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Abstract 
The search for the generating compatibility conditions (CC) of a given oper-
ator is a very recent problem met in general relativity in order to study the 
Killing operator for various standard useful metrics. Accordingly, this paper 
can be considered as a natural continuation of a previous paper recently pub-
lished in JMP under the title Minkowski, Schwarschild and Kerr metrics revi-
sited. In particular, we prove that the intrinsic link existing between the lack 
of formal exactness of an operator sequence on the jet level, the lack of formal 
exactness of its corresponding symbol sequence and the lack of formal inte-
grability (FI) of the initial operator is of a purely homological nature as it is 
based on the long exact connecting sequence provided by the so-called snake 
lemma in homological algebra. It is therefore quite difficult to grasp it in 
general and even more difficult to use it on explicit examples. It does not 
seem that any one of the results presented in this paper is known as most of 
the other authors who studied the above problem of computing the total 
number of generating CC are confusing this number with the degree of gene-
rality introduced by A. Einstein in his 1930 letters to E. Cartan. One of the 
motivating examples that we provide is so striking that it is even difficult to 
imagine that such an example could exist. We hope this paper could be used 
as a source of testing examples for future applications of computer algebra in 
general relativity and, more generally, in mathematical physics. 
 

Keywords 
Formal Theory of Systems of Partial Differential Equations, Compatibility 
Conditions, Acyclicity, Formal Integrability, Involutivity, Differential Sequence, 
Janet Sequence, Spencer Sequence, General Relativity, Killing Systems 

 

1. Introduction 

If X is a manifold of dimension n with local coordinates ( )1, , nx x , let us in-
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troduce the tangent bundle ( )T T X=  and the cotangent bundle ( )* *T T X= , 
the q-symmetric tensor bundle *

qS T  and the bundle *r T∧  of r-forms. In 
General Relativity, there may be different solutions of Einstein equations in va-
cuum like the Minkowski, the Schwarzschild and the Kerr metrics for example. 
For fixing the notations and with more details, if *

2S Tω∈  is a nondegenerate 
metric, that is ( ) 0det ω ≠ , and if qj  denotes all the derivatives of an object up 
to order q, we may construct the Christoffel symbols γ  through the Levi-Civita 
isomorphism ( ) ( )1, jω γ ω

 and, using the language of jet bundles, ( ),ω γ  is a 
section of ( )*

1 2J S T  that will be simply written ( ) ( )*
1 2, J S Tω γ ∈ . Then we can 

introduce the well-known Riemann tensor ( ) 2 * *
,
k
l ij T T Tρ ρ= ∈∧ ⊗ ⊗  with 

, , 0kl ij lk ijρ ρ+ =  after lowering the upper index by means of ω  and 0δρ =  
where 2 * * 3 *: T T T T Tδ ∧ ⊗ ⊗ → ∧ ⊗  is the Spencer δ -map. Introducing the 
Ricci tensor ,

r
ij i rj jiρ ρ ρ= =  or the Einstein tensor 1

2
rs

ij ij ij rsρ ω ω ρ= − , the 10 
non-linear Einstein equations are described by 0ij =  or, equivalently, by 

0ijρ =  when 4n = . 
Now, if   is a fibered manifold over X with fiber dimension m and local 

coordinates ( ),i kx y  with 1, ,i n=   and 1, ,k m=  , we may introduce the 

tangent bundle ( )T   over   with local coordinates ( ), , ,x y u v  and the ver-
tical bundle ( )V   with local coordinates ( ) ( ), , 0, , ,x y u v x y v= =  which are 
both vector bundles over  . We shall denote by the capital letters  

* * 2 * *
2 2, ,S T S T T R T T TΩ∈ Γ∈ ⊗ ∈∧ ⊗ ⊗ , the respective linearizations of 

, ,ω γ ρ  which are sections of the respective vertical bundles. Introducing the Lie 
derivative   of geometric objects, it is therefore possible to introduce the cor-

responding first order Killing operator ( )*
2: :T S T ξ ξ ω→Ω∈ →  , the first 

order Christoffel operator *
2S T TΩ→Γ∈ ⊗  in such a way that  

( )*
2: :Christoffel Killing T S T T ξ ξ γ→ Γ∈ ⊗ →   and the second order  

Riemann operator 2 * *R T T TΩ→ ∈∧ ⊗ ⊗  in such a way that  

( )2 * *: :Riemann Killing T R T T T ξ ξ ρ→ ∈∧ ⊗ ⊗ →   both with its contrac-
tion *

2S TΩ→  called Ricci operator. For example, it is known that  

( )2 k
rk ij i rj j ir r ijω γ ω ω ω= ∂ + ∂ − ∂  that we shall write simply, using formal nota-

tions, ( )2ωγ ω ω ω= ∂ + ∂ − ∂  and thus ( )2 2 d d dω γΓ + Ω = Ω+ Ω− Ω . We have 
proved in ([1] [2] [3] [4]) that the so-called gravitational waves equations are 
nothing else than ( )ad Ricci  by introducing the formal adjoint operator. It is 

important to notice that the Einstein operator 1
2

rs
ij ij ij rsE R Rω ωΩ→ = −  is 

self-adjoint with 6 terms though the Ricci operator is not with only 4 terms. Re-
cently, many physicists (See [5] [6] [7] [8] [9]) have tried to construct the com-
patibility conditions (CC) of the Killing operator for various types of back-
ground metrics, in particular the three ones already quoted, namely an operator 

*
1 2 1: S T F→  such that 1 0Ω =  generates the CC of ξ = Ω . We have 

proved in the above references the following crucial results: 
• These CC may contain a certain number of second and third order CC. It is 

therefore crucial in actual practice to select the successive generating CC of 
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order 1,2,3,  till we stop because of noetherian arguments ([10]). 
• These CC only depend on the Lie algebra structure (dimension of the solu-

tion space and commutation relations) of the corresponding Killing operator, 
which, even though it is finite dimensional with dimension ( )1 2n n≤ +  
that is 10 obtained for the Minkowski metric, may have dimension 4 for the 
Schwarzschild metric and dimension 2 for the Kerr metric. 

• The only two canonical sequences that can be constructed from an operator or 
a system, namely the Janet and Spencer sequences, are structurally quite dif-
ferent. Indeed, the Janet bundles 0 , , nF F  appearing in the Janet sequence 
are concerned wit geometric objects like , ,ω γ ρ , while the Spencer bundles 

0 , , nC C  are far from being related with geometric objects, the simplest ex-
ample being ( )0 q qC R J E= ⊆ . In the case of Lie equations considered, the 
central concept is not the system but rather the group as it can be seen at once 
from the construction of the Vessiot structure equations ([3] [11] [12] [13]). 

The authors who have studied these questions had in mind that the total 
number of generating CC could be considered as a kind of “differential tran-
scendence degree”, also called “degree of generality” by A. Einstein in his letters 
to E. Cartan of 1930 on absolute parallelism ([14]), the modern definition being 
that of the “differential rank” ([10] [12] [15] [16]). We must say that Cartan, be-
ing unable to explain to Einstein his theory of exterior systems, just copied the 
work of Janet published in 1920 ([17]) in his letters to Einstein, published later 
on as the only paper he wrote on the PD approach, but without ever quoting Ja-
net who suffered a lot from this behavior and had to turn to mechanics. 

Such a result will be obtained in the framework of differential modules as its 
explanation in the framework of differential systems is much more delicate and 
technical ([10] [12] [18]). 

First of all, with our previous assumptions, [ ]D K d=  is a noetherian do-
main and we can restrict our study to finitely generated differential modules 
which are therefore finitely presented (See [14] for more details). Let thus M be 
defined by a finite free presentation giving rise to the long exact sequence: 

0 0pp mL D D M→ → → → →  

where the differential operator   is acting on the right by composition with 
action law ( ), ,P P P D→ ∀ ∈  , p is the canonical residual projection and 

( ) pL ker D= ⊂ . The image ( ) mim D⊂  is called the differential module of 
equations and is thus finitely generated because D is a noetherian differential 
domain. 

DEFINITION 1.1: The differential rank ( )Drk M  over D of a differential 
module M is the differential rank over D of the maximum free differential sub-
module F of M and we have the short exact sequence 0 0F M T→ → → →  
where T M F=  is a torsion module over D. In particular, if rF D , then 

( )Drk M r= . 
The following useful proposition proves the additivity property of the diffe-

rential rank and is used in the next two corollaries ([3] [10] [12]): 

https://doi.org/10.4236/jmp.2019.103025


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.103025 374 Journal of Modern Physics 
 

PROPOSITION 1.2: If we have a short exact sequence  
0 0f gM M M′ ′′→ → → →  of differential modules, then  

( ) ( ) ( )D D Drk M rk M rk M′ ′′= + . 
COROLLARY 1.3: If   is a linear partial differential operator with coeffi-

cients in a differential field K and ( )ad   is the formal adjoint that can be ob-
tained formally or through an integration by parts, then ( ) ( )( )D Drk rk ad=  . 

COROLLARY 1.4: (Euler-Poincaré characteristic) For any finite free diffe-
rential resolution of a differential module M, then ( )Drk M  is equal to the al-
ternate sum ( )D Mχ  of differential ranks of the free differential modules of the 
resolution. 

We obtain therefore ( ) ( ) 0D Drk L p m rk M− + − =  and it follows from noe-
therian arguments that the differential module pL D⊂  is finitely generated but 
not free in general and we may look for a minimum number of generators which 
may be differentially dependent in general as we shall see in the next examples. It 
thus remains to provide examples of such computations showing that these two 
numbers are not related and must therefore be found totally independently in 
general, apart from the very exceptional situation met when there is only a single 
generating CC. 

In actual practice, working in the system framework, starting with a system 
( )q qR J E⊂  of order q on E and introducing the canonical projection 

( ) ( )0: q q qJ E F J E RΦ → = , we shall construct for each 0r ≥  a family of FI 
systems ( )( ) ( )0r r rB im J Fρ= Φ ⊆  such that  

( ) ( ) ( ) ( )( )1 1 1 1 0 1 0r r r r rB B J B J F J J Fρ+ +⊆ = ⊂  projects onto rB , that is 

1rB +  is defined by more generating PD equations than the ones defining rB  
both with its prolongations, and start to get equality when r is large enough in 
the projective limit 1 1 0 0r rB B B B F∞ +→ → → → → → →  . The striking 
result is that there may be gaps in the procedure, that is we shall even provide a 
tricky example where one can have a single generating CC of order 3, then no new 
generating CC of order 4 and 5, but suddenly a new generating CC of order 6 ending 
the procedure. We do not believe that such situations were even known to exist. 

2. Motivating Examples 

We provide below three examples, pointing out that it is quite difficult to exhibit 
such examples. 

EXAMPLE 2.1: With ( ) ( )03, 2, 5n m dim E dim F= = = =  and K =   while 
keeping an upper index for any unknown, let us consider the following system 

( )1 1R J E⊂  with ( )1 3dim R =  because { }1 2 2
1 1, ,par ξ ξ ξ=  and corresponding 

Janet tabular: 
5 2

3
4 1

3
3 2

2
2 1 2

2 1
1 1

1

0 1 2 3
0 1 2 3

1 20
1 20
10

ξ
ξ
ξ
ξ ξ
ξ

Φ ≡ =
Φ ≡ = •Φ ≡ =
 •Φ ≡ + = × •Φ ≡ =

 

https://doi.org/10.4236/jmp.2019.103025


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.103025 375 Journal of Modern Physics 
 

It is easy to check that all the second order jets vanish and that the general so-
lution { }1 2 2 1, | 0ax b cx d a cξ ξ= + = + + =  depends on 3 arbitrary constants. 
As the non-multiplicative variable written with the sign ×cannot be used, the 
symbol 1g  is not involutive because it is finite type with 2 0g = . This system is 
trivially FI because it is made by homogeneous PD equations. We have the fol-
lowing commutative diagrams: 

( ) ( )

( ) ( )

* *
3 2 0 2

3 3 2 0 2
3 2
2 1

2 2 1 0 1

0 0 0

0 0

0 0

0 0

0 0 0 0

S T E S T F h

R J E J F Q

R J E J F Q
π π

↓ ↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓

 

3 2
2 1

0 0 0

0 20 30 10 0

0 3 40 50 13 0

0 3 20 20 3 0

0 0 0 0

π π

↓ ↓ ↓
→ → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓

 

* *
3 2 0 2

* * * * *
2 0 1

2 * 2 * * 2 *
1 0

3 * 3 *

0 0

0 0

0 0

0 0

0 0

0 0

S T E S T F h

T S T E T T F T h

T g T T E T F

T E T E

δ δ

δ δ

δ δ

↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓
→ ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓

 

0 0

0 20 30 10 0

0 36 45 9 0

0 3 18 15 0

0 2 = 2 0

0 0

δ δ

δ δ

δ δ

↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ →

↓ ↓
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The next result points out the importance of the Spencer δ -cohomology. 
Indeed, we shall prove that the last symbol diagram is commutative and exact. In 
particular, the lower left map δ  is surjective and thus the upper right induced 
map *

2 1h T Q→ ⊗  is also surjective while these two maps have isomorphic 
kernels. 

For this, we notice that the 3 components of 2 *
1T g∧ ⊗  are { }2 2 2

1,12 1,13 1,23, ,v v v  
and the map δ  is described by the two linear equations: 

1 1 1 1 2 2 2 2 2 2
123 1,23 2,31 3,12 1,13 123 1,23 2,31 3,12 1,230, 0w v v v v w v v v v≡ + + = = ≡ + + = =  

that is to say by two linearly independent equations. Accordingly, in the left 
column we have: 

( )( ) ( )( ) ( )( )2 2
1 1 1dim H g dim Z g dim ker δ= = =  

An unusual snake-type diagonal chase left to the reader as an exercise proves 
that the induced map *

2 1h T Q→ ⊗  is surjective with a kernel isomorphic to 
( )2

1H g . This is indeed a crucial result because it also proves that the additional 
CC has only to do with the single second order component of the Riemann ten-
sor in dimension 2, a striking result that could not even be imagined by standard 
methods. Moreover, we know that if a system ( )q qR J E⊂  is FI, for example 
when it is homogeneous like in this case, and its symbol *

q qg S T E⊂ ⊗  is such 
that s is the smallest integer such that q sg +  becomes 2-acyclic (or involutive), 
then the generating CC are of order at most 1s +  ([3] [10] [12]). 

Collecting the above results, we find the 3 first order differentially indepen-
dent generating CC coming from the Janet tabular and the additional single 
second order generating CC describing the 2-dimensional Riemann operator, 
that is the linearized Riemann tensor in the space ( )1 2,x x : 

4 1 3 2
22 11 12

3 3 5
3 2

2 2 4 5
3 2 1

1 1 4
3 1

0

0

0

0

d d d

d d

d d d

d d

Ψ ≡ Φ + Φ − Φ =

Ψ ≡ Φ − Φ =

Ψ ≡ Φ − Φ − Φ =
Ψ ≡ Φ − Φ =

 

An elementary computation provides the second order CC: 
1 3 2 4

22 11 12 3 0d d d dΨ + Ψ − Ψ − Ψ =  

The corresponding differential sequence written with differential modules 
over the ring [ ] [ ]1 2 3, ,D K d d d K d= =  is: 

4 5 2
2 2 10 0pD D D D M→ → → → → →  

where p is the canonical (residual) projection. We check indeed that 1 4 5 2 0− + − =  
but this sequence is quite far from being even strictly exact. Of course, as 2R  is 
involutive, we may set *

2
r

rC T R= ∧ ⊗  and obtain the corresponding canonical 
second Spencer sequence which is induced by the Spencer operator: 

32 1 2
0 1 2 30 0Dj D DC C C C→Θ→ → → → →  

with dimensions: 
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32 1 2
1 1 10 3 9 9 3 0Dj D D→Θ→ → → → →  

Proceeding inductively as we did for finding the second order CC, we may 
obtain by combinatorics the following formally exact sequence: 

1 2 1 1 10 2 5 13 19 12 3 0→Θ→ → → → → → →  

with Euler-Poincaré characteristic 2 5 13 19 12 3 0− + − + − =  but, as before, 
there is a matrix 260 280×  at least and we doubt about the use of computer al-
gebra, even on such an elementary example. With ( )0 1 1F J E R= , the starting 
long exact sequence used as a middle row of the first diagram with dimensions: 

0 3 40 50 13 0→ → → → →  

and we have ( )13 3 3 3 1= + × + , that is three generating first order CC which are 
differentially independent, plus their 9 prolongations, plus one second order CC 
which is nevertheless not differentially independent. Hence we have a total 
number of 3 1 4+ =  generating CC but this number has nothing to do with any 
differential transcendence degree because 4Ψ  is differentially algebraic over 

{ }1 2 3, ,Ψ Ψ Ψ . 
We finally compute the corresponding (canonical) Janet sequence by quotient. 

For this, we must use the trivial second Spencer sequence: 

( ) ( ) ( ) ( )32 1 2
0 1 2 30 0Dj D DE C E C E C E C E→ → → → → →  

namely: 

2 1 1 10 2 20 40 30 8 0→ → → → → →  

with 2 20 40 30 8 0− + − + = . The (canonical) Janet sequence is thus: 

0 1 2 32 1 1 10 0E F F F F→Θ→ → → → → →  

with now ( )0 2 2F J E R=  and ( ) , 0,1, 2,3r r rF C E C r= ∀ =  and dimensions: 

2 1 1 10 2 17 31 21 5 0→Θ→ → → → → →  

so that we have again 2 17 31 21 5 0− + − + =  in a coherent way with the fact 
that ( ) 0Drk M = . 

EXAMPLE 2.2: With 3, 1, 2n m q= = =  and ( ) ( )1 2 3, ,K x x x x= =  , let 
us consider the following linear inhomogeneous system: 

2
33 1

12

,y x y v
y u

− =

=
 

• Step 1: The symbol 2g  is defined by 33 120, 0v v= =  may not be involutive 
or the coordinate system may not be δ -regular. However, changing linearly 
the local coordinates with 1 1 2 2 1 3 3, ,x x x x x x x→ → + → , we obtain the Ja-
net tabular for 2g : 

33

22 12

0 1 2 3
0 1 2

v
v v

=
 + = •

 

and thus the Janet tabular for 3g : 
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333

233

223 123

222 122

133

122 112

0 1 2 3
0 1 2

0 1 2
0 1 2

0 1
0 1

v
v
v v
v v
v
v v

=
 = •
 + = •
 + = •
 = • •


+ = • •

 

We let the reader check as an exercise that 2g  is not 2-acyclic by counting 
the dimensions in the long sequence: 

* 2 * 3 * *
4 3 20 g T g T g T Tδ δ δ→ → ⊗ →∧ ⊗ →∧ ⊗  

and that 3g  is involutive, thus 2-acyclic, with characters ( )0,0,4 . It follows 
that ( )2 6 2 4dim g = − = , ( )3 0 0 4 4dim g = + + = , ( )4 4,dim g = 

. We obtain 
from the main theorem ( )( ) ( )1 1

2 2r rR Rρ += . It is easy to check that ( )1
2 2R R=  with 

( )2 8dim R = , ( )3 8 4 12dim R = + = , ( )4 11 4 15dim R = + = ,  
( )5 56 39 13 4 17dim R = − = + =  but things are changing after that. As such a 

property is intrinsic, coming back to the original system of coordinates, we have 
after one more prolongation: 

1233 33
2

1233 112 11 12
2 2

112 1

y u

y x y y v

x y x u

=

− + + = −
− = −

 

and thus 2
11 33 12 1y u v x u= − − . We may thus consider the new second order sys-

tem ( )2
2 2 2R R R′ = ⊂  with a strict inclusion and ( )( )2

2 7dim R = : 
2 2

33 1 12 11 33 12 1, , ,y x y v y u y w w u v x u− = = = = − −  

We may start again with 2R′  and study its symbol 2g ′  defined by the 3 li-
near equations with the following Janet tabular obtained after doing the same 
change of local coordinates as before: 

33

22 12

12 11

0 1 2 3
0 1 2
0 1

v
v v
v v

=
 + = •
 + = • •

 

This symbol is neither 2-acyclic nor involutive but its prolongation 3g ′ , de-
fined by the 8 equations: 

333

233

223 113

222 111

133

123 113

122 111

112 111

0 1 2 3
0 1 2

0 1 2
0 1 2

0 1
0 1
0 1
0 1

v
v
v v
v v
v
v v
v v
v v

=
 = •
 − = •


+ = •
 = • •
 + = • •


− = • •
 + = • •

 

is involutive with characters ( )0,0,2  and we may consider again the system: 
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2
33 1

12
2

11 33 12 1

y x y v
y u

y w u v x u

 − =


=
 = = − −

 

Instead of doing the same change of variables, writing out the system 3R′  
and study its formal inegrability with corresponding 9 11 20+ =  CC for 
( ), ,u v w , an elementary but tedious computation, we shall use a trick, knowing 
in advance that the generating CC must be of order 1 1 2+ =  because 2g ′  had 
to get one prolongation in order to become involutive and thus 2-acyclic. 
• Step 2: It thus remains to find out the CC for ( ),u v  in the initial inhomo-

geneous system. As we have used two prolongations in order to exhibit 2R′ , 
we have second order formal derivatives of u and v in the right members. 
Now, from the above argument, we have second order CC for the new right 
members and could hope therefore for a fourth order generating CC. The 
trick is to use the three different brackets of operators that can be obtained. 
We have in a formal way: 

2 2 2
33 1 12 1233 112 1233 112 11

11
2

33 1 12

,d x d d y y x y y x y y

y

u x u v

 − = − − + + 
=

= − −

 

[ ] ( ) ( ) ( )2
2 11 2 11 1 12 233 122 12 1 1, 0d d y d d y d d y u v x u u u= = − = − − − −  

brings the third order CC:  
2

233 122 12 12 0A u v x u u≡ − − − =  

( )
( )

2 2 2
33 1 11 1133 111 1133 111

2
33 1 11

22 2 2
3333 1233 133 112 11 11

,

0

2

d x d d y y x y y x y

d x d w v

u v x u x v v x u

 − = − − + 
=

= − −

= − − + − +

 

brings the fourth order CC: 

( )22 2 2
3333 1233 133 112 11 112 0B u v x u x v v x u≡ − − + − + =  

We have indeed the identity 2
33 1 2 0A x A B− − =  and thus ( ),A B  are diffe-

rentially dependent, that is B is a new generating fourth order CC which is not a 
consequence of the prolongations of A. Again, the total number of generating 
CC, that is 1 1 2+ = , has nothing to do with the differential transcendence de-
gree of the CC differential module which is ( ) ( )0 2 1 = 1dim F dim E− = − . 

EXAMLE 2.3: With the same 3, 1, 2n m q= = =  and ( ) ( )1 2 3, ,K x x x x= =  , 
we now prove that a slight change of the equations may provide quite important 
changes in the number and order of the CC. Such an example is the only one 
that we could have found in more than 40 years of computing CC in mathemat-
ics and applications. For this, let us consider the new system: 

2
33 1 22,y x y v y u− = =  
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Before starting, we first notice that it is a prioiri not evident to discover that 
R R∞=  is a finite dimensional vector space over K with ( ) 6Kdim R = . Howev-
er such a result can be obtained by direct integration (Compare to the Janet ex-
ample treated in the introduction of [12]). 
• Step 1: The symbol 2g  is defined by 33 220, 0v v= =  may not be involutive 

or the coordinate system may not be δ -regular. However, we obtain the 
Janet tabular for 2g : 

33

22

0 1 2 3
0 1 2

v
v

=  
  = • 

 

and thus the Janet tabular for 3g :  

333

233

223

222

133

122

0 1 2 3
0 1 2
0 1 2
0 1 2
0 1
0 1

v
v
v
v
v
v

=  
  = •  
  = •

  = • 
  = • •
 

= • •   

 

We let the reader check as an exercise that 2g  is not 2-acyclic by counting 
the dimensions in the long sequence: 

* 2 * 3 * *
4 3 20 g T g T g T Tδ δ δ→ → ⊗ →∧ ⊗ →∧ ⊗  

and that 3g  is involutive, thus 2-acyclic, with characters ( )0,0,4  as in the 
previous example. It follows that ( )2 6 2 4dim g = − = , ( )3 0 0 4 4dim g = + + = , 

( )4 4,dim g = 
. We obtain from the main theorem ( )( ) ( )1 1

2 2r rR Rρ += . It is easy to 
chek that ( )1

2 2R R=  with ( )2 8dim R = , ( )3 8 4 12dim R = + = ,  
( )4 11 4 15dim R = + = , ( )5 56 39 13 4 17dim R = − = + = ,  . We have after two 

prolongation: 

2233 33
2

2233 122 12 22
2 2

122 1

2

y u

y x y y v

x y x u

=

− + + = −
− = −

 

and thus 2
12 33 22 12y u v x u= − − . We may thus consider the new second order 

system ( )2
2 2 2R R R′ = ⊂  with a strict inclusion and ( )2 7dim R′ = : 

2 2
33 1 22 12 33 22 1, , , 2y x y v y u y w w u v x u− = = = = − −  

We may start again with 2R′  and study its symbol 2g ′  defined by the 3 li-
near equations with the following Janet tabular obtained after doing the same 
change of local coordinates as before: 

33

22

12

0 1 2 3
0 1 2
0 1

v
v
v

=  
  = •  
  = • •  

 

This symbol is not involutive but its prolongation 3g ′ , defined by the 8 equa-
tions: 
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333

233

223

222

133

123

122

112

0 1 2 3
0 1 2
0 1 2
0 1 2
0 1
0 1
0 1
0 1

v
v
v
v
v
v
v
v

=  
  = •  
  = •
  = •    = • •   = • •   = • •   = • •  

 

is involutive with characters ( )0,0,2  and we may consider again the system: 
2

33 1

22

12

y x y v
y u
y w

 − =


=
 =

 

with 2
33 22 12w u v x u= − − . As before, instead of writing out the system 3R′  and 

studying its formal inegrability by an elementary but tedious computation, we 
shall use a trick, knowing in advance that the generating CC must be of order at 
least 1 1 2+ =  because 2g ′  had to get one prolongation in order to become 
involutive and thus 2-acyclic. 
• Step 2: It thus remains to find out the CC for ( ),u v  in the initial inhomo-

geneous system. As we have used two prolongations in order to exhibit 2R′ , 
we have second order formal derivatives of u and v in the right members. 
Now, from the above argument, we have second order CC for the new right 
members and could hope therefore for a fourth order generating CC. The 
trick is to use the three different brackets of operators that can be obtained. 
We obtain in a formal way: 

2 2 2
33 1 22 2233 122 2233 122 12

12
2

33 1 22

, 2

2

d x d d y y x y y x y y

y

u x u v

 − = − − + + 
=

= − −

 

Then: 

[ ] ( ) ( ) ( )2
2 12 2 12 1 22 233 222 12 1 12 , 0 2 2 2d d y d d y d d y u v x u u u= = − = − − − −  

brings the third order CC: 
2

233 222 12 13 0A u v x u u≡ − − − =  

( )
( )

2 2 2
33 1 12 1233 112 1233 112 11

11

2
33 1 12

22 2 2
3333 2233 133 122 12 11

2 , 2 2 2 2 2

2

2 2

2 2

d x d d y y x y y x y y

y

d x d w v

u v x u x v v x u

 − = − − + + 
=

= − −

= − − + − +

 

brings the new first order equation: 

( )22 2 2
11 3333 2233 133 122 12 112 2 2 2 0y u v x u x v v x uω= = − − + − + =  

Accordingly, we may start afresh with the new system ( )4
2 2 2 2R R R R′′ ′= ⊂ ⊂  
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which is surprisingly of finite type with ( )2 10 4 6dim R′′ = − = , 3 0g ′′ =  and de-
fined by the 4 second order PD equations: 

( ) ( )2
33 1 22 12 11 2 4, , , , , , ,y x y v y u y w y w j u v j u vω ω− = = = = ∈ ∈  

We obtain therefore: 

( )22 2 2 2
112 23333 22233 1233 133 1222 122 112 11

2
112 133 122 11

2 2 2 2

2

y u v x u u x v v x u x u

y u v x u

= − − − + − + +

− = − + +
 

and thus a CC of order 5, namely: 

( )22 2 2 2
23333 22233 1233 133 1222 112 112 3 3 0B u v x u u x v x u x u≡ − − − + + + =  

However, we have indeed the identity 2
33 1 0A x A B− − =  and thus ( )2B j A∈ , 

that is B is a not a new generating fifth order CC as it is only a consequence of 
the prolongations of A. Using now the bracket of operators [ ]11 33, 0d d =  that 
has not been already used, we get: 

( )

( ) ( ) ( )

22 2 2
1133 333333 223333 13333 12233 1233 1133

2
1133 111 11

2 2 32 2 2 2 2 2 2
111 13333 12233 1133 1122 112 111

2 2 2

2 2 2

2 2 2

y u v x u x v v x u

y x y v

x y x u x v x u x v x v x u

= − − + − +

− + = −

− = − + + − + −

 

We obtain therefore a new sixth order CC:  

( )
( ) ( )

22 2 2
333333 223333 13333 12233 1233 1133

2 32 2 2
1122 112 111 11

3 2 2 3

2 2

= 0

C u v x u x v v x u

x v x v x u v

≡ − − + − +

− + − −  

which cannot be a differential consequence of A. After tedious computations, 
one can find the differential identity: 

( )22 2
3333 133 11 22 0A x A x A C− + − =  

The corresponding simplest free resolution, written with differential modules, 
is thus: 

2 2
4 6 20 0pD D D D M→ → → → → →  

Again, the total number of generating CC, that is 1 1 2+ = , has nothing to do 
with the differential transcendence degree of the CC differential module which is 
still ( ) ( )0 2 1 = 1dim F dim E− = −  because ( ) 0Drk M = . 

3. Mathematical Tools 

Instead of starting with a linear system ( )q qR J E⊂  of order q on E, let us start 
with a bundle map ( ) 0: qJ E FΦ →  with ( )qR ker= Φ  and let us consider the 
linear PD operator ( ) 0: qj

qD E J E FΦ→ → . Using the canonical inclusion 
( ) ( )( )q r r qJ E J J E+ ⊂ , let us define the r- prolongation  

( ) ( ) ( )( ) ( ) ( )0: rJ
r q r r q rJ E J J E J Fρ Φ

+Φ → → . The general case of the succes-
sive prolongations with 0r ≥  is described by the following commutative and 
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exact diagram: 

( )

( ) ( ) ( )

( ) ( ) ( )

1

1

* *
1 1 1 0 1

1 1 1 0 1
1 1

0

0 0 0

0 0

0 0

0 0

0 0 0

r

r

r

q r q r r r

q r q r r r
q r r
q r r

q r q r r r

g S T E S T F h

R J E J F Q

R J E J F Q

σ

ρ

ρ

π π

+

+

Φ
+ + + + + +

Φ
+ + + + + +

+ + +
+

Φ
+ +

↓ ↓ ↓

→ → ⊗ → ⊗ → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓

 

with symbol-map induced in the upper symbol sequence ([19] [20] [21]). 
Chasing in this diagram while applying the “snake” lemma ([10] [22] [23]), we 

obtain the long exact connecting sequence: 

1 1 1 10 0q r q r q r r r rg R R h Q Q+ + + + + + +→ → → → → → →  

which is thus connecting in a tricky way FI (lower left) with CC (upper right). 
Needless to say that absolutely no classical procedure can produce such a result 
which is thus totally absent from the GR papers already quoted. 

Setting ( ) ( )1
1

q r
q r q r q r q rH R R Rπ + +
+ + + + += , we have equivalently the shorter long 

exact sequence: 

( ) 1 10 0q r r r rH R h Q Q+ + +→ → → → →  

As a possible interpretation, ( )rdim Q  is the total number of CC of order 
0,1,  up to r included. However, the problem to solve is to study the structure 
of the projective limit of vector bundles made by the induced epimorphisms 

1r rQ Q+ → . Of course, as it is mostly realized in the examples, we have to sup-
pose that qR  is sufficiently regular in such a way that the q rR +  are vector 
bundles 0r∀ ≥  and that the ( ) ( )s q r s

q r q r q r sR Rπ + +
+ + + +=  are also vector bundles, 

such a situation being in particular always realized when ( )q qR J E⊂  or D are 
defined over a differential field K. In this case, introducing the filtered noethe-
rian ring [ ] [ ]1, , nD K d d K d= =

 of differential operators with coefficients in 
K, we may introduce a differential module M with induced filtration  

0 10 qM M M m M∞= ⊆ ⊆ ⊆ ⊆ ⊆ =   in such a way that the system  
( ),KR R hom M K∞= =  associated with M with ( ),q K qR hom M K=  is of 

course automatically FI (care). Following Macaulay in ([24]), we have already 
proved in many places ([3] [10]) that R is a differential module for the Spencer 
operator *: : i

id R T R f dx d f→ ⊗ → ⊗  with 1: :i q qd R R R R+→ →  defined 
by the explicit formula: 

( ) 1i

k k k
i id f f f Kµ µµ += ∂ − ∈  

It is important to notice that such an operator/system is far from being for-
mally integrable because: 
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( ) ( )1 1 1 1j i i j

k k k k k k
i j j i j if f f f f fµ µ µ µ µ µ+ + + +∂ ∂ − − ∂ ∂ − = ∂ − ∂  

As can be seen from the examples previously presented, starting with rΨ  for a 
given r, the main problem is to compare the epimorphism ( )1 1 0 1:r r rJ F Q+ + +Ψ →  
with the morphism ( ) ( ) ( )1 1 0 1:r r rJ F J Qρ +Ψ →  in the following commutative 
diagram which may not be exact: 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

* * *
1 1 1 0

1 1 1 0 1
1 1

0

0 0 0 0

0

0

0 0

0 0 0

r r

r r

r
r

q r q r r r

q r q r r r
q r r
q r r

q r q r r r

g S T E S T F T Q

R J E J F J Q

R J E J F Q

σ σ

ρ ρ

ρ

π π

+

+

Φ Ψ
+ + + + +

Φ Ψ
+ + + + +

+ + +
+

Ψ
Φ

+ +

↓ ↓ ↓ ↓

→ → ⊗ → ⊗ → ⊗
↓ ↓ ↓ ↓

→ → → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓

 
where the central row is induced from the long exact sequence: 

( ) ( )( ) ( )( ) ( )1 1 1 0 10 0q r q r r rJ R J J E J J F J Q+ +→ → → → →  

and may not be exact. 
PROPOSITION 3.1: We have only in general: 

( )( ) ( ) ( )( ) ( )1 1 1 1 1r r r r rB im ker ker Bρ ρ ρ+ + += Φ = Ψ ⊆ Ψ =  

Proof: Denoting the Spencer operator by d in place of the standard notation D 
of the literature that could be confused with the ring D of differential operators, 
we have the following commutative diagram: 

( ) ( ) ( )

( ) ( ) ( )

1
1 1 1 1 0

* * * *
0

0

0

r

r

q r q r r r

q r q r r r

R J E B J F
d d d d

T R T J E T B T J F

ρ

ρ

+ Φ
+ + + + + +

Φ
+ +

→ → → ⊂
↓ ↓ ↓ ↓

→ ⊗ → ⊗ → ⊗ ⊂ ⊗

 

As 1rB +  projects onto rB  and 1i r rd B B+ ⊂ , it follows from ([12], Proposi-
tions 10, p 83) or ([10], Remark 2.9, p 315) that ( )1 1r rB Bρ+ ⊆ . We have thus a 
projective limit of systems, each one being defined by more equations than the 
preceding one and such a procedure must finish with a FI system that can even be 
prolonged, as we shall see in the examples, in order to obtain an involutive system 
that may be used to start a Janet sequence. The decision to stop is provided by the 
maximum order of the CC obtained, namely of order bounded by 1r s t+ + =  if 
the system ( )s

q rR +  is involutive or at least with a 2-acyclic symbol.  
The idea is to use the composite morphism *

0r rS T F Q⊗ →  while chasing in 
order to prove that any element of ( )1 0rJ F+  killed by ( )1 rρ Ψ  can be decom-
posed into the sum of an element in ( )( )rim ρ Φ  plus an element in *

1 0rS T F+ ⊗  
killed by ( )1 rσ Ψ . With more details, setting for simplicity ( )*

0 0r rS T F S F⊗ = , 
introducing the coboundary bundle ( )( ) ( )( )1 0 1r rB S F im σ+ += Φ  and the cocycle 
bundle ( )( ) ( )( )1 0 1r rZ S F ker σ+ = Ψ , we may define the corresponding coho-
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mology bundle ( )( ) ( )( ) ( )( )1 0 1 0 1 0r r rH S F Z S F B S F+ + += . We may also define 
similarly ( )( ) ( )( ) ( )( )1 0 1 1r r rH J F ker imρ ρ+ += Ψ Φ  and we obtain the follow-
ing crucial proposition (See [4], Example 2.A.9) through a chase left to the reader 
as an exercise: 

PROPOSITION 3.2: There exists a short exact sequence:  

( ) ( )( ) ( )( )1 0 1 00 0q r r rH R H S F H J F+ + +→ → → →  

Let us now deal with the symbol cohomology by chasing in the following 
commutative diagram: 

* * *
1 1 1 0

* * * * * *
0

2 * 2 * * 2 * *
1 1 1 0

3 * 3 * *
2 2

0 0 0 0

0

0

0 0

0

q r q r r r

q r q r r r

q r q r r

q r q r

g S T E S T F T Q

T g T S T E T S T F T Q

T g T S T E T S T F

T g T S T E

δ δ δ

δ δ δ

δ δ

+ + + + +

+ +

+ − + − −

+ − + −

↓ ↓ ↓ ↓
→ → ⊗ → ⊗ → ⊗

↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ → ⊗

↓ ↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗

↓ ↓
→ ∧ ⊗ = ∧ ⊗ ⊗

 

 

where neither the first nor the second upper columns may be exact and where 
the left column may not be exact, unless gq is involutive or 2-acyclic. Chasing 
with the same notations, we obtain: 

PROPOSITION 3.3: There exists an exact sequence: 

( ) ( )( ) ( )( )2 *
1 1 0 00 q r r rH g H S F T H S F+ − +→ → → ⊗  

The upper left arrows are not in general epimorphisms and it may be some-
times useful to consider rh  as a kind of symbol in the more abstract diagram: 

* *
1 1 1 0 1

* * * * * *
0

2 * 2 * * 2 * * 2 *
1 1 1 0 1

3 * 3 * * 3 *
2 2 2

0 0 0

0 0

0 0

0 0

0

q r q r r r

q r q r r r

q r q r r r

q r q r r

g S T E S T F h

T g T S T E T S T F T h

T g T S T E T S T F T h

T g T S T E T S T

δ δ δ δ

δ δ δ δ

δ δ δ

+ + + + + +

+ +

+ − + − − −

+ − + − −

↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ *

0

4 * 4 * *
3 30 q r q r

F

T g T S T E
δ δ

+ − + −

⊗
↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗

 

where the rows are now exact. However, understanding the meaning of rh  as a 
kind of new symbol may not be possible unless *

1r rh T h+ → ⊗  is a monomor-
phism, that is when qg  is 2-acyclic and rh  is 1-acyclic, that is when qg  is 
also 3-acyclic (or involutive). Once more, we understand the crucial importance 
of 2-acyclicity but we recall that the only symbol known to be 2-acyclic without 
being involutive is the symbol of the conformal Killing system whenever 4n ≥ , 
which is also 3-acyclic whenever 5n ≥  ([3] [11] [12] [13]). 
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4. Applications 

MACAULAY EXAMPLE REVISITED: 
With 1, 3, 2,m n q K= = = =  , let us introduce two operators  

[ ]1 2 3, , ,P Q D K d d d∈ =  and consider the second order system ( )2 2R J E⊂  
used by Macaulay as early as in 1916 ([4] [24]): 

33 13 2,Qy y v Py y y u≡ = ≡ − =  

We have the strict inclusions: 

( ) ( ) ( )2 1
2 2 2 2 6 7 8 10R R R J E⊂ ⊂ ⊂ < < <  

As ( ) ( )2 1
2 2 2g g g⊂ ⊂  are involutive, we obtain ( )( ) ( )2 2

2 2r rR Rρ +=  by using the 
Prolongation/Projection (PP) procedure. We exhibit the parametric jets of the 
bundles that will be used in the following diagrams: 

{ }2 1 2 3 11 12 22 23, , , , , , ,par y y y y y y y y=  

{ }3 1 2 3 11 12 22 111 112 122 222 223, , , , , , , , , , ,par y y y y y y y y y y y y=  

{ }4 1 2 3 11 12 111 112 122 222 1111 1112 1122 1222 2222 2223, , , , , , , , , , , , , , ,par y y y y y y y y y y y y y y y y=  

and thus ( ) ( ) ( )2 3 48, 12, 16dim R dim R dim R= = = . More generally, we let the 
reader prove that ( )2 4 8, 0rdim R r r+ = + ∀ ≥ , thus ( )4 4 16, 0rdim R r r+ = + ∀ ≥  
and ( )4 6, 0rdim g r r+ = + ∀ ≥ . 

We have the Janet tabular for ( )2
2R : 

33

23 1 3

22 11 13 2

13 2

1 2 3
1 2
1 2
1

y v
y v u
y v u u
y y u

=  
  = − •    = − − •   − = • • 

 

The two CC are: 

13 2 33 1 113 12 1330, 0A v v u A v v u≡ − − = ≡ − − =  

while the other ones are what we called identity to zero like: 

( ) ( ) ( ) ( )2 13 2 1 23 2 2 2 11 13 11 13 20 0d y y d y d y u v u v u u− − + = = − − + − − =  

There is thus only one generating CC of order 2, namely 0A = , given by the 
commutation relation 0P Q Q P− ≡   and the corresponding operator 1D  is 
thus surely formally subjective. Setting 1 2F Q= , we obtain the following dia-
gram with exact central and lower rows whenever 1r ≥ . 

( ) ( ) ( )

( ) ( ) ( )

* * *
4 4 2 0 1

4 4 2 0 1

3 3 1 0 1 1

0 0 0 0

0 0

0 0

0 0

0 0 0

r r r r

r r r r

r r r r

g S T E S T F S T F

R J E J F J F

R J E J F J F

+ + +

+ + +

+ + + −

↓ ↓ ↓ ↓
→ → ⊗ → ⊗ → ⊗ →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓
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( )( ) ( )( ) ( )( )

( )( )( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( ) ( )( )

0 0 0 0

0 6 5 6 2 3 4 1 2 2 0

0 4 16 5 6 7 6 3 4 5 3 1 2 3 6 0

0 4 12 4 5 6 6 2 3 4 3 1 2 6 0

2 0 0 0

0

r r r r r r r

r r r r r r r r r r

r r r r r r r r r r

r

↓ ↓ ↓ ↓

→ + → + + → + + → + + →

↓ ↓ ↓ ↓
→ + → + + + → + + + → + + + →

↓ ↓ ↓ ↓
→ + → + + + → + + + → + + →

↓ ↓ ↓ ↓

+
↓

 

* * *
4 4 2 0 1

* * * * * * *
3 3 1 0 1 1

2 * 2 * * 2 * *
2 2 0

3 * 3 * *
1 1

0 0 0 0

0 0

0 0

0

0 =

0 0

r r r r

r r r r

r r r

r r

g S T E S T F S T F

T g T S T E T S T F T S T F

T g T S T E T S T F

T g T S T E

δ δ δ δ

δ δ δ

δ δ

+ + +

+ + + −

+ +

+ +

↓ ↓ ↓ ↓

→ → ⊗ → ⊗ → ⊗ →

↓ ↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ → ⊗ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗

↓ ↓
→ ∧ ⊗ ∧ ⊗ ⊗

↓ ↓

 

where * *
4 4S T E S T⊗ 

 and 1 2F Q  while 1 0Q =  as there is no CC of or-
der 1. From the snake lemma and a chase, we obtain the long exact connecting 
sequence when 0r = : 

4 4 3 2 10 0g R R h F→ → → → → →  

0 6 16 12 3 1 0→ → → → → →  

relating FI (lower left) to CC (upper right). By composing the epimorphism 
*

2 0 2S T F h⊗ →  with the epimorphism 2 1h F→ , we obtain an epimorphism 
*

2 0 1S T F F⊗ →  and the long exact sequence: 
* *

4 4 2 0 10 0g S T E S T F F→ → ⊗ → ⊗ → →  

which is nevertheless not a long ker/coker exact sequence by counting the di-
mensions as we have 6 15 12 1 2 0− + − = ≠ . 

The above diagrams illustrate perfectly the three propositions of Section 2. We 
have in particular:  

( )( ) ( )( ) ( )( ) ( )2 0 1 0 2 0 30 0, 0r r r rH J F H J F H S F H R+ + + += ⇒ = = ≠  

and the formally exact sequence, which is nevertheless not strictly exact though 
1 2 1 0− + = : 
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1
0 12 20 0DDE F F→Θ→ → → →  

0 1 2 1 0→Θ→ → → →  

We remind the reader that, contrary to the situation met with FI systems 
where the exactness on the jet level is obtained inductively from the exactness on 
the symbol level, here we discover that we may have the exactness on the jet level 
without having exactness on the symbol level. 

EXAMPLE 2.1 REVISITED: 
First of all, let us compute the dimensions and the parametric jets that will be 

used in the following diagrams. 

{ }2
1 2 1 2 3 1, , , , ,par par y y y y y= =  

( ) ( )
( ) ( ) ( )1 2 1 2 3

3, 2,
3, 1, 0 0

n dim X m dim E
dim R dim R dim g g g
= = = =

= = = = ⇒ =
 

( ) ( ) ( )

( ) ( )

* * *
3 2 0 1

3 3 2 0 1 1
3 2
4 1

2 2 1 0 1

0 0 0

0 0

0 0

0 0

0 0 0 0

S T E S T F T Q

R J E J F J Q

R J E J F Q
π π

↓ ↓ ↓
→ ⊗ → ⊗ → ⊗ →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓



 

3 2
2 1

0 0 0

0 20 30 9 0

0 3 40 50 12 0

0 3 20 20 3 0

0 0 0 0

π π

↓ ↓ ↓
→ → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓



 

* * *
3 2 0 1

* * * * *
2 0 1

2 * 2 * * 2 *
1 0

3 * 3 *

0 0 0

0 0

0 0

0 0

0 0

0 0

S T E S T F T Q

T S T E T T F T Q

T g T T E T F

T E T E

δ δ

δ δ

δ δ

↓ ↓ ↓
→ ⊗ → ⊗ → ⊗ →

↓ ↓
→ ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓
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0 0 0

0 20 30 9 0

0 36 45 9 0

0 3 18 15 0

0 2 2 0

0 0

δ δ

δ δ

δ δ

↓ ↓ ↓

→ → → →

↓ ↓

→ → → →

↓ ↓ ↓

→ → → →

↓ ↓ ↓

→ = →

↓ ↓



 

It is not at all evident to study these diagrams. We have  
( )( )( ) ( )( )( )2 0 2 020 30 9 21dim B S F dim Z S F= < = − = . We have already proved 

that ( )( )( ) ( )( )2
2 0 121 20 1 3 2 1dim H S F dim H g= − = = = − = , a result not evi-

dent at first sight explaining why the only second order additional generating 
CC is nothing else than the Riemann tensor in dimension equal to 2. 

We have explained in ([4]) that such a system has its origin in the study of the in-
tegration of the Killing system for the Schwarzschild metric, which is not FI. With 
more details, let us use the Boyer-Lindquist coordinates ( ) ( )0 1 2 3, , , , , ,t r x x x xθ φ =  

instead of the Cartesian coordinates ( ), , ,t x y z  and consider the Schwarzschild 

metric ( ) ( )( ) ( )2 2 2 2 2 2 21 sinA r dt A r dr r d r dω θ θ φ= − − −  and i
id Tξ ξ= ∈ , 

let us introduce r
i riξ ω ξ=  with the 4 formal derivatives  

( )0 1 2 3, , ,t rd d d d d d d dθ φ= = = = . With speed of light 1c =  and 1 mA
r

= −  

where m is a constant, the metric can be written in the diagonal form: 

( )

2

2 2

0 0 0

0 1 0 0

0 0 0

0 0 0 sin

A

A

r

r θ

 
 

− 
 

− 
  − 

 

Using the notations that can be found in the theory of differential modules, let 
us consider the Killing equations: 

( ) 0

2 0r
ij i j j i ij r

L

d d

ξ ω

ξ ξ γ ξ

Ω ≡ = ⇔

Ω ≡ + − =
 

where we have introduced the Christoffel symbols γ  while setting rA A′ = ∂  
in the differential field K of coefficients. As in the previous Macaulay example 
and in order to avoid any further confusion between sections and derivatives, we 
shall use the sectional point of view and rewrite the previous equations in the 
symbolic form ( ) *

1 2L S Tξ ω = Ω∈  where L is the formal Lie derivative: 

https://doi.org/10.4236/jmp.2019.103025


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.103025 390 Journal of Modern Physics 
 

( ) ( ) ( )

( )

2
3,3 2 1 33

2,3 3,2 3 23

1,3 3,1 3 13

0,3 3,0 03

2,2 1 22

1,2 2,1 2 12

0,2 2,0 02

1,1 1 11

0,1 1,0 0 01

0,0 1 00

1sin cos sin
2

2cot
2

1
2

2

1
2 2

1
2 2

rA

r

rA

r

A
A

A
A

AA

ξ θ θ ξ θ ξ

ξ ξ θ ξ

ξ ξ ξ

ξ ξ

ξ ξ

ξ ξ ξ

ξ ξ

ξ ξ

ξ ξ ξ

ξ ξ

 + + = Ω


+ − = Ω

 + − = Ω

 + = Ω


+ = Ω



+ − = Ω


+ = Ω
′

+ = Ω

′
+ − = Ω

′
− = Ω













 

This system ( )1 1R J T⊂  is far from being involutive because it is finite type 
with second symbol 2 0g =  defined by the 40 equations 0k

ijv =  in the initial 
coordinates. From the symmetry, it is clear that such a system has at least 4 solu-
tions, namely the time translation 0

01t Aξ ξ∂ ↔ = ⇔ =  and, using Cartesian 
coordinates ( ), , ,t x y z , the 3 space rotations , ,z y x z y xy z z x x y∂ − ∂ ∂ − ∂ ∂ − ∂ . 

These results are brought by the formal Lie derivative of the Weyl tensor be-
cause the Ricci tensor vanishes by assumption and we have the splitting  
Riemann Ricci Weyl⊕  according to the fundamental diagram II that we dis-
covered as early as in 1988 ([25]), still not acknowledged though it can be found 
in ([1] [2] [3]). In particular, as the Ricci part is vanishing by assumption, we 
may identify the Riemann part with the Weyl splitting part as tensors ([3]) and it 
is possible to prove (using a tedious direct computation or computer algebra) 
that there are only 6 non-zero components. It is important to notice that this 
result, bringing a strong condition on the zero jets because of the Lie derivative 
of the Weyl tensor and thus on the first jets, involves indeed the first derivative 
of the Weyl tensor because we have a term in ( )A ′′′ . When 0Ω = , we obtain 
after 2 prolongations the additional 5 new first order PD equations: 

1 1,2 1,3 0,2 0,30, 0, 0, 0, 0ξ ξ ξ ξ ξ= = = = =  

As we are dealing with sections, 1 0ξ =  does imply 1,1 0ξ =  and 0,0 0ξ =  
but does not imply 1,0 0ξ = , these later condition being only brought by one ad-
ditional prolongation and we have the strict inclusions ( ) ( ) ( )3 2 1

1 1 1 1R R R R⊂ ⊂ = . 
Hence, it remains to determine the dimensions of the subsystems ( )2

1 1R R′ =  and 
( )3

1 1R R′′=  with the strict inclusion 1 1R R′′ ′⊂ , exactly again like in the Macaulay 
example. Knowing that ( ) ( )1 2 10dim R dim R= = , ( )3 5dim R = , ( )4 4dim R = , 
we have thus obtained the 15 equations defining 1R′  with ( )1 20 15 5dim R′ = − =  
and the 16 equations defining 1R′′  with ( )1 20 16 4dim R′′ = − = , namely: 
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( ) ( )
( )

3,3 2

2,3 3,2 3

1,3

0,3

2,2

sin cos 0

2cot 0
0
0
0

ξ θ θ ξ

ξ ξ θ ξ

ξ

ξ

ξ

+ =

+ − =

=

=

=

 

1,2

0,2

3,1 3

2,1 2

1,1

0
0
2 0

2 0

0

r

r

ξ

ξ

ξ ξ

ξ ξ

ξ

=

=

− =

− =

=

 

0,1 0

3,0

2,0

0

0
0

A
A

ξ ξ

ξ

ξ

′
− =

=

=

 

0,1 0

3,0

2,0

0

0
0

A
A

ξ ξ

ξ

ξ

′
− =

=

=

 

Setting now in an intrinsic way 0 1 2 2
0 1 2

1, ,A r
A

ξ ξ ξ ξ ξ ξ= = − = −  and in a 

non-intrinsic way (care) 2 3
3 rξ ξ= − , we may even simplify these equations and 

get a system not depending on A anymore: 

( ) ( )
( )

3 2
3
2 3 3
3 2
1
3
0
3
3

1
2

1
1
1
0

1
3
0
2
0
1
0
0
0
2
2
1
2
0
2
1

sin cos 0
2cot 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

ξ θ θ ξ
ξ ξ θ ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

 + =


+ − =
 =


=
 =

=
 =
 =


=
 =


=
 =
 =
 =
 =


=

 

It is easy to check that ( )3
1R , having minimum dimension equal to 4, is for-

mally integrable, though not involutive as it is finite type, and to exhibit 4 solu-
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tions linearly independent over the constants. Indeed, we must have 0 cξ =  
where c is a constant and we may drop the time variable not appearing elsewhere 
while using the equation 1 0ξ = . It follows that ( ) ( )2 3, , ,f gξ θ φ ξ θ φ= =  
while ,f g  are solutions of the first, second and fifth equations of Killing type 
wih a general solution depending on 3 constants, a result leading to an elemen-
tary probem of 2-dimensional elasticity left to the reader as an exercise. The sys-
tem ( )3

1R  is formally integrable while the system ( )2
2R  is involutive. Having in 

mind the PP procedure, it follows that the CC could be of order 2, 3 and even 4. 
Equivalently, we may cut the integration of this system into three systems: 

1) First of all, we have 1 0ξ =  and thus 1 1 1 1
0 1 2 30, 0, 0, 0ξ ξ ξ ξ= = = = . 

2) Then, we may consider 0 0 0 0 0
0 1 2 30, 0, 0, 0 cξ ξ ξ ξ ξ= = = = ⇒ = . 

3) Finally, we arrive to the FI system with the same properties as the ones 
found for Example 2.1: 

( ) ( )
( )

3 2
3
2 3 3
3 2
3

1
2

1
2
2

sin cos 0
2cot 0

0
0
0

ξ θ θ ξ
ξ ξ θ ξ
ξ
ξ
ξ

 + =


+ − =
=

 =
 =

 

that is with 3 generating first order CC and 1 additional second order generating 
CC. 

Proceeding like in the motivating examples, we may introduce the inhomoge-
neous systems: 

{ } ( )1 1,2 2 1,3 3 0,2 2 0,3 3 2, , , ,U V V W W jξ ξ ξ ξ ξ= = = = = ∈ Ω  

and we finally obtain 16 PD equations, namely 1 Uξ =  plus the 15 PD equa-
tions: 

( )0,0 00 0,1 0 01 0 3 0,2 2 0,3 3
1 , , ,
2 2

AA AU d U j W W
A

ξ ξ ξ ξ ξ
′ ′

= Ω + − = Ω − ∈ Ω = =  

( )1,0 0 3 1,1 11 1,2 2 1,3 3
1, , ,
2 2

Ad U j U V V
A

ξ ξ ξ ξ
′

= ∈ Ω = Ω − = =  

2,0 02 2 2,1 2 12 2 2,2 22
2 1, ,

2
W V rAU

r
ξ ξ ξ ξ= Ω − − = Ω − = Ω −  

( )3,0 03 3 3,1 3 13 3 3,2 2,3 3 23
2, , 2cot ,W V
r

ξ ξ ξ ξ ξ θ ξ= Ω − − = Ω − + − = Ω  

( ) ( ) ( )2
3,3 2 33

1sin cos sin
2

rA Uξ θ θ ξ θ+ = Ω −  

As a byproduct, we have ( ) ( )3 45, 4dim R dim R= =  and we obtain 15 second 
order CC in ( )2j Ω  along the ker/coker exact sequence: 

( ) ( )*
3 3 2 2 2

2

0 0

0 0

R J T J S T Q

B

→ → → → →
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0 5 140 150 15 0

135

→ → → → →
   

Then, we have identities to zero like 1 1
0 0 0d ξ ξ− =  but we have also surely 

the three third order CC like 1 1 1 1 1 1
1 1 2 2 3 30, ,d d dξ ξ ξ ξ ξ ξ− = − − , then perhaps the 

other third order CC 0 0
2 3 3 2 0d dξ ξ− =  and perhaps even fourth order CC like 

0 0
0 1 1 0 0d dξ ξ− =  which is containing the leading term 00d U  after substitution. 

However, we have the linearization formulas: 

, , , , ,
r r r

kl ij kr l ij kl ij kr l ij l ij krR Rρ ω ρ ω ρ= ⇒ = + Ω  

, , ,
r rs rs t

ij i rj ri sj ij i rj st ijR R Rρ ρ ω ω ρ= ⇒ = + Ω ≠  

and obtain therefore the formulas: 

( )
3

1 3
23,30 02 0,2 01,12 02 02 0,12 3,322

3
1 2

23,02 03 0,3 01,13 03 03 0,13 0,23

2 2 2 1 0
3 3 33 sin

2 2 2 1 0
3 3 3 3

r r AR R R R R
mm

r r AR R R R R
m m

ξ
θ

ξ

+ Ω = = − + Ω ⇔ = + =

+ Ω = = − + Ω ⇔ = + =

 

with two similar ones for 1,2ξ  and 1,3ξ  showing the unexpected partition of 
the Ricci tensor: 

{ } { } { } { }00 11 22 33 12 13 02 03 01 23, , , , , , ,ijR R R R R R R R R R R= + +  

determined by the 15 10 5 4 4 2= + = + +  second order CC that we have exhi-
bited. 

Now, after one prolongation, we get: 

( )2

1,00 1 1 00 0 01 00 11
1 0

2 4 2 2 24
AAA A AAd d

A
ξ ξ

 ′′′ ′ ′
 + − + Ω − Ω − Ω + Ω =
 
 

 

and thus 1 0,0 0 0,1 0d dξ ξ− = . Similarly, we have: 

1,01 1,0 0 11 0 1 1 1 11
1 0

2 2 2
A Ad d d
A A

ξ ξ ξ ξ
′ ′ + − Ω ≡ + −Ω = 

 
 

and thus 1 1,0 0 1,1 0d dξ ξ− = . It follows that 1 11
1 0

2 2
Ad U
A
′

+ − Ω =  is a generating 

CC of order 3 but 01 0 0 11 0
2
Ad U d U d
A
′

− − Ω =  is not a generating CC of order 4. 

In order to proceed further on, we notice that the generating CC of order 3 
already found can be written as: 

1 11 2 2 3 3
1 0, 0, 0

2 2
Ad U U d U V d U V
A
′

+ − Ω = − = − =  

Using crossed derivatives, we get: 

1 2 2 2 11 1 3 3 3 11

2 3 3 2

1 10,
2 2 2 2

0, 0

A Ad V d U d d V d U d
A A

d V d V

′ ′
+ − Ω = + − Ω

= − =
 

and thus 1 1,2 2 1,1 1 1,3 3 1,1 2 1,3 3 1,20, 0, 0d d d d d dξ ξ ξ ξ ξ ξ− = − = − = . 
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However, in order to prove that 2 0,3 3 0,2 0d dξ ξ− =  or equivalently that 

2 3 3 2 0d W d W− = , the previous procedure cannot work but we must never forget 
that 2 3 2 3, , , ,U V V W W  both belong to ( )2j Ω . Introducing the formal Lie deriva-
tive ( )1R L ξ ρ= , we recall that: 

3 3

2 01,12 02 3 01,13 03
2 1 2 1,
3 3 3 3
r A r AW R W R
m m

= − + Ω = − + Ω  

Hence, linearizing the Bianchi identity: 

1 01,23 2 01,31 3 01,12 1 01,23 2 01,31 3 01,120 0d R d R d Rρ ρ ρ∇ +∇ +∇ = ⇒ + + + =  

we have proved in ([4]) that the third order CC 2 3 3 2 0d W d W− =  is not a gene-
rating one because it is just a differential consequence of the second order CC 

01,23 0R = . 
Finally, as already noticed, the symbol *

1 1g g T T′ ⊂ ⊂ ⊗  is not involutive 
and even 2-acyclic because otherwise there should only be first order CC for the 
right members defining the system ( )1 1R J T′ ⊂ . As a byproduct, we have, at 
least on the symbol level, the second order CC: 

( )22 3,3 33 2,2 23 3,2 2,3 0d d dξ ξ ξ ξ+ − + =  

and thus: 

( ) ( ) ( )

( )( )

2
22 33 1 2

33 22 1 23 23 3

1 sin sin cos
2

1 2cot 0
2

d rA

d rA d

θ ξ θ θ ξ

ξ θ ξ

 Ω − − 
 
 + Ω − − Ω + = 
 

 

containing surely 22 1 22 2 33 1 23 3, , ,d d d dξ ξ ξ ξ  and thus surely 2 2 2 3 3, ,d U d V d V , 
producing therefore a third order CC that cannot be reduced by means of any 
Bianchi identity, that is we finally have 15 generating second order CC and 4 
new generating third order CC, in a manner absolutely similar to that of all the 
motivating examples of this paper. 

As shown in ([4]), the study of the Killing system for the Kerr metric is even 
more difficult because the space of solutions is reduced from 4 already given to 
the 2 infinitesimal generators { },t φ∂ ∂  only. Accordingly, we discover that the 
Schwarzschild and the Kerr metrics do behave quite differently and there is thus 
no hope at all for selecting specific solutions of the Einstein equations in vacuum. 
We consider this result as a key challenge when questioning the origin and exis-
tence of gravitational waves in general relativity and believe this problem has 
never been pointed out clearly for the very simple reason that the underlying 
mathematics are not known by physicists. 

EXAMPLE 2.2 REVISITED: 
Coming back to the system ( )2

2 2 2R R R′ = ⊂  with a strict inclusion and second 
members ( )2

33 12 1, ,u v w u v x u= − − , let us exchange 1x  with 2x  in order to 
have an involutive third order symbol 3g ′  in δ -regular coordinates and con-
sider the system 3R′  with now 1

33 12 2w u v x u= − −  in the new coordinates: 
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1
333 23 3

1
233 22 2

223 3

222 2
1

133 12 1

123 3

122 2

112 1
1

33 2

22

12

1 2 3
1 2
1 2
1 2
1
1
1
1

y x y v
y x y v
y w
y w
y x y v
y u
y u
y u
y x y v
y w
y u

 − =
 •− =
 •=


•=
 • •− = • •=
 • •=

• • =
 • • •− =
 • • •=


• • •=

 

This new system is easily seen to be involutive and we have 3 8 9 20+ + =  
first order CC if we consider the second members as just simple notations. Subs-
tituting and taking now into account that we have in fact 2 2u d u=  formally and 
so on, all these CC reduce to identities to zero of the form 0 0=  but, using again 
the original coordinates, 2

2 1 2 3 33 11 10, 0, 0, 0A w u A A B w v x w≡ − = = = ≡ − − = , a 
system which is not FI. Accordingly, the generating CC are described by A of 
order 3 and B of order 4 with 2

33 1 2 0A x A B− − = . I remain to check that this 
result is coherent with the diagrams of the previous section. 

For this, we let the reader compute by hands or with computer algebra the 
following dimensions ( )2 1 3 4 8dim R = + + = ,  

( ) ( )( ) ( )( )3 3 1 0 12dim R dim J E dim J F= − =  because there is no CC of order 1, 
( )4 15dim R =   

( ) ( ) ( )( ) ( )( )2 4 4 2 0 15 35 20 0dim Q dim R dim J E dim J F⇒ = − + = − + =  because 
there is no CC of order 2, ( )5 17dim R =   

( ) ( ) ( )( ) ( )( )3 5 5 3 0 17 56 40 1dim Q dim R dim J E dim J F⇒ = − + = − + =  because 
there is only 1 CC of order 3. We have therefore the long sequence: 

( ) ( ) ( )6 6 4 0 1 20 0R J E J F J Q→ → → → →  

0 19 84 70 4 0→ → → → →  

and obtain ( )( )( ) ( ) ( )4 0 70 4 84 19 66 65 1dim H J F = − − − = − =  both with  
( )4 = 5dim Q , in a coherent way with the only CC A of order 3. We let the reader 

prove that we have similarly ( )5 13dim Q =  by taking into account the fact that 
2

2 33 1B A x A= − . In order to take into account the existence of a new generating 
CC of order 4, we let the reader check that ( )4 5dim Q =  and set 1 4F Q=  in 
order to define a fourth order operator 1 0 1: F F→  by the involutive system: 

3333

3 2333

2 2233

1 1233

233

0 1 2 3
0 1 2
0 1 2
0 1

0

B u
A u
A u
A u
A u

≡ + =
 ≡ + = • ≡ + = •
 ≡ + = • •

≡ + = • • •











 

Starting anew from this operator, we obtain the first order involutive system: 
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2
3 3 1 2

3 2 2 3

3 1 1 3

3 3

2 1 1 2

2 2

1 1

1 2 30
1 2 30

1 2 3
1 2 30

1 2 3
1 2 31 2 30

1 2 3
1 20

1 2
1 20
10

d A x A B
d A d A
d A d A
d A A
d A d A
d A A
d A A

 − − =


− =
 − =


⇒ ⇒− =
 •− = •

• − =
 • •− =

 

where each Janet tabular is induced from the preceding one till the end of the 
procedure as in ([12], p 153, 154 for details). We also notice that this system 
brings automatically the Spencer operator. 

We obtain therefore the following differential sequence:  
31 2 4

0 1 2 3 42 4 1 1 10 0E F F F F F→Θ→ → → → → → →    

2 4 1 1 10 1 2 5 7 4 1 0→Θ→ → → → → → →  

which is formally exact on the jet level, even if it is not strictly exact because the 
first operator is not FI, and we check that 1 2 5 7 4 1 0− + − + − = . We notice that 
the part between 0F  and 4F  is typically a Janet sequence for 1 . 

It follows that we have the following long exact sequence on the level of jets, 
5r∀ ≥ − : 

( ) ( ) ( ) ( )
( ) ( )

9 9 7 0 3 1 2 2

1 3 4

0

0
r r r r r

r r

R J E J F J F J F

J F J F
+ + + + +

+

→ → → → →

→ → →
 

a result leading to: 

( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

9 1 10 11 12 6 2 8 9 10 6

5 4 5 6 6 7 3 4 5 6

4 2 3 4 6 1 1 2 3 6
2 25

rdim R r r r r r r

r r r r r r

r r r r r r
r

+ = + + + − + + +

+ + + + − + + +

+ + + + − + + +

= +

 

and thus to ( )4 2 15, 0rdim R r r+ = + ∀ ≥ , a result not evident to grasp at first 
sight because it comes from the lack of formal integrability of 2R  and the strict 
inclusion ( )2

2 2R R⊂ . 
EXAMPLE 2.3 REVISITED: 
Coming back to the systems 2R  with second members ( ),u v  and  

( )2
2 2 2R R R′ = ⊂  with a strict inclusion and second members  

( )2
33 22 1, , 2u v w u v x u= − − , let us exchange 1x  with 2x  in order to have an 

involutive third order symbol 3g ′  in δ -regular coordinates but the system 

3R′ , with now 1
33 12 2w u v x u= − −  in the new coordinates, is not FI. Hence, we 

must start anew with the system ( )4
2 2 2R R R′′ ′= ⊂  with a strict inclusion, de-

scribed by the 4 PD equations: 
2

33 1

22

12

11

y x y v
y u
y w
y ω

 − =


=


=
 =
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where ( )22 2 2
3333 2233 133 122 12 112 2 2u v x u x v v x uω = − − + − + . Using one prolonga-

tion, we get the third order PD equations: 
2

333 13 3
2

233 1 2

223 3

222 2
2

133 1

123 3

122 1 2

113 3

112 1 2

111 1

1 2 3
1 2
1 2
1 2
1
1
1
1
1
1

y x y v
y y v x w
y u
y u
y v x
y w
y u w A
y
y w B
y

ω

ω
ω

ω

 − =
 •− = +
 •=
 •=
 • •= +
 • •=
 • •= = ⇒
 • •=

• • = = ⇒
 • •=

 

and we discover that the symbol 2g ′′  is finite type because 3 0g ′′ = . As we had 
to use one prolongation in order to get a 2-acyclic symbol, we obtain sixth order 
CC ( ) ( )2, , , , ,A B C j u v w ω∈ . We refer the reader to ([10], p 315) or ([13], p 83) 
for more details on this delicate result. 

Using the notations of the last section, we now provide the systems  

2 3 4 5 6, , , ,B B B B B  together and we notice the following striking results: 

( ) ( ) ( ) ( ) ( )2 2 0 3 1 2 3 0 4 1 3 4 0, , ,B J F B B J F B B J Fρ ρ= ⊂ ⊂ = ⊂  

( ) ( ) ( ) ( )5 1 4 5 0 6 1 5 6 0,B B J F B B J Fρ ρ= ⊂ ⊂ ⊂  

reaching therefore the following involutive system of order 6 where we did not 
quote 0B =  because we already proved that 2

33 1B A x A= − : 

333333

333 233333

233 223333

223 222333

222 222233

133 123333

123 122333

122 122233

113 112333

112 112233

111 111233

33 23333

23 22333

0
0
0
0
0
0
0
0
0
0
0

0

C u
A u
A u
A u
A u
A u
A u
A u
A u
A u
A u
A u
A u

≡ + =
≡ + =
≡ + =
≡ + =
≡ + =
≡ + =
≡ + =
≡ + =
≡ + =
≡ + =
≡ + =
≡ + =
≡ + =



























22 22233

13 12333

12 12233

11 11233

3 2333

2 2233

1 1233

233

1 2 3
1 2
1 2
1 2
1 2
1
1
1
1
1
1

0
0
0
0
0

0
0
0

0

A u
A u
A u
A u
A u
A u
A u
A u


 •

•
 •

•
 • •


• •
 • •


• •
 • •


• •
 • • •


• • •
 ≡ + = • • •


≡ + = • • •
 ≡ + = • • •


≡ + = • • •
 ≡ + = • • •
 ≡ + = • • •
 ≡ + = • • •
 ≡ + = • • •

















 

https://doi.org/10.4236/jmp.2019.103025


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.103025 398 Journal of Modern Physics 
 

Starting anew from this operator providing 46 CC, we obtain the first order 
involutive system: 

( )22 2
3 333 133 11 2

3 233 2 333

3 223 2 233

3 222 2 223

3 1 1 3

3 3

2 133 1 233

2 1 1 2

2 2

1 33 133

1 1 11

1 1

1 2 32 0
1 2 30
1 2 30
1 2 30

1 2 30
0

0

0
0

0

0
0

d A x A x A C

d A d A
d A d A
d A d A

d A d A
d A A
d A d A

d A d A
d A A
d A A

d A A
d A A

 − + − =
 − =


− =
 − =

 − =
 − =
 − =


 − =

− =
 − =



− =
 − =

  







1 2 3
1 2

1 2
1 2
1

1
1

•

•
•

• •

• •
• •

  

  

 

with 20 equations of class 3, 16 equations of class 2 and 10 equations of class 1. 
There are 36 CC providing an involutive system with 26 equations of class 3, 10 
equations of classs 2 but no equation of class 1. We get a final system of 10 CC of 
class 3 without any CC. Like in the preceding application, we have thus obtained 
the following formally exact sequence: 

31 2 4
0 1 2 3 42 6 1 1 10 0E F F F F F→Θ→ → → → → → →    

2 6 1 1 10 1 2 21 46 36 10 0→Θ→ → → → → → →  

with 1 2 21 46 36 10 0− + − + − = , a part of it being a Janet sequence as before. 
Similarly, we get: 

( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

11 1 12 13 14 6 2 10 11 12 6

21 4 5 6 6 46 3 4 5 6

36 2 5 6 6 10 1 2 3 6
18

rdim R r r r r r r

r r r r r r

r r r r r r

+ = + + + − + + +

+ + + + − + + +

+ + + + − + + +

=

 

or even ( )6 18, 0rdim R r+ = ∀ ≥  as a striking result indeed that can be checked 
directly through the exact sequences: 

( ) ( )8 8 6 0 10 0R J E J F F→ → → → →  

0 18 165 168 21 0→ → → → →  

  

( ) ( )6 6 4 0 40 0R J E J F Q→ → → → →  

0 18 84 70 4 0→ → → → →  

( ) ( )5 5 3 0 30 0R J E J F Q→ → → → →  

0 17 56 40 1 0→ → → → →  
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and comes from the fact that ( ) 6Kdim R = < ∞  or, equivalently,  
( ) 6Kdim M = < ∞ . 

The reader not familiar with the formal theory of differential systems or mod-
ules may be surprised by the fact the two dimensions just found do not coincide 
at all because 6 18< . However, we have indeed  

( ) ( ) ( )( )4
3 2 2 6dim R dim R dim R′′ ′′= = =  and the exact sequence: 

( )1
4 4 3 3 30 0g R R R R→ → → → →  

( )( )1
30 4 15 12 1 0 12 1 11dim R→ → → → → ⇒ = − =  

showing that ( )( ) ( ) ( )1
3 3 4dim R dim R dim R< <  with 11 12 15< < .However, we 

have the general Theorem 2.A.7 in ([20]) providing the useful prolongation/ 
projection (PP) procedure, namely that we have ( )( ) ( )1 1 , 0r q q rR R rρ += ∀ ≥  when-
ever the symbol qg  of qR  is 2-acyclic. In the present case, we have indeed 

( )( ) ( )1 1
3 3 , 0r rR R rρ += ∀ ≥  because 3g  is known to be involutive, and the final 

system ( )4
3R  is involutive with zero symbol, providing ( )4

2R  which is only FI 
but with dimension 6. This situation is quite tricky indeed because prolongations 
are filling up successively the PD equations of order 2, then 3 and so on, adding 
therefore: 

{ } { } { } { }12 123 122 112 11 113 112 1130 , 0, 0, 0 , 0 , 0, 0, 0 ,y y y y y y y y= = = = = = = = 
 

5. Conclusions 

When a differential operator   of order q is given, the problem of finding its 
compatibility conditions (CC) is to look for a new operator 1  of a certain or-
der s such that 1 0η =  must be satisfied in order to be able to solve the inho-
mogeneous system ξ η= . This is an old problem first solved as a footnote by 
M. Janet in 1920 ([10] [11] [12] [17]) and finally studied by D.C. Spencer with 
collaborators around 1970 ([19] [20] [21]). The main idea is to construct a finite 
length differential sequence by repeating this procedure anew with 1  and so 
on till one eventually ends with n  according to Janet when n is the number of 
independent variables. It soon became clear that constructing 1  is largely de-
pending on various intrinsic properties of  . 
• If   is involutive, then 1, , n   are first order involutive operators in 

the corresponding Janet sequence that can be constructed “step by step” as 
above but also “as a whole” like in the Poincaré sequence for the exterior de-
rivative. 

• If   is only formally integrable (FI), that is all the equations of order q r+  
of the corresponding homogeneous system can be obtained by only r pro-
longations, then the order of 1  is 1s +  when s is the smallest integer 
such that the symbol of order q s+  becomes 2-acyclic. Such a result is still 
not acknowledged today by physicists even though it is essential for studying 
the conformal Killing system of space-time in general relativity. 

• If   is not even FI, not only the construction of 1  may become very dif-
ficult but also a strange phenomenon may appear, namely one can start to 
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find CC of order 1s , then no new CC other than the ones generated by these 
CC up to order 2 1s s>  when suddenly new generating CC may appear, ge-
nerating all the CC up to order 3 2s s>  and so on till the procedure ends. 

This delicate question has been recently raised by physicists in order to study 
the system of Killing equations for certain useful metrics solutions of the Eins-
tein equations in vacuum (Minkowski gives 2s =  while Schwarzschild gives 

1 22, 3s s= = ). Needless to say that computer algebra is of quite a poor help in 
this case because the dimensions of the jet spaces and the size of the matrices 
involved (up to 420 460×  for 0r =  in the last example) may increase drasti-
cally ([26]). 

The aim of this paper has been first to provide illustrating examples of the 
above situations and one of them with 1 23, 6s s= =  seems to be the only one 
known in the literature today. In addition, we have solved the (general) generat-
ing problem by using new differential homological algebraic methods, with the 
hope that computer algebra will soon become of some help in a near future. 
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