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Abstract 

A new analytical solution for the luminosity distance in flat ΛCDM cosmolo-
gy is derived in terms of elliptical integrals of first kind with real argument. 
The consequent derivation of the distance modulus allows evaluating the 
Hubble constant, 0 69.77 0.33H = ± , M 0.295 0.008Ω = ±  and the cosmo-

logical constant, ( ) 52
2

11.194 0.017 10
m

−Λ = ± × . 
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1. Introduction 

The release of two catalogs for the distance modulus of Supernova (SN) of type 
Ia, namely, the Union 2.1 compilation, see [1], and the joint light-curve analysis 
(JLA), see [2], allows matching the observed distance modulus with the theoret-
ical distance modulus of various cosmologies. In this fitting procedure, the cos-
mological parameters are derived in a scientific and reproducible way. 

We now focus our attention on the flat Friedmann-Lemaître-Robertson-Walker 
(flat-FLRW) cosmology. A first fitting formula has been derived by [3] and an 
approximate solution in terms of Padé approximant has been introduced by [4]. 
The presence of the elliptical integrals of the first kind in the integral for the lu-
minosity distance in flat-FLRW cosmology has been noted by [5] [6] [7]. As a 
practical example the luminosity distance can be expanded into a series of or-
thonormal functions and the two cosmological parameters turn out to be 

0 70.43 0.33H = ±  and M 0.297 0.002Ω = ± , see [8]. This paper first introduces 
in Section 2 a framework useful to build a new solution for the luminosity dis-
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tance in flat-FLRW cosmology, which will be derived in Section 3. 

2. Preliminaries 

This section reviews the adopted statistical framework, the ΛCDM cosmology, 
and an existing solution for the luminosity distance in flat-FLRW cosmology. 

2.1. The Adopted Statistics 

In the case of the distance modulus, the merit function 2χ  is  

( ) ( )( ) 2

2

1
,

N
ii th

i i

m M m M z
χ

σ=

 − − −
=  

  
∑                (1) 

where N is the number of SNs, ( )im M−  is the observed distance modulus 
evaluated at redshift iz , iσ  is the error in the observed distance modulus eva-
luated at iz , and ( )( )i th

m M z−  is the theoretical distance modulus evaluated 
at iz , see formula (15.5.5) in [9]. The reduced merit function 2

redχ  is  
2 2 ,red NFχ χ=                           (2) 

where NF N k= −  is the number of degrees of freedom, N is the number of 
SNs, and k is the number of parameters. Another useful statistical parameter is 
the associated Q-value, which has to be understood as the maximum probability 
of obtaining a better fitting, see formula (15.2.12) in [9]:  

2

1 GAMMQ , ,
2 2

N kQ χ −
= −  

 
                   (3) 

where GAMMQ is a subroutine for the incomplete gamma function. 
The goodness of the approximation in evaluating a physical variable p is eva-

luated by the percentage error δ   

100,approxp p

p
δ

−
= ×                        (4) 

where approxp  is an approximation of p. 

2.2. The Standard Cosmology 

We follow [10], where the Hubble distance HD  is defined as  

H
0

.cD
H

≡                             (5) 

The first parameter is MΩ   

0
M 2

0

8π
,

3
G
H
ρ

Ω =                           (6) 

where G is the Newtonian gravitational constant and 0ρ  is the mass density at 
the present time. The second parameter is ΛΩ   

2

2
0

,
3

c
HΛ
Λ

Ω ≡                            (7) 
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where Λ  is the cosmological constant, see [11]. These two parameters are con-
nected with the curvature KΩ  by  

M 1.KΛΩ +Ω +Ω =                         (8) 

The comoving distance, CD , is  

( )C H 0

dz zD D
E z

′
=

′∫                          (9) 

where ( )E z  is the “Hubble function”  

( ) ( ) ( )3 2
M 1 1 .KE z z z Λ= Ω + +Ω + +Ω               (10) 

The above integral does not have an analytical solution but a solution in terms 
of Padé approximant has been found, see [12]. 

2.3. A First Formula for a Flat-FLRW Universe 

The first model starts from Equation (2.1) in [4] for the luminosity distance, Ld ,  

( ) ( )
( )

1
1L 0 M 410 M M

d; , , 1 ,
1z

c ad z c H z
H a a+

Ω = +
Ω + −Ω

∫         (11) 

where 0H  is the Hubble constant expressed in km·s−1·Mpc−1, c is the speed of 
light expressed in km·s−1, z is the redshift and a is the scale-factor. The indefinite 
integral, ( )aΦ , is  

( )
( )

M 4
M M

d, .
1

aa
a a

Φ Ω =
Ω + −Ω

∫                 (12) 

The solution is in terms of F, the Legendre integral or incomplete elliptic 
integral of the first kind, and is given in [13]. 

The luminosity distance is  

( ) ( ) ( )L 0 M
0

1; , , 1 1 ,
1

cd z c H z
H z

   Ω = ℜ + Φ −Φ   +   
       (13) 

where ℜ  means the real part. The distance modulus is  

( ) ( )( )10 L 0 M25 5log ; , , .m M d z c H− = + Ω              (14) 

3. A New Formula for a Flat-FLRW Universe 

The second model for the flat cosmology starts from Equation (1) for the lumi-
nosity distance in [14]  

( ) ( )
( )

L 0 M 0 3
0 M M

1 1; , , d .
1 1

zc z
d z c H t

H t

+
Ω =

Ω + + −Ω
∫        (15) 

The above formula can be obtained from formula (9) for the comoving dis-
tance inserting 0KΩ =  and the variable of integration, t, denotes the redshift. 

A first change in the parameter MΩ  introduces  

M3

M

1s −Ω
=

Ω
                        (16) 
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and the luminosity distance becomes  

( ) ( )
( ) ( )

L 0 0 3
0 13

3

1 1; , , 1 d .
1

1 1
1

z
d z c H s c z t

H t
s

s
−

= +
+

+ − +
+

∫        (17) 

The following change of variable, s ut
u
−

= , is performed for the luminosity 

distance which becomes  

( ) ( )( ) ( )
( )

3 3
3 1

L 0 2 3 3 3
0

1
; , , 1 1 d .

1 1

s
z

s

s uc ud z c H s z s u
H s u u s

+
+

= − + +
+ +∫     (18) 

Up to now we have followed [14] which continues introducing a new function 
( )T x ; conversely we work directly on the resulting integral for the luminosity 

distance: which is  

( )

( ) ( )

( )

L 0

43 4 3

0

4

; , ,

1 31 3 1
1 3 2 ,1 4 2 3 1 4 2

3 1

3 1
2 ,1 4 2 3 1 4 2 ,

1 3

d z c H s

s s zc z s
F

sH s s z

s s
F

s s

  + ++ +   = − × +
  + + + 

 +  − +
 + + 

(19) 

where s is given by Equation (16) and ( ),F kφ  is Legendre’s incomplete elliptic 
integral of the first kind,  

( ) sin

0 2 2 2

d, ,
1 1

tF k
t k t

φ
φ =

− −
∫                    (20) 

see [15]. The distance modulus is  

( ) ( )( )10 L 025 5log ; , , ,m M d z c H s− = +                (21) 

and therefore  

( ) ( )
( ) ( )3 4 3

1 2

0

1 3 11 125 5 ln ,
ln 10 3

c z F F s
m M

sH

 + − +
 − = + −
 
 

     (22) 

where  

( ) 4

1

1 3
2 ,1 4 2 3 1 4 2

3 1

s s z
F F

s s z

 + +
 = +
 + + + 

           (23) 

and  

( )4

2

3 1
2 ,1 4 2 3 1 4 2 ,

1 3

s s
F F

s s

 +
 = +
 + + 

            (24) 

with s as defined by Equation (16). 

Data Analysis 

In recent years, the extraction of the cosmological parameters from the distance 
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modulus of SNs has become a common practice, see among others [8] [16] [17]. 
The best fit to the distance modulus of SNs is here obtained by implementing the 
Levenberg-Marquardt method (subroutine MRQMIN in [9]). This method re-
quires the fitting function, in our case Equation (22), as well the first derivative  
( )

0

m M
H

∂ −
∂

, which has a simple expression, and the first derivative ( )
M

m M∂ −
∂Ω

,  

which has a complicated expression. A simplification can be introduced by im-
posing a fiducial value for the Hubble constant, namely 1 1

0 70 km s MpcH − −= ⋅ ⋅ , 
see [2] [18]. We call this model “flat-FLRW-1”, where the “1” stands for there 
being one parameter. Table 1 presents 0H  and MΩ  for the Union 2.1 compi-
lation of SNs and Figure 1 displays the best fit. The reading of this table allows 
to evaluate the goodness of the approximation, see (4), in the derivation of the 
Hubble constant in going from the supposed true value ( 1 1

0 70 km s MpcH − −= ⋅ ⋅ ) 
to the deduced value ( 1 1

0 69.77 km s MpcH − −= ⋅ ⋅ ), which is 99.67%δ = . The  
 
Table 1. Numerical values from the Union 2.1 compilation of 2χ , 2

redχ  and Q, where k 
stands for the number of parameters.  

Cosmology SNs k parameters 2χ  2
redχ  Q 

flat-FLRW 580 2 
0 69.77 0.33H = ± ; 

M 0.295 0.008Ω = ±  
562.55 0.9732 0.66 

flat-FLRW-1 580 1 
0 70H = ; 

M 0.295 0.008Ω = ±  
563.52 0.9732 0.669 

ΛCDM 580 3 
0 69.81H = ; M 0.239Ω = ; 

0.651ΛΩ =  
562.61 0.975 0.658 

 

 
Figure 1. Hubble diagram for the Union 2.1 compilation. The solid line represents the 
best fit for the exact distance modulus in flat-FLRW cosmology as represented by Equa-
tion (22). Parameters as in first line of Table 1; Union 2.1 compilation.  
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JLA compilation is available at the Strasbourg Astronomical Data Centre (CDS), 
and consists of 740 type I-a SNs for which we have the heliocentric redshift, z, the  
apparent magnitude Bm  in the B band, the error in Bm , 

Bm
σ  , the parameter X1,  

the error in X1, 1Xσ , the parameter C, the error in C, Cσ , and ( )10log stellarM . 
The observed distance modulus is defined by Equation (4) in [2]:  

1 .b Bm M C X M mβ α− = − + − +                  (25) 

The adopted parameters are 0.141α = , 3.101β =  and  
10

10

19.05 if  10
19.12 if  10

stellar
b

stellar

M M
M

M M
− <= 
− ≥





              (26) 

see line 1 in Table 10 of [2]. The uncertainty in the observed distance modulus, 

m Mσ − , is found by implementing the error propagation equation (often called 
the law of errors of Gauss) when the covariant terms are neglected, see Equation 
(3.14) in [19],  

2 2 2 2 2
1 .

B
m M X C m

σ α σ β σ σ− = + +                  (27) 

The parameters as derived from the JLA compilation are presented in Table 2 
and the fit is presented in Figure 2.  
 
Table 2. Numerical values from the JLA compilation of 2χ , 2

redχ  and Q, where k stands 
for the number of parameters.  

Cosmology SNs k parameters 2χ  2
redχ  Q 

flat-FLRW 740 2 
0 69.65 0.231H = ± ; 

M 0.3 0.003Ω = ±  
627.91 0.85 0.998 

 

 
Figure 2. Hubble diagram for the JLA compilation. The solid line represents the best fit 
for the exact distance modulus in flat-FLRW cosmology as represented by Equation (22). 
Parameters as in first line of Table 2.  
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As an example the luminosity distance for the Union 2.1 compilation with 
data as in the first line of Table 1 is  

( ) ( )L 8147.04 1.0

3.1188 1.33542
0.637664 2.63214 ,0.965925 1.75322  Mpc

4.64846

d z z

z
F

z

= +

  +
 × − +   +  

(28) 

    when 0 1.5z< <  
and the distance modulus is  

( )25.0 2.17147 ln 8147.04 1.0

3.1188 1.33540.63766 2.6321 ,0.96592 1.7532 .
4.6484

m M z

zF
z


− = + +


  + × − +    +  

    (29) 

       when 0 1.5z< <  
We now derive some approximate results without Legendre integral for the 

flat-FLRW case and Union 2.1 compilation with data as in Table 1, first line. A 
Taylor expansion of order 6 around z = 0 of the luminosity distance as given by 
Equation (19) for the flat-FLRW case and Union 2.1 compilation gives  

( ) 2 3
L

4 5

0.000423646 4296.57 3344.13 1186.94

979.403 42078.6 Mpc

d z z z z

z z

= + + −

+ −
      (30) 

          when 0 0.197z< < . 
The upper limit in redshift, 0.197, is the value for which the percentage error, 

see Equation (4), is 1.16%δ = . The asymptotic expansion of the luminosity 
distance with respect to the variable z to order 5 for the flat-FLRW case and Un-
ion 2.1 compilation gives  

( )

( )

1
L 1

3 21

114283.5 15802 14283.5 7901.01

1975.25  Mpc

d z z z
z

z

−

−

−

− + −

+



      (31) 

           when 1.27 1.5z< < . 
At the lower limit of 1.27z =  the percentage error is 0.54%δ = . The two 

above approximations at low and high redshift have a limited range of existence 
but does not contain the Legendre integral as solutions (28) and (29) which cov-
er the overall range 0 1.5z< < . 

A Taylor expansion of order 6 of the distance modulus as given by Equation 
(22) around 0.1z =  for the flat-FLRW case and Union 2.1 compilation gives  

( ) ( ) ( )
( ) ( )

2 3

4 5

36.0051 23.1777 109.604 0.1 724.464 0.1

5429.06 0.1 43429.8 0.1

m M z z z

z z

− = + − − + −

− − + −
(32) 

       when 0.1 0.197z< < . 
The upper limit in redshift, 0.197, is the value at which the percentage error is 

0.14%δ = . Figure 3 reports both the numerical and the Taylor expansion of 
distance modulus in the above range.  
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Figure 3. Distance modulus in flat-FLRW cosmology as represented by Equation (22) with 
parameters as in first line of Table 1 (full red line) and Taylor solution (dash-dot-dash line) 
(blue line).  
 

The asymptotic expansion of the distance modulus with respect to the variable 
z to order 5 for the flat-FLRW case and Union 2.1 compilation gives  

( ) ( )

( ) ( )
( )

1 1

3 2 5 21 2 1

7 23 1 4

45.7741 2.17147 ln 2.40231 0.842625

0.221081 0.570086 0.150471

0.357849 0.491842 0.179989

m M z z z

z z z

z z z

− −

− − −

− − −

− + − +

+ − −

+ + +



   (33) 

        when 1.27 1.5z< < . 
The lower limit in redshift, 1.27, is the value at which the percentage error is 

0.54%δ = . The ranges of existence in z for the analytical approximations here 
derived have the percentage error <2%, see Equation (4). 

We now introduce the best minimax rational approximation, see [20] [21] 
[15], of degree (2, 1), for the distance modulus ( )2,1m z ,  

( )
2

2,1 .a bz czm z
d ez
+ +

=
+

                     (34) 

In the case in which the distance modulus is represented by Equation (29) 
and given the interval [ ]0.001,1.5 , the coefficients of the best minimax rational 
approximation are presented in Table 3; the maximum error for the fit is 

52.2 10−≈ × . Figure 4 displays the data and the fit.  

4. Conclusions 

We have presented an analytical approximation for the luminosity distance in 
terms of elliptical integrals with real argument. The fit of the distance modulus  
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Table 3. Maximum error and coefficients of the distance modulus for the best minimax 
rational approximation for the flat-FLRW case and Union 2.1 compilation. Interval of ex-
istence [ ]0.001,1.5 .  

Name value 

maximum error 2.28881836 × 10−5 

a 0.981622279 

b 19.6473351 

c 1.08210218 

d 0.0309164915 

e 0.462291896 

 

 
Figure 4. Distance modulus in flat-FLRW cosmology as represented by Equation (22) 
with parameters as in first line of Table 1 (full line) and minimax rational approximation 
(empty stars); Union 2.1 compilation.  
 
of SNs of type Ia allows finding the parameters 0H  and MΩ  for the two com-
pilations in flat-FLRW cosmology  

( ) 1 1
0 M69.77 0.33 km s Mpc , 0.295 0.008H − −= ± ⋅ ⋅ Ω = ±       (35) 

                flat-FLRW-Union 2.1, 

( ) 1 1
0 M69.65 0.23 km s Mpc , 0.3 0.003H − −= ± ⋅ ⋅ Ω = ±       (36) 

                 flat-FLRW-JLA, 
A first comparison with [8] in the case of the Union 2.1 compilation gives a 

percentage error 0.93%p =  for the derivation of 0H  and 0.67%p =  for the 
derivation of MΩ . A second comparison can be done with Equation (13) in [22]  

( ) 1 1
0 M67.27 0.60 km s Mpc , 0.3166 0.0084H − −= ± ⋅ ⋅ Ω = ±     (37) 

            Planck 2018.  

https://doi.org/10.4236/ijaa.2019.91005


L. Zaninetti 
 

 

DOI: 10.4236/ijaa.2019.91005 60 International Journal of Astronomy and Astrophysics 

 

 
Figure 5. Distance modulus for ΛCDM cosmology (full line), flat-FLRW-1 (dot-dash-dot- 
dash line) and flat-FLRW cosmology (dashed line). Parameters as in Table 1 and interval 
of existence [ ]1.2,1.5 .  

 
In the case of the Union 2.1 compilation, the percentage error 3.71%p =  for 

the derivation of 0H  and 6.82%p =  for MΩ . A Taylor expansion at low 
redshift and an asymptotic expansion are presented both for the luminosity dis-
tance and the distance modulus. A simple version of the distance modulus is de-
termined through the best minimax rational approximation. Adopting the cos-
mological parameters found here, the cosmological constant Λ  turns out to be, 
for the Union 2.1 compilation,  

( ) 52
2

11.19457 0.017 10
m

−Λ = ± ×                  (38) 

                     flat-FLRW Union 2.1, 
or introducing 1c =  and the Planck time, pt ,  

( ) 122
2

13.12046 0.0462942 10
pt

−Λ = ± ×                 (39) 

                    flat-FLRW Union 2.1. 
The statistical parameters of the fits are given in Table 1 and Table 2 where 

the other two models are presented. The values of the 2χ  in the above table say 
that for the Union 2.1 compilation the flat cosmology produces a better fit than 
the ΛCDM does, but the situation is the reverse for the JLA compilation. As a 
concluding remark we point out that, thanks to the calibration on the distance 
modulus of SNs, the differences between the solutions here analyzed are mini-
mum. Therefore a restricted range in redshift should be adopted in order to vi-
sualize the diverseness, see Figure 5.  
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