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Abstract

A new analytical solution for the luminosity distance in flat ACDM cosmolo-
gy is derived in terms of elliptical integrals of first kind with real argument.
The consequent derivation of the distance modulus allows evaluating the
Hubble constant, H;=69.77+£0.33, Q, =0.295+£0.008 and the cosmo-

logical constant, A =(1.194%0.017)x107 Lz
m
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1. Introduction

The release of two catalogs for the distance modulus of Supernova (SN) of type
Ia, namely, the Union 2.1 compilation, see [1], and the joint light-curve analysis
(JLA), see [2], allows matching the observed distance modulus with the theoret-
ical distance modulus of various cosmologies. In this fitting procedure, the cos-
mological parameters are derived in a scientific and reproducible way.

We now focus our attention on the flat Friedmann-Lemaitre-Robertson-Walker
(flat-FLRW) cosmology. A first fitting formula has been derived by [3] and an
approximate solution in terms of Padé approximant has been introduced by [4].
The presence of the elliptical integrals of the first kind in the integral for the lu-
minosity distance in flat-FLRW cosmology has been noted by [5] [6] [7]. As a
practical example the luminosity distance can be expanded into a series of or-
thonormal functions and the two cosmological parameters turn out to be
H,;=7043+£0.33 and Q,, =0.297+0.002, see [8]. This paper first introduces

in Section 2 a framework useful to build a new solution for the luminosity dis-
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tance in flat-FLRW cosmology, which will be derived in Section 3.

2. Preliminaries

This section reviews the adopted statistical framework, the ACDM cosmology,

and an existing solution for the luminosity distance in flat-FLRW cosmology.

2.1. The Adopted Statistics
In the case of the distance modulus, the merit function y? is

Zzzi (m_M)i_(m_M)(Zi)th , (1)

O.

i

where N is the number of SNs, (m—M) is the observed distance modulus
evaluated at redshift z,, o, is the error in the observed distance modulus eva-

i

luated at z,, and (m—M)(z), is the theoretical distance modulus evaluated

at z,, see formula (15.5.5) in [9]. The reduced merit function y2, is
szed:ZZ/NF’ (2)
where NF =N -k is the number of degrees of freedom, N is the number of
SNs, and & is the number of parameters. Another useful statistical parameter is
the associated Q-value, which has to be understood as the maximum probability
of obtaining a better fitting, see formula (15.2.12) in [9]:
2
0 =1-GAMMQ N_kZ_ i (3)
2 2
where GAMMAQ is a subroutine for the incomplete gamma function.
The goodness of the approximation in evaluating a physical variable p is eva-

luated by the percentage error &

P
p

%100, 4)

where p, .. isanapproximation of p.

2.2. The Standard Cosmology

We follow [10], where the Hubble distance D,; is defined as

c
D, =—. 5
" (5)
The first parameter is Q,,
_ 8nGp, ©)
Mooapl

where G'is the Newtonian gravitational constant and p, is the mass density at
the present time. The second parameter is Q,
Ac?

_Ae (7)
30

A
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where A is the cosmological constant, see [11]. These two parameters are con-

nected with the curvature Q, by

Q,+Q, +Q, =1. (8)
The comoving distance, D, is
z dZ’
D.=Dy| —— 9
C H]o E(Z,) ( )
where E(z) isthe “Hubble function”
E(z) =y (1+2) +Q (142) +Q,. (10)

The above integral does not have an analytical solution but a solution in terms

of Padé approximant has been found, see [12].

2.3. A First Formula for a Flat-FLRW Universe

The first model starts from Equation (2.1) in [4] for the luminosity distance, d, ,

dL(z;c,HO,QM)zHi(l—i-z) : da

1 s (11)
0 e Quat(1-Qy)d’

where H, is the Hubble constant expressed in km-s™-Mpc™', c is the speed of
light expressed in km-s™, zis the redshift and a is the scale-factor. The indefinite
integral, ®(a),is

)= _[ da

L Joua+(1-9,)d"

D (a,Q, (12)
The solution is in terms of £ the Legendre integral or incomplete elliptic
integral of the first kind, and is given in [13].
The luminosity distance is

d, (z50Hy ) = ER(HL(Hz)((D(I)—(D( 1 Dj (13)

o 1+z

where R means the real part. The distance modulus is

(m—M)=25+5log,, (dL (z;c,HO,QM)). (14)

3. A New Formula for a Flat-FLRW Universe

The second model for the flat cosmology starts from Equation (1) for the lumi-
nosity distance in [14]

dt. (15)

C 1+z z 1
dy (z:6,Hy, Q) = (H ).[o 3
0 \/QM(lH) +1-Q,,
The above formula can be obtained from formula (9) for the comoving dis-
tance inserting ), =0 and the variable of integration, f, denotes the redshift.

A first change in the parameter (), introduces

1-Q
s =3—M (16)
QM
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and the luminosity distance becomes
1
1+1) -
(1+0) +1—(s3 +1) 1

2 +1

d, (z;c,HO,s):—c dr. 17)

0

(1+2)];
J

—u
, is performed for the luminosity
u

The following change of variable, 7= &

distance which becomes

s s (u’ +1
s (1+z)(33 +1)Ll+z o u3((s3 +1;du.

d, (z;c,HO,s):— (18)
Up to now we have followed [14] which continues introducing a new function
T(x); conversely we work directly on the resulting integral for the luminosity

distance: which is

d (z¢,H,,s)
34 [ 3 l

:—1/30(1“\);]{ s+ [ ( ;:1121 14323 +1/44/2 | (19)
sH, stz

s+1+s«/7

where sis given by Equation (16) and F(¢,k) is Legendre’s incomplete elliptic
integral of the first kind,

{ \/g“s s+1) 1/4«/—«B+1/4«/—]J

sing d
¢ k (20)
'[ ’ ' k2 2
see [15]. The distance modulus is
(m—M)=25+5log,,(d, (z:¢,H,.s)), (21)
and therefore
1+2)3*(F - F)Vs* +1
(m—M)=25+5 ! In —lc( +2)3 (R BN , (22)
n(10) | 3 JsH,
where
,/ +1+ f
F= [ (s+1+2) 1/4I\B+1/4f] (23)
34+s5+z+1
and

F, = F[ IV 1/4fﬁ+1/4\f} (24)
s+1 +sf

with sas defined by Equation (16).

Data Analysis

In recent years, the extraction of the cosmological parameters from the distance
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modulus of SNs has become a common practice, see among others [8] [16] [17].
The best fit to the distance modulus of SN is here obtained by implementing the
Levenberg-Marquardt method (subroutine MRQMIN in [9]). This method re-

quires the fitting function, in our case Equation (22), as well the first derivative
M , which has a simple expression, and the first derivative M ,
0H, oQ,,
which has a complicated expression. A simplification can be introduced by im-
posing a fiducial value for the Hubble constant, namely H, =70 km-s™-Mpc™,
see [2] [18]. We call this model “flat-FLRW-1”, where the “1” stands for there
being one parameter. Table 1 presents H, and Q,, for the Union 2.1 compi-
lation of SNs and Figure 1 displays the best fit. The reading of this table allows
to evaluate the goodness of the approximation, see (4), in the derivation of the
Hubble constant in going from the supposed true value ( #, =70 km-s™' -Mpc™")

to the deduced value ( H, =69.77 km-s™' -Mpc™'), which is §=99.67%. The

Table 1. Numerical values from the Union 2.1 compilation of y*, z’, and Q where &

stands for the number of parameters.

Cosmology SNs k parameters Ve Vo Q

H,=69.77+£0.33;
flat-FLRW 580 2 562.55 0.9732 0.66
Q, =0.295+0.008

H,=70;
flat-FLRW-1 580 1 563.52 0.9732 0.669
Q, =0.295£0.008

H,=69.81; Q,=0239;
ACDM 580 3 562.61 0.975 0.658
Q, =0.651

45

Union 2.1

40
T

35

Distance Modulus

1 A R A . 1
1.5

Redshift
Figure 1. Hubble diagram for the Union 2.1 compilation. The solid line represents the

best fit for the exact distance modulus in flat-FLRW cosmology as represented by Equa-
tion (22). Parameters as in first line of Table 1; Union 2.1 compilation.
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JLA compilation is available at the Strasbourg Astronomical Data Centre (CDS),

and consists of 740 type I-a SNs for which we have the heliocentric redshift, z the

apparent magnitude mj inthe Bband, the errorin mj, , o , , the parameter X1,
mp

the error in X1, o, the parameter C the error in G o, and log,,(M,,,, )-
The observed distance modulus is defined by Equation (4) in [2]:
m-M=-CB+Xla-M,+m). (25)
The adopted parameters are a =0.141, f=3.101 and

[-19.05 if M, <10°M,
" -19.02 if M, >10°M,

stellar

(26)
stellar
see line 1 in Table 10 of [2]. The uncertainty in the observed distance modulus,
o,_y » is found by implementing the error propagation equation (often called

the law of errors of Gauss) when the covariant terms are neglected, see Equation
(3.14) in [19],

Oyt = \/azo_)z“ +po; +O':1§ . (27)

The parameters as derived from the JLA compilation are presented in Table 2

and the fit is presented in Figure 2.

Table 2. Numerical values from the JLA compilation of »*, z2, and Q, where kstands

for the number of parameters.

Cosmology SNs k parameters Ve o Q
H,=69.65+0.231;
flat-FLRW 740 2 627.91 0.85 0.998
Q, =0.3+0.003
T T I T
<9 1
o
N
-
oL 4
¥
2}
=
3
o
O
=
08 .
@]
C
O
)
2
O
o L -
)
1 1 1 L L L L 1

1.5

Redshift
Figure 2. Hubble diagram for the JLA compilation. The solid line represents the best fit

for the exact distance modulus in flat-FLRW cosmology as represented by Equation (22).
Parameters as in first line of Table 2.
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As an example the luminosity distance for the Union 2.1 compilation with
data as in the first line of Table 1 is

dy (z)=8147.04(1.0+z)

|3.1188+1.33542 (28)
x| —0.637664F | 2.63214 ,0.965925 |+1.75322 |Mpc
4.64846+ z
when 0<z<1.5
and the distance modulus is
m—M =250+ 2.17147ln[8147.04(1.0+ z)
(29)

x| —=0.63766F| 2.6321
4.6484 +z

31188413354z
311884133542 ) 96592 |+1.7532 ||.

when 0<z<1.5
We now derive some approximate results without Legendre integral for the
flat-FLRW case and Union 2.1 compilation with data as in Table 1, first line. A
Taylor expansion of order 6 around z = 0 of the luminosity distance as given by
Equation (19) for the flat-FLRW case and Union 2.1 compilation gives

d, (z)=0.000423646 +4296.57z +3344.13z> ~1186.94z"

(30)
+979.403z* —42078.62° Mpc

when 0<z<0.197.
The upper limit in redshift, 0.197, is the value for which the percentage error,
see Equation (4), is 6 =1.16%. The asymptotic expansion of the luminosity
distance with respect to the variable zto order 5 for the flat-FLRW case and Un-

ion 2.1 compilation gives

! +14283.5-7901.01vz "

N (1)

+1975.25(=")"” Mpe

d, (z) ~14283.52 15802

when 1.27<z<1.5.

At the lower limit of z=1.27 the percentage error is & =0.54% . The two
above approximations at low and high redshift have a limited range of existence
but does not contain the Legendre integral as solutions (28) and (29) which cov-
er the overall range 0<z<1.5.

A Taylor expansion of order 6 of the distance modulus as given by Equation
(22) around z=0.1 for the flat-FLRW case and Union 2.1 compilation gives

(m—M)=36.0051+23.1777z-109.604(z —0.1)" +724.464(z —0.1)’ (

32)
~5429.06(z~0.1)" +43429.8(z—0.1)

when 0.1<z<0.197.
The upper limit in redshift, 0.197, is the value at which the percentage error is
6 =0.14% . Figure 3 reports both the numerical and the Taylor expansion of
distance modulus in the above range.
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Distance modulus

401 /
39.81 /

39.61

39.47

=
c 39.2'-

= m-M numerical
== m-M Taylor

391
38.81
38.67

38.41

0.10 0.12 0.14 0.16  0.19
z

Figure 3. Distance modulus in flat-FLRW cosmology as represented by Equation (22) with
parameters as in first line of Table 1 (full red line) and Taylor solution (dash-dot-dash line)
(blue line).

The asymptotic expansion of the distance modulus with respect to the variable

zto order 5 for the flat-FLRW case and Union 2.1 compilation gives
(m—M)~45.7741+2.17147In(z) - 2.40231Vz"" +0.842625z""
+0.221081(z")"* ~0.5700862 ~0.150471(z"")"  (33)

+0.3578492 +0.491842 (= )7/ ? £0.1799892*

when 1.27<z<1.5.
The lower limit in redshift, 1.27, is the value at which the percentage error is
6 =0.54% . The ranges of existence in z for the analytical approximations here
derived have the percentage error <2%, see Equation (4).
We now introduce the best minimax rational approximation, see [20] [21]

[15], of degree (2, 1), for the distance modulus m,,(z),

a+bz+cz’
") e G

In the case in which the distance modulus is represented by Equation (29)
and given the interval [0.001,1.5], the coefficients of the best minimax rational
approximation are presented in Table 3; the maximum error for the fit is
~2.2x107 . Figure 4 displays the data and the fit.

4. Conclusions

We have presented an analytical approximation for the luminosity distance in

terms of elliptical integrals with real argument. The fit of the distance modulus
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Table 3. Maximum error and coefficients of the distance modulus for the best minimax
rational approximation for the flat-FLRW case and Union 2.1 compilation. Interval of ex-
istence [0.001,1.5] .

Name value
maximum error 2.28881836 x 10~°
a 0.981622279
b 19.6473351
C 1.08210218
d 0.0309164915
e 0.462291896
T T T T
0L i
Q
ol i
=
~~
=
|
—a b i
ol i
5]
1 1 1 1

z

Figure 4. Distance modulus in flat-FLRW cosmology as represented by Equation (22)
with parameters as in first line of Table 1 (full line) and minimax rational approximation
(empty stars); Union 2.1 compilation.

of SNs of type Ia allows finding the parameters H, and Q,, for the two com-
pilations in flat-FLRW cosmology
H,=(69.77+0.33)km-s™ -Mpc™', Q,, =0.295+0.008 (35)
flat-FLRW-Union 2.1,
H,=(69.65£0.23)km-s™" -Mpc™, Q, =0.3+0.003 (36)
flat-FLRW-JLA,

A first comparison with [8] in the case of the Union 2.1 compilation gives a
percentage error p =0.93% for the derivation of H, and p=0.67% for the
derivation of Q,,. A second comparison can be done with Equation (13) in [22]

H,=(6727+0.60)km-s™"-Mpc™', Q,, =0.3166+0.0084  (37)
Planck 2018.
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45.2
T

45
T

Distance Modulus
448

44.6

1.2 1.25 1.3 1.35 . 14 1.45 15
Redshift

Figure 5. Distance modulus for ACDM cosmology (full line), flat-FLRW-1 (dot-dash-dot-
dash line) and flat-FLRW cosmology (dashed line). Parameters as in Table 1 and interval
of existence [1.2,1.5].

In the case of the Union 2.1 compilation, the percentage error p =3.71% for
the derivation of H;, and p=6.82% for Q. A Taylor expansion at low
redshift and an asymptotic expansion are presented both for the luminosity dis-
tance and the distance modulus. A simple version of the distance modulus is de-
termined through the best minimax rational approximation. Adopting the cos-
mological parameters found here, the cosmological constant A turns out to be,

for the Union 2.1 compilation,

A =(1.19457i0.017)x10*52# (38)

flat-FLRW Union 2.1,

or introducing ¢ =1 and the Planck time, ¢,,

A =(3.12046£0.0462942)x10'* iz (39)
P
flat-FLRW Union 2.1.

The statistical parameters of the fits are given in Table 1 and Table 2 where
the other two models are presented. The values of the x> in the above table say
that for the Union 2.1 compilation the flat cosmology produces a better fit than
the ACDM does, but the situation is the reverse for the JLA compilation. As a
concluding remark we point out that, thanks to the calibration on the distance
modulus of SN, the differences between the solutions here analyzed are mini-
mum. Therefore a restricted range in redshift should be adopted in order to vi-

sualize the diverseness, see Figure 5.
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