of Hubble’s law, and it is consistent with special relativity. 

2.1. Solution 

Equation (3) is a first-order differential equation. It was constructed using the 
assumption that its solutions are stationary states, which implies that the wave-
function is separable and for some time-independent function ( )ω r  

( ) ( ) ( ), e i r tr t rω ψ−Ψ = .                      (4) 

Our path to Equation (4) is novel because at no point did we employ Hamil-
tonian mechanics. Direct substitution into Equation (3) verifies the solution 

( )
1 22

0
2e exp 1i H

H

m cr rr A i
r

φψ −
  
 = − 
   

               

(5) 

where the Hubble distance 1
0Hr H c−≡  and the normalization constant 33 HA r−= . 

For convenience, we set the global phase offset 1
0 Hm crφ −=   so that the wave-

function is real at 0r = . To be a stationary state we must choose the positive 
value of the square root for ( )1 22 21 Hr r− . Put another way, there is no solution 
where the momentum points away from the origin. That there is no sign ambi-
guity arises directly from the fact that Equation (3) is a first-order differential 
equation. 

The distance Hr  is also called the “cosmic horizon,” because classical par-
ticles beyond this distance are moving with speed greater than c, hence may have 
no interaction with a particle centered at the origin. The cosmic horizon is a di-
viding line between two regions of the wavefunction. Inside the horizon the wa-
vefunction has the expected form of an oscillating exponential (Figure 1(a), blue 
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solid). As Hr r→ , the particle momentum tends to infinity. This does not imply 
that the wavefunction undergoes an infinite number of phase cycles while ap-
proaching the horizon, as is evident in Figure 1(a). Instead, the total number of 
phase cycles ( ) 1

cycles 0 2πHN m cr −≡   executed between 0 Hr r≤ ≤  is a finite 
number proportional to the rest mass. For a hydrogen atom,  

cycles,H at
4

om
11.0 10N ×= . 

In Figure 1(b), our analysis shows the surprising fact that a quantum particle 
can tunnel a short distance beyond the cosmic horizon with an evanescent de-
cay. In the evanescent region the particle has imaginary velocity, while a clas-
sical particle in the same region would have a velocity greater than the speed of 
light. 

In section 3 we deal with the momentum singularity at Hr r→  by requiring 
the wavefunction vanishes at the cosmic horizon and in the evanescent region. 
However, under certain extreme initial conditions at the time of the big bang, 
the evanescent solution could be nonzero. For the sake of conciseness, we do not 
consider such cases here. 

2.2. Energies of Stationary States 

For an observer at any position r , the stationary state of a particle centered at  
 

 
Figure 1. Example plots of the real part of the amplitude (a)-blue solid line and magni-
tude (b)-blue solid line of Equation (5). The horizontal axis is plotted in units of Hr . 

These plots assume a tiny particle mass with ( )1
0 60Hm cr − = . The black dashed line in (a) 

shows the corresponding wavefunction after application of boundary conditions. The 
boundary conditions require the wavefunction to be localized at the origin, as discussed 
in Section 3. 
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pr  including time dependence is, from Equation (4) 

( ) ( ) ( ), e pi t
pt ωψ − −

Ψ ≡ −
r rr r r .                   (6) 

We now compute the value of ω  that is consistent with our spatial wave-
functions. Einstein’s equation from Special Relativity (SR) states 

( ) ( )2 2 2 4 2 2
0p pm c kω − = + −r r r r  .                (7) 

where the expression for the momentum k  can be read directly from Equa-
tion (3) 

( ) ( )
( )

0

2
1

p H
p

p H

rm c
k

r

−
− =

− −

r r
r r

r r
.                (8) 

It is important to notice that SR is a local theory, and Equation (7) applies on-
ly if the energy, momentum, and mass are measured at the same space-time po-
sition or event. In flat space, stationary states have the same momentum every-
where, and all observers measure the same particle energy. Here, the stationary 
states have a momentum ( ( )=k k r  ) that varies depending on the observer’s 
relative position. The same is true for the energy. For example, consider the sta-
tionary state ( ),r tΨ  with both the particle and the observer at 0r = . Here 
( )0 0k r → =  and we recover the Compton frequency 

( )
2

00
m c

rω → =
                        

(9) 

We consider a second observer at distance r′  with zero velocity relative to 
the first.4 the second observer measures a different energy: 

( ) ( )
2

2
20

2
0

1
c

r k r
m

m c
ω +′ ′=





.                (10) 

This leads to an important result of this paper: though the states ( ),Hr r tΨ <  
are stationary by construction hence have a time-independent energy, their ap-
parent energy depends on observer position even for co-moving observers. A 
similar result is obtained in the classical case and the position dependence of 
energy derives from the locality of SR and not specifically from QT. 

2.3. Comparison to Free Particle States in Flat Space 

In flat space vacuum, the stationary states are plane waves 

( ) [ ], expPW t i i tψ ω∝ ⋅ −r k r .                  (11) 

In this section we compare and draw analogies between these and our statio-
nary states ( ), tΨ r  for expanding space. Firstly, both PWψ  and Ψ  oscillate 
periodically with time (c.f. Equation (4)), everywhere. In this section we ap-
proximate ( ),r tΨ  in a small region with extent Ha r , and see that ( ),r tΨ  

 

 

4The zero-velocity condition is defined by and can be checked by the two observers through the ex-
change of a laser beam with known frequency. Zero velocity implies the laser has the same photon 
energy for both observers. 
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reduces to the form of a plane wave. 
Consider a cubical volume of space with side a and centered at the position 

0r . The distance a is assumed to be but small compared to Hr : 0 Ha r<  . We 
define the offset coordinate 0δ = −r r r  with 0 r aδ≤ ≤ . Substituting into Equ-
ation (8), expanding in a Taylor’s series about 0δ =r , and keeping only the 
lowest order term in δ r  we find 

( )
( )

0 0
0 2

01
H

H

m c r

r
≅

−

r
k r

r
.                  (12) 

Equation (12) is independent of observer position within the cube and defines 
a 1:1 correspondence between the stationary states ( ), tΨ r  in expanding space 
and ( ),PW tψ r  in flat space; the former converges to the latter as 0 0H → . 

Equation (12) is helpful for applications where we wish to propagate a given 
initial state forward in time. Suppose at 0t =  we are given an arbitrary wave-
function ( ),0rφ  with support only a local region of space. To propagate this 
wavefunction forward in time, we perform the following transformations at 

0t = : 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

0 0

0

0

e
0 0 0

0

,0 e d e d

,0 d

PW

Hikr

k k ii

r
r

r

ψ

φ φ φ

φ

∞ ∞
→ ⋅⋅

−∞ −∞

→

=

= →

→ Ψ −

∫ ∫

∫

r k r rk rr k k k r k

r r r r

 



.      (13) 

The expansion on the right hand side can be propagated forward using the 
time dependence in Equation (6). Notice that this transformation takes an 
integral over momentum space and replaces it will an integral over real space. 
This is possible because there is a 1:1 correspondence between a specific mo-
mentum in flat space and the position of the center of mass in expanding space. 

3. The Emergence of Spontaneous Localization 

3.1. Quantization of Mass Uncertainty minσ  

The crucial element to complete this theory is to apply the boundary condition 
that the wavefunction must go to zero at the cosmic horizon. This condition is 
satisfied in the usual way: by constructing linear combinations of the unbounded 
wavefunctions that have the desired property. For example, the wavefunctions 
for a particle in a box are constructed by combining pairs of oppositely directed 
travelling waves into standing waves, enforcing nodes at the box edges. 

Similarly, we demand that ( ), tΨ r  must go to zero at the cosmic horizon. If 
this were not the case, then an observer approaching the cosmic horizon (from 
the inside) would measure a divergent momentum and energy, ,p E →∞ .5 The 
behavior of the unbounded states Equation (5) at the cosmic horizon ( Hr r→ ) 

 

 

5This assumption is equivalent to enforcing a soft upper limit to particle kinetic energy. This is ex-
actly what is observed for the most energetic particles (i.e. cosmic rays) in our universe. Although 
other processes such as scattering from cosmic microwave background photons place even more 
stringent limits on the maximum observed kinetic energy. 
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gives 

( ) 0e expi H
H

m cr
r r A Aφψ −  → = = −  

              (14) 

The only non-constant factor in the exponential is the rest mass. Thus, an 
integral over a range of rest masses achieves our boundary condition 

( ) ( ) ( )0
0

, , dr m a m r m mψ ψ
∞

→ ∫ ,                 (15) 

where ( )a m  represents the particle probability distribution as a function of 
rest mass. Because the mean rest mass 0m  of elementary particles are fixed, for 
such particles we infer that ( )a m  has a strong narrow peak at 0m m= . For the 
sake of this discussion, the detailed functional form of ( )a m  is important to 
the exact value of mδ  result within a factor of order 1, and this factor is not 
important for the main conclusions of this paper. As an example we choose 
( )a m  to be a top hat function centered at 0m  and having width mδ : 

( ) ( ) ( )0 0
1     for 2 2a m m m m m m
m

δ δ
δ

 = − < < +  ,        (16) 

and zero otherwise. Putting (16) into (15) and setting the result equal to zero at 
the cosmic horizon we obtain a quantization condition on the distribution pa-
rameter mδ  

2π , 1, 2,3,
H

m n n
cr

δ = =


                    (17) 

which has a minimum value minmδ  when 1n = . Later we will need the standard 
deviation of the distribution in (16), which is easily computed: min min1 12 mσ δ≡ . 

3.2. The Mass Quantum Hm  and Its Uncertainty 

Because the universe has finite extent, Equation (17) shows that the mass distri-
bution width is minmδ . This does not necessarily imply that the actual rest mass 
is quantized, as postulated below. But it does imply that no mass may be smaller 
than a minimum Hm , dependent on the Hubble parameter. If we try to create a 
particle with nominal zero mass, its mass is still uniformly distributed over the 
range minmδ , and the mean value of the smallest mass is 

0
n 2

68
mi

π
2 kg5.1 10H

H
m m

c
δ −×≡ = =



              
(18) 

We shall call Hm  the mass quantum and identify its “uncertainty” with the 
standard deviation min

1 21 12 3H Hmmσ δ −= = . This is perhaps the most im-
portant result of this paper. 

To further motivate the concept of a minimum mass, we turn to a semiclassic-
al argument based on quantization of angular momentum. Consider a classical 
particle with relativistic mass 0 SRm mγ ≡  executing circular motion with radius 

maxr . We set the angular momentum of this particle equal to the minimum, 
Planck’s value: maxSRm vr h= . Given the maximum velocity is c, the minimum 
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value of the mass is ( ) 1
,min maxSRm h cr −= . Letting max Hr r→ , we recover Equa-

tion (18) to within a factor of two. This argument reinforces the result of Equa-
tion (17). We see that the two ingredients for the existence of a mass quantum 
are 1) the quantization of angular momentum and 2) that the accessible universe 
has finite volume. 

3.3. Uncertainty in Larger Masses 

In the next step, we introduce a new theory postulate: 
Postulate: every mass 0m  and its uncertainty can be modeled as the super-

position of many mass quanta and their uncertainties. 
We do not propose that particles are composed of many very small particles, 

only that mass is quantized. However, because the quanta are bosons, there is no 
conflict with multiple quanta residing in the same place at the same time. 

We model any mass 0m  as a superposition of 0 Hm m  individual quanta all 
with the same center of mass. What uncertainty is associated with 0m ? To mod-
el uncertainty, we treat the mass of any individual quantum qm  as a random 
variable uniformly distributed in the range ( min0 qm mδ≤ ≤ ) with mean value 

Hm . The central limit theorem [13] then provides an estimate of the uncertainty 
in 0m 6 

0 0
1 23m quant Ha H mN mσ σ −= = .                (19) 

When 1quantaN  , the central limit theorem also gives us the shape of the 
probability distribution around the nominal mass 0m , 

( ) ( )
0 0

21 2 2
0π expm mP m m m σ−  ∝ − −                

(20) 

Equations (19) and (20) are another important result. They derive from the 
postulate that large masses can be treated as a superposition of mass quanta with 
known uncertainty. 

3.4. Greater Localization for Larger Uncertainties 

Because the value of Hσ  is inversely proportional to the maximum allowed 
(Hubble) radius Hr , it may be intuited that masses with larger uncertainty will 
be confined to smaller radii, hence smaller volumes. Inverting Equation (17) and 
replacing 12mδ σ→ , the radius of localization locr  for a mass 0m  takes a 
particularly simple form7 

 

 

6We note that for Equation (19) to be consistent with Equation (17), the number of quanta must be a 
perfect square, 2

quantaN n= , where n is an integer. This has no practical significance because ordi-
nary masses are comprised of a very large number of quanta so a nearby perfect square value will 
always be well within the mass uncertainty. 
7It is notable that Herzenberg (Herzenberg 2006, 2009) derived a very similar localization distance 
with the same functional form as presented here: 

,Herzenberg
0 0

π
2locr

m H
≈



, 

despite the fact that Herzenberg used a derivation quite distinct from ours. This “coincidence” may 
be explained, since the geometry of expanding space is essentially the same in both papers. 
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( )
0

0
0 0

2π π
12loc

m

r m
m Hcσ

≡ =
 

                
 (21) 

As expected, the localization radius becomes infinite as 0 0H → , and it is in-
versely proportional to the square root of the rest mass. This means that the par-
ticle wavefunction is confined to a volume ( )0mΩ  approximately equal to that 

of a sphere with radius locr : ( ) 3
0

4 π
3 locm rΩ ≅ . Below, we identify ( )0mΩ  with 

the classical localization volume of macroscopic particles, from raindrops to 
stars. An example of the wavefunction post localization is found in Figure 1(a), 
indicated by a black dashed curve. To reveal the localization behavior in more 
detail, Figure 2 plots the envelope function multiplying the wavefunction in 
Figure 1 after the boundary condition has been met. 

Statement (21) is quite general, and can be recovered exactly by reversing the 
derivation leading to Equation (17). Equation (21) has no free parameters, mean-
ing that if it does not approximate observed reality, then the only option is to ab-
andon it. There is no ambiguity. Comparisons of locr  (column 5) and estimates of 
the classical radius (column 4) for representative masses are given in Table 1. 

 

 
Figure 2. Plot of the enveloping function that multiplies the wavefunction in Figure 1 af-
ter localization has been applied. The curve at small radius has a Gaussian-like shape. 

 
Table 1. Estimates of the classical radius and localization parameter Locr  for various (elementary or composite) bosons. 

Particle type Mass 0m  (kg) Density (kg/m3) Classical Radius (meters) Locr  in steady-state universe  
18

0 2.2 10 sH −= ×  (meters) 

Mass quantum 0
2

π
H

Hm
c

≡
  685.1 10−×  - - 261.4 10×  

“Dark matter particle” see text 583 10−×  - - 
(200,000 LY) 

211.9 10×  

Hydrogen atom 271.67 10−×  - - 750,000 

Higgs boson 252.2 10−×  - - 65,000 

Mass for 1locr =  cm (Lead) 129.5 10−×  11,340 75.8 10−×  0.01 

1 kg water 1 1000 0.062 83.08 10−×  

Total mass of universe 301.99 10×  283 10−×  87.0 10×  232.2 10−×  
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Assuming a spherical shape, we can invert Equation (21) to express the critical 
mass for crossover from quantum to classical behavior as a function of the ma-
terial density ρ  

( )1 5
0,crossover

2 5 3 5 3 5
016 9 πm Hρ −=                  (22) 

The values of critical mass for a variety of materials are shown in Table 2. 

4. Discussion and Conclusions 

Ask a physicist about the size of an atom and she would probably describe the 
boundaries of the diffuse electron cloud surrounding the nucleus. But this is on-
ly half of the story. From another perspective, the atom is a point-like composite 
particle whose center of mass is described by another, different wavefunction. To 
obtain a complete description of the spatial distribution of just one of the bound 
electrons, we must convolve the atom’s center of mass wavefunction with the 
internal wavefunction of the electron about the nucleus. This paper focuses on 
the often-neglected center of mass wavefunction, specifically for a point-like 
composite boson with arbitrary mass. 

This theory offers one explanation for why large objects appear to be perpe-
tually localized in space. At this point we take a step back and consider the suc-
cesses of localization theory. 

We have quantized Hubble’s law and computed the stationary state wavefunc-
tions in a steady-state universe that obeys Hubble’s law. We characterized those 
states for their position-dependent momentum and energy. We show how the 
limits of a finite universe give rise to a fundamental uncertainty in particle 
masses. We make quantitative predictions about spontaneous localization of 
massive particles which we associate with classical localization. We perform 
these tasks with a pure quantum theory that does not rely on general relativity. 
Localization theory is purely based on standard quantum mechanics and has no 
free parameters. 

In further support of our theory that mass is quantized, we offer a second de-
rivation of the mass quantum based on the Heisenberg uncertainty principle 
(Appendix 1). 

 

Table 2. Estimates of the critical mass and critical radius for various materials. The critical mass is crossover point from quantum 
behavior (for smaller mass) and classical behavior (for larger mass). 

Material Mass 0m  (kg) Density (kg/m3) Classical Radius (meters) locr  in steady-state universe 
18

0 2.2 10H −= ×  (meters) 

Critical mass for average density of universe 201.7 10−×  283 10−×  350 350 

Critical mass for Air 91.86 10−×  1.225 31.04 10−×  31.04 10−×  

Critical mass for a Styrofoam ball 98.20 10−×  50 45 10−×  45 10−×  

Critical mass for interstellar dust grain 
(amorphous SiO2) 

83.59 10−×  2000 42.4 10−×  42.4 10−×  

Critical mass for neutron star density 0.01 1017 74 10−×  74 10−×  
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As an aside, we note the existence of a pseudopotential in flat space that re-
produces the same stationary states as described here (outline of derivation pre-
sented in Appendix 3). 

4.1. Consistency with Decoherence Theories  
of Spontaneous Quantum Collapse 

The physical problem of classical localization in a quantum world has long been 
recognized as demonstrating an incompleteness of quantum theory. Most phy-
sicists would agree that the best current theory for classical localization comes 
from decoherence theory. Decoherence has been described as resulting from the 
inter-connectedness of all matter in the universe through the fundamental forces. 
No particle can ever be considered completely isolated, as illustrated by Zeh in 
[14] p. 27. “Borel (Borel 1914, pp. 27-35) showed long ago that even the gravita-
tional effect resulting from shifting a small piece of rock as distant as Sirius by a 
few centimeters would completely change the microscopic state of a gas in a 
vessel here on earth within seconds after the retarded field of force had arrived.” 

Connectedness means that the Hamiltonian of any subsystem expressed in 
terms of subsystem coordinates ( ),q p , also depends on the actual state of the 
entire universe or environment. That is,  

( ) ( )( )subsystem subsystem , ; ,env envH H q p q t p t→ , after Joos in [14] p. 35. It is as if the 
system under study is constantly perturbed by collisions with a large number of 
very small virtual particles such as gravitons [15], generated by the finite tem-
perature of the quantum vacuum state. 

Some theories of spontaneous wavefunction collapse [16] address connected-
ness by adding a space- and time-dependent random factor to the Hamiltonian. 
We argue that the model presented here is consistent with such models, albeit 
with a different interpretation. We begin with a generalized Hamiltonian in-
cluding spontaneous collapse 

( ) ( ) ( )General subsystem, , , , , ,i i sub sub env env envH q p t H q p t T q p t≈ +       (23) 

where envT  represents random perturbations in space and time. Averaging over 
many position and time realizations, we may replace envT  with its expectation 
value ( ), ,envT q p t . Assuming these perturbations TEδ  are small and linear, 
it is reasonable to assume their probability distribution [14] [17] 

( ) 2 2 2 1 2 2 2exp exp π exp
i TT t i q T Ei

P E t q Eδ σ σ δ σ−    ≈ − ×Π − ∝ −      
 (24) 

In our localization theory, we find that the particle rest mass has an intrinsic 
uncertainty which can be described with additive term describing the distribu-
tion of possible rest masses (20). In the non-relativistic case these distributions 
have the same form as Equation (24) (referencing Equation (20)): 

( ) ( )0

2
T mP E P mcδ ∝

                    
 (25) 

and the distributions remain similar even at relativistic energies. We conclude 
that in (some) decoherence theories of spontaneous collapse, the full Hamilto-
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nian including system and environment will induce particle localization essen-
tially indistinguishable from that of localization theory presented here. 

While spontaneous collapse theory and the present theory can give rise to al-
most indistinguishable results, they derive from very different physics. The 
present theory has no free parameters while decoherence theory is adjusted to fit 
reality by careful choice of the free parameter 

TEσ  (Equation (24)). Decohe-
rence theory does not yet have a model to predict 

TEσ  from first principles. 
The present theory assumes a steady-state universe and does not address the 

very real mystery of wavefunction collapse. Conversely, spontaneous collapse 
theories presume that wavefunction collapse is the chief ingredient for particle 
localization. 

Although the interpretation is different, we emphasize that our theory in no 
way invalidates the results of decoherence theory; the two theories can be made 
to be consistent. With the acceptance of our localization theory, the vast litera-
ture and most if not all the deductions of decoherence theory remain viable. 

4.2. Blurring of Gravity 

In a more speculative vein, we consider the potential effects of localization 
theory on gravitational interactions. Some theories of quantum gravity begin by 
assuming that a mass whose wavefunction is dispersed in space can be treated by 
classical general relativity with a continuous mass spatial distribution propor-
tional to the probability density of the wavefunction. Not all theories include this 
assumption, but it seems like a reasonable place to start. 

For small particles, localization theory also assumes a dispersed center of mass 
wavefunction with the localization radius of Equation (21). Consulting Table 1 
for a solitary hydrogen atom isolated in vacuum, we predict its center of mass 
wavefunction is dispersed over a region ~106 meters in diameter. If this estimate 
is correct, then we expect the gravitational force between two hydrogen atoms to 
be essentially nil at microscopic distances. Hence the question, “what is the gra-
vitational contribution to the binding energy of an isolated H2 molecule in va-
cuum?” is answered by “none at all.” The gravity from a hydrogen atom can be 
approximated as that of a point particle only at distances greater than the radius 
of localization. 

Indeed, suppose a scientist wishes to repeat Cavendish’s measurement of the 
gravitational constant G using a tiny torsion balance and very small lead spheres, 
of order 1 micron in diameter. In Table 1 we see that the sphere’s radius of locali-
zation on the order of 1 centimeter. Thus, in very sensitive measurements where 
the spheres are separated by distances less than 1 cm, the apparent value of G will 
be substantially smaller than its accepted value. Thus, localization theory makes a 
quantitative prediction of reduced gravitational attraction for very small separa-
tions which can, in principle, be compared with laboratory observations. 

4.3. Final Remarks 

This paper finds that classical localization of large masses is a direct result of the 
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expansion of space and is inversely related to the Hubble constant. This means 
that in a flat universe ( 0 0H = ) classical localization does not occur, in conflict 
with the predictions of decoherence theory. Localization theory and decoherence 
theory may both be true at once, but contemplation of this difference may lead 
to experiments that distinguish the two theories. 

The original impetus for our development of localization theory was the intui-
tion that Hubble expansion must have some detectable effect on the interaction 
between microscopic particles. We were further motivated by the intuitive con-
viction that quantum theory (QT) applies even to large “particles” like planets, 
and there should be a detectable effects of ordinary QT even over cosmological 
distances. 

In a lighthearted closing, we note that localization theory may have something 
to say about dark matter. Observations show that dark matter tends to be con-
fined on galactic scales, say 200,000 light years. If this confinement were ex-
plained by localization theory, it is possible to estimate the mass of a typical 
“dark matter particle,” and we do this in Table 1. The mass of such a small par-
ticle is on the order of 10−58 kg. 
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Appendix 1: Alternative Derivation/Extension of the 
Steady-State Theory to a Dynamic Universe 

A1. Mass Uncertainty Based on Duration of Measurement 

In very precise mass measurements, the energy-time uncertainty principle plays 
an important role. We consider a thought experiment where a scientist with a 
perfect scale wishes to weigh (find mass of) a single muon8. After placing the 
muon and releasing the scale, she must wait a finite time for the scale to settle, 
and the accuracy of her measurement improves with increasing wait time. Even 
a perfect scale can never display the exact particle mass in a finite amount of 
time, because of Heisenberg’s uncertainty principle for time and energy, usually 
expressed as 2E t∆ ∆ ≥  . Since rest energy is proportional to mass, we may 
write 

52
min 2 5.87 10 kg s

2
t

c
σ −∆ ≥ ≈ × ⋅



                  
(26) 

Equation (25) is relevant to our thought experiment because the muon is un-
stable and spontaneously decays into lighter particles with an average lifetime of 
2.2 μs. As she pursues higher accuracy, Equation (25) and muon decay places a 
fundamental limit on the uncertainty in her measurement; in this case 

1 181.4 10mµ µσ − −≈ × . Even idealized mass measurements of single muons will 
show statistical fluctuations about the nominal muon mass with an uncertainty 
of µσ . A simplistic interpretation of the uncertainty is that muons come in a 
random distribution of different mass values centered on the mean value. 

This argument applies at all mass scales, from elementary particles to planets. 
Because no particle has ever existed longer than the age of the universe (T = 
thirteen point eight billion years), Equation (25) predicts that no particle mass 
may have an uncertainty smaller than 6

min
91.3 10σ −×=  kg. This is a lower limit 

for the mass indeterminacy since Equation (25) is an inequality. 
In the theory of the main text, we computed the minimum mass uncertainty 

to be 682.94 10Hσ −= ×  kg. In other words, the uncertainty Hσ  is indeed larg-
er than the lower limit set by the uncertainty principle, by a factor of 22. We 
consider this level of agreement to be a success, and the result from the uncer-
tainty principle supports the result from localization theory. 

A2. Model of a Dynamic Universe 

A still better estimate of minσ  is derived for the dynamic universe in Figure 3. 
We model the dynamic universe as a homogeneous spherical region bounded on 
all sides by the comic horizon. This horizon is expanding at the speed of light and 
within its bounds the Hubble parameter is time dependent ( )0 0H H t T→ = . The 
origin of the time axis is taken to be the time of the big bang and 0T  refers to 
the current epoch. 

In the real universe, the value of the mass quantum might depend on the un-

 

 

8The fact that the muon is a Fermion has no relevance to this part of the discussion. The accepted 
muon mass is 1.88 × 10−18 kg. 
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iverse’ peculiar expansion history. However, we model the passage of time as a 
Markov chain of events, where the observed properties at time t depend only on 
the properties at the time t′  immediately preceding t. Since the separation be-
tween t and t′  is infinitesimal, our model assumes that the current states of 
matter can be predicted using only current physics and current values of physi-
cal constants and their time derivatives. The Markov assumption is justified by 
its common usage in most domains of physics including pure quantum field 
theory and all classical physics. 

Our perspective is that the dynamic properties of the universe can be modeled 
as if it was a linear extrapolation of current dynamics. Figure 3 makes a sche-
matic comparison of our models of the steady-state and dynamic universe. In 
our dynamic universe, the Hubble parameter is equal to the inverse of the effec-
tive age of the universe; ( ) ( ) 1

0 0H T t T t −+ ∆ = + ∆ . 
The time derivative of the Hubble parameter is only one part in 10−18 per 

second. We assume that this may be neglected over short periods of time, and 
the wavefunctions describing matter in the dynamic universe can be well ap-
proximated by the wavefunctions of the steady-state universe (Equations (4) and 
(5)), except with a time-dependent Hubble parameter. This permits us to carry 
over most of the results of the steady state theory. 

Using 1
0 0H T −=  we may rewrite Equation (26) 

0
min 22

H
c

σ ≥


                         (27) 

And with the replacement min Hσ σ→ , we write down the equation for the 
localization radius, ,loc dynamicr  corresponding to Equation (21) 

( ), 0 0

2

0 0

, 4π
loc dynamicr m T

m H
≤

 .                  (28) 

 

 
Figure 3. Schematic comparison of the two models of the universe discussed in this paper. 
On the left we have a steady-state universe where the cosmic horizon does not move with 
time. On the right, the universe comes into existence as a singularity and the cosmic ho-
rizon moves outward from that time at the speed of light. 
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The right hand side of Equation (27) is larger than the steady state localization 
radius by a factor of 4π . Since Equation (27) is an inequality, the results for 
the dynamic universe are entirely consistent with those of the steady-state un-
iverse. Therefore, Equation (27) provides further support for localization theory 
as derived in the main paper. 

Appendix 2: Criticisms of the Derivation and Initial Responses 

Single particle theory 
This theory describes only isolated particles and the concept of multi-particle 

interactions is not addressed. A quantum field version of the theory may solve this 
problem. For now, it is at least plausible to approximate particle-particle gravita-
tional interactions assuming the particles are localized to begin with (see 4.2). 

Ambiguity in value of mδ  
We remind the reader that in Equation (17) the width of the mass distribution 
mδ  that satisfies the boundary condition is multi-valued, depending on the 

quantum number n. To estimate the minimum permitted mass, it is reasonable 
to choose the lowest quantum number 1n = . But other values are permissible 
for mδ  and we ignore those solutions here. We note that with increasing 
quantum number, the value of mδ  becomes more and more dependent on the 
exact choice of mass distribution function ( )a m , and such ambiguities are mi-
nimized when 1n = . 

Ambiguity between Hubble constant and age of universe 
In our primary derivation, the universe is ageless, and localization derives 

from a nonzero Hubble constant. In our secondary derivation (Appendix 1), lo-
calization derives from the finite age of the universe. It is no coincidence that 
our dynamic universe’ age is equal to 1

0H − , but even so there is an ambiguity 
about the origins of mass quantization for the two models. In the steady-state 
model, mass uncertainty is caused by spatial localization of particles within cos-
mic horizon. In the dynamic theory, mass uncertainty comes from time localiza-
tion inferred from the singularity of the big bang. A more complete theory will 
combine both effects. 

Choice of basis set for wavefunction expansion 
We have chosen to express generic particle states with a Huygens-like basis set 

of spherically symmetric functions ( )cmΨ r  with variable center of mass posi-
tions. We choose this basis for convenience of comparison with the 0 0H =  
plane wave states. However, direct integration shows that two functions ( )1Ψ r  
and ( )2Ψ r  centered at different positions 1 2≠r r  are only approximately or-
thogonal. 

A more natural basis would be a set of functions all centered at the same point 
and distinguished by three quantum numbers: ( ) ( ) ( ), , ,m

n ln l m R r Y ϑ φΨ = . The 
( ),m

lY ϑ φ  are spherical harmonics and the radial functions ( )nR r  are deter-
mined by boundary conditions. However correct this basis set may be, it is not 
so useful as a tool for understanding the stationary states. We leave the more ex-
act derivation of a basis containing spherical harmonics to future work. 
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Use of Central Limit Theorem 
The central limit theorem of statistics was derived for classical particles. 

Hence its application in Equation (19) relating to quantum particles may be du-
bious. We justify its use here based on an intuitive sense that it predicts the right 
behavioral trend, and in the end it provides a useful result that is consistent and 
explanatory for our universe. If nothing else, the comparison of theoretical pre-
dictions and experiments will either support or discredit our choice. 

Wavefunction outside the cosmic horizon 
Localization theory admits the possibility of a particle being detected at a point 

beyond the cosmic horizon Hr . Yet we focus only on particle states confined within 
the cosmic horizon and negligible amplitude outside. The form of the wavefunction 
beyond Hr  derived from Equation (3) is given numerically by 

102 2
03.67 10 2e mA δ δ− × +  

where δ  is the radial distance beyond Hr . Even for the hydrogen atom, the 1e−  
decay distance is 2

0
112 584. =1.77 10 10m− −× ×  m, which can be compared to the lo-

calization radius of the total mass of the universe, which is much larger 232.2 10−×  
m. 

This provides some justification for neglecting the wavefunction outside, but 
the real particle distribution is entirely dependent on the initial conditions. 
These initial conditions were set at the moment of the big bang hence we know 
nothing about them. Thus, a fraction of the particles in the universe may lie out-
side (have support only outside) their own cosmic horizons. We intend to inves-
tigate this situation in a future paper, but we emphasize one key point. At the 
cosmic horizon, the wavefunction energy is infinite, and this acts as an impe-
netrable barrier for particles caught outside the horizon at 0t = . No physical 
interaction can push a particle from outside to inside, or vice versa. Thus, out-
side particles comprise a different state of matter as compared with inside par-
ticles. We conjecture that the (strong force, weak force) interactions between 
outside particles and inside particles are highly constrained. Only electronic and 
gravitational interactions would not suffer this restriction. 

Appendix 3: Modeling H0 > 0 with an Effective Potential 

With an expression for ( ),r tΨ  (Equations (4) and (5)), it is straightforward to 
derive an effective potential ( ),V r t  for a particle in flat space that gives the 
same solution as ( ),r tΨ  when 0 0H > . In flat space, the free states of a 
spin-zero boson are solutions of the Klein Gordon equation, to which we add a 
fictitious potential 

( ) ( )
2

2 2 2 2 2 4
0, 0 ,i V r t c r r m c r t

t r r
−

 ∂ ∂ ∂   − + − = Ψ    ∂ ∂ ∂     
  .     (29) 

Plugging the desired solution ( ),r tΨ  into Equation (29) gives a second-order 
differential equation containing only derivatives of ( ),V r t , and where most of 
the terms are algebraic. This shows another advantage of our novel deduction of 
stationary states in expanding space: with an expression for the wavefunction, 
the derivation of effective potential is straightforward. 
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