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Abstract 
Negative thermal expansion of gallium arsenide has been investigated 
through temperature dependent Extended X-ray Absorption Fine Structure 
(EXAFS) measurements. The bond thermal expansion coefficient bondα  has 
been evaluated and compared to negative expansion coefficient tensα  due to 
tension effects. The overall thermal expansion coefficient is the sum of bondα  
and tensα . Below 60 K, tensα  is greater than bondα  yielding to a negative 
expansion in this temperature region. Tension effects are progressively overcome 
by the stretching effects in the region 60 - 300 K. The asymmetry of nearest 
neighbors distribution is not negligible since the gaussian approximation 
underestimates the bond expansion by about 0.00426 Å. This error decreases 
when the temperature is lowered. The accuracy in the thermal expansion 
evaluation and the connection between third cumulant and thermal 
expansion are discussed. 
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1. Introduction 

Thermal expansion is a physical parameter defined as “the tendency of matter to 
change in shape, area, and volume in response to change in temperature” [1]. It 
is a key parameter in many scientific and technological applications [2] [3] [4] 
[5]. 

EXAFS (Extended X-ray Absorption Fine Structure) is a powerful tool for 
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studying the local thermal expansion of crystals [6] [7]. Anharmonicity effects of 
the effective pair potential on EXAFS have been revealed by studies on several 
systems [8] [9] [10], even at low temperatures, showing that the standard har-
monic treatment of disorder in EXAFS [11] was inadequate. The cumulant ap-
proach [12] [13] is particularly suitable for treating moderately disordered sys-
tems. Specific information can be obtained by considering the values of the cu-
mulants and their variation with temperature [14] or pressure [15]. 

As a correlation sensitive technique, EXAFS probes the unidimensional dis-
tribution of instantaneous distances b ar = −r r . This sensitivity of EXAFS to 
local structure of crystals is shared by other techniques such as total scattering 
[16]. The bond thermal expansion measured by EXAFS is given by the tempera-
ture dependence of the average value r . Contrary to EXAFS, diffraction tech-
nique measures the crystallographic distance c b aR = −r r . The thermal ex-
pansion measured by EXAFS is always larger than the crystallographic one 
measured by Bragg diffraction due to perpendicular vibrations which increase 
with temperature [14]. By comparing bond lengths measured by EXAFS and 
Bragg diffraction, one can evaluate the perpendicular Mean Square Relative Dis-
placement (MSRD) which is related to the vibrations normal to the bond. The 
EXAFS technique has the great advantage to disentangle parallel and perpendi-
cular vibrations contributions on thermal expansion [17]. 

For a two-atomic system, the thermal expansion is the result of the interaction 
potential anharmonicity and is always positive, but this explanation cannot be 
extended to crystals [18] where thermal expansion is the sum of a positive con-
tribution due to bond-stretching effects and a negative one due to tension effects 
[19]. These central force mechanisms were detailed by Bruno et al. [20]. Nega-
tive thermal expansion (NTE) occurs only when tension effects prevail over 
bond stretching contribution. 

In some framework structures such as ZrW2O8 where NTE is observed in 
large temperature interval [21], tension effects are often related to low-frequency 
rigid unit modes (RUMs) [22]. There are however other framework structures 
like CuScO2 [23] and Ag2O [24] where NTE is not attributed to RUMs. Moreo-
ver, simpler structures like tetrahedral semiconductors also exhibit a weak NTE 
in limited temperature range [25] [26]. 

In EXAFS studies, the average values of the bond thermal expansion coeffi-
cient were generally obtained by linearly fitting the temperature dependence of 
the bond length [17] [24] [27]. The main drawback of this method is that the 
non-linear low temperature behaviour of thermal expansion coefficient is not 
evidenced [28]. We propose in this work a more refined evaluation of the tem-
perature dependence of the bond expansion. It is based on an Einstein fit to 
temperature bond length variation and had never been used to evaluate thermal 
expansion coefficient of GaAs. 

The purpose of this study, based on high quality EXAFS data at both Ga and 
As K edges, was to determine the temperature dependence of thermal expansion 
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coefficient ( )Tα  in order to obtain a deeper understanding of correlation be-
tween lattice negative expansion and anharmonicity. 

Section 2 describes the experimental procedure. In Section 3, after a compari-
son between crystallographic and bond expansions, we evaluate the coefficient of 
thermal expansion. Section 4 is dedicated to a discussion on the effect of distri-
bution asymmetry in the thermal expansion evaluation. The effect of asymmetry 
is further explored in Section 5 through the relation between third cumulant and 
thermal expansion. 

2. Experiment 

EXAFS spectra of Ga and As K edges were recorded in transmission mode at the 
XAFS beamline of Elettra with an electron energy of 2 GeV and current of 300 
mA. The used monochromator consists of two silicon crystals with parallel re-
flecting faces (111). A reflection from a Pt-coated mirror was used to reduce the 
relative influence of harmonics. 

0.02 g of GaAs was mixed with 0.20 g of graphite fine powder to obtain sam-
ples in form of pellets. The sample homogeneity was checked by scanning the 
sample using narrow vertical and horizontal collimating slits and by analyzing 
the transmitted x-rays distribution on a phosphorus screen behind the sample. 
Measurements were done such that the X-ray beam impinges on the largest ho-
mogeneous region of the sample. Two ionization chambers filled with krypton 
gas at pressures 140 and 500 mbar were used to measure the incoming and out-
going photon fluxes, respectively. Another pellet of GaAs was inserted before a 
third ionization chamber and served as reference for energy calibration. The 
sample was mounted on a liquid-He cryostat, on which a thermocouple was 
fixed to vary temperatures. The temperature was varied in the interval 14 - 350 
K, at 25 or 50 K steps. Three spectra were recorded at each temperature for each 
edge. 

The edge jump xµ∆  was about 1.06 at the Ga K edge (10,367 eV) and 0.97 at 
the As K edge (11,867 eV). The energy of the incident X-rays was scanned in the 
ranges E = 10,130 - 11,745 eV (for Ga) and E = 11,627 - 13,393 eV (for As), with 
a E∆  step varying from 0.2 eV in the near-edge region to 5 eV at the end of the 
spectra, in order to obtain a uniform wavevector step 0.025k∆ =  Å in the 
EXAFS region. 

The data analysis was carried out using the standard procedure and already 
detailed in [29] [30].  

3. Expansion Coefficients 

For moderate vibrational disorder, the EXAFS signal can be expanded in terms 
of the cumulants of the unidimensional distribution of distances ( )rρ . The 
first cumulant *

1C r=  corresponds to the mean value, the second cumulant 
( )2*

2C r r= −  is the mean square displacement and the third cumulant 
( )3*

3C r r= −  represents the mean cubic displacement. Equation (1) shows 
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the relation between the crystallographic distance cR  and the mean distance 
[31]  

2

2c
c

u
r R

R
⊥∆

+                         (1) 

2u⊥∆  is the perpendicular mean square relative displacement (MSRD). 
The Ga-As bond expansion rδ  obtained with EXAFS cumulant analysis 

and the crystallographic expansion cRδ  are compared in Figure 1. cR  values 
were quoted from Novikova [32] (stars items in the figure), Leszczynsky [33] 
(cross items) and Smith and White [25] (diamond items).  

The bond expansion is positive in the full temperature range and, as expected, 
is always greater than the crystallographic expansion due to perpendicular vibra-
tions to the bond. The crystallographic expansion is negative up to 60 K where 
contribution from tension effects prevails over bond stretching contribution. 

The discrepancy between the results of Ga and As edges can be attributed to a 
leakage of Ga EXAFS on the As EXAFS [29] since the distance between the two 
edges is approximately 19.3 Å−1 in k-space. 

Absolute values of 2u⊥∆  were evaluated by inverting Equation (1) and fitting 
a correlated Einstein model to experimental values 2 c cR R r −    [17]. The  

values 
2

2 c

u

R
⊥∆

−  account for negative contribution to crystallographic expan-

sion due to tension effects. 
The coefficient of bond expansion is defined as  

( ) 1
bond

P

r
T

r T
α

 ∂ 
=  

∂ 
                    (2) 

The same definition holds for ( )tens Tα  where tension effects contribution is 
differentiated with respect to T. Traditionally, average values were obtained by 
linearly fitting bond expansion measured by EXAFS or total scattering but this 
approach had the drawback to miss the non linear behaviour at low tempera-
tures. 

To evaluate the expansion coefficients ( )bond Tα  and ( )tens Tα  we need to 
first approximate experimental points. Here we chose an Einstein-like function 

( )cothy A B C T= +  where A, B and C are free parameters [34]. The next step 
is then to derive with respect to temperature the two best-fitting Einstein-like 
curves to obtain ( )bond Tα  and ( )tens Tα .  

Both NTE and positive bond expansion increase with temperature and NTE is 
greater up to about 60 K. This behaviour corresponds to the domination of 

( )tens Tα−  over ( )bond Tα  as depicted by Figure 2. In Cu where negative ther-
mal expansion is not reported, ( )bond Tα  prevails over ( )tens Tα−  in the full 
studied temperature range [35]. For tetrahedral crystals, the strength and tem-
perature interval of NTE increase with ionicity [36] with CuCl having the max-
imum values [30]. 
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Figure 1. Ga-As bond expansion (circles and squares for As and Ga edges, respectively) 
and crystallographic expansions from different authors. 
 

 
Figure 2. Coefficient of positive expansion ( )bond Tα  (dashed line) and negative 

expansion ( )tens Tα  (dash-dotted line) ( ( )tens Tα−  is plotted for convenience). The 

continuous line represent the sum ( ) ( )bond tensT Tα α+ . 

4. Distribution Asymmetry 

The third cumulant *
3C  measures the asymmetry of distances distribution 

( )rρ  and is important in the bond distance and expansions evaluation proce-
dure. The data analysis will lead to more accurate values of bond distances [37] if 
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the third cumulant is taken into account. 
The phase difference between 14 and 300 K is shown in Figure 3 for different 

independent measurements. It is fitted with the thin horizontal line when the 
asymmetry is neglected. In this case, the variations of first cumulant are 0.00018 
Å and 0.00236 Å for the effective and real distributions, respectively. Now when 
we take into account the asymmetry, the phase difference is fitted by the oblique 
line. Here, the first cumulant variations for effective and real distributions are 
0.00426 Å and 0.00662 Å, respectively.  

The real bond expansion of GaAs is thus underestimated by about 0.00426 Å 
with the Gaussian approximation. 

A common observation shared by GaAs [29] with some other structures (di-
amond-zincblende [17], cuprite [24]) is that strengths of NTE and positive bond 
expansion have the same variation. This correlation would be underestimated if 
the distribution asymmetry were neglected. 

5. Third Cumulant and Thermal Expansion  

Thermal expansion can be alternatively measured through the third cumulant 
[6] [7]. 

In the case of two-atomic systems, the net expansion is given, through a per-
turbative quantum approach, to first order by equation [38]  

( ) ( )*3
2

0

3k
a T C T

k
−                         (3) 

where 3k  can be experimentally obtained from the temperature dependence of 
*
3C . The expansion in Equation (3) is solely due to the anharmonicity of the ef-

fective pair potential [31]. 
The situation is different for crystals where the effective pair potential is the 

result of the statistically averaged behavior of all the atoms in the crystal and can 
then be temperature dependent [39]. Thus, the bond thermal expansion can also 
depend on the shift of the minimum of the effective pair potential with respect 
to the distance axis [35]. This observation was confirmed in copper by 
path-integral Monte Carlo [40] and in germanium by Molecular Dynamics si-
mulations [41]. 

So, the thermal expansion (first cumulant) is the sum of two contributions: 
asymmetry (third cumulant) and shift of the effective potential. The latter is 
mainly due to perpendicular vibrations to the bonds [31]. 

In Figure 4, the bond thermal expansion *
1Cδ  is compared to the thermal 

expansion due only to asymmetry aδ  and the crystallographic expansion cRδ . 
As generally expected in crystals, *

1Cδ  is different from aδ . The latter is larger 
than cRδ . 

Though any direct information on thermal expansion can be obtained from 
third cumulant, his inclusion in the data analysis is important to obtain accurate 
values of the bond expansion, especially for the first shell [37]. 
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Figure 3. Phase difference ( ) ( )( )300 14 kφ φ−  versus 2k  at Ga edge for different 

independent measurements. 
 

 
Figure 4. Comparison between thermal expansion measured by EXAFS first cumulant 
and the contribution due to the asymmetry of distribution for GaAs. The cross represent 

*
1Cδ  and triangles aδ . The continuous line is cRδ . 

6. Conclusion 

The coefficient of bond thermal expansion ( )bond Tα  has been calculated from 
temperature dependent EXAFS measurements on GaAs. By comparing EXAFS 
and crystallographic expansions, a coefficient of negative expansion has been 
evaluated. The overall thermal expansion can be positive or negative depending 
on whether ( )bond Tα  or ( )tens Tα  prevails in the considered temperature 
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range. In order to get accurate values of bond expansion, distribution asymmetry 
must be taken into account. The present results will be used later to calculate 
mode Grüneisen parameters. This will help to clarify the connection between the 
local dynamical behaviour and the average thermodynamical properties of mat-
ter. 
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