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Abstract 
 
At this article studies of nonlinear viscoelastic fluid with one internal tensor parameter flow between parallel 
planes under a constant pressure gradient, taking into account the slipping phenomenon on the boundary. 
Numerically depending found on the components of the stress tensor and the flow velocity of the pressure 
gradient and the distance to the wall, enabled us to explain the emergence of non-parabolic profile of the 
flow velocity of the polymeric melt. 
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1. Introduction 
 
Many fluid systems, including polymeric materials, re- 
veal the anomaly of slipping often near the solid surface. 
The presence of such a wall effect leads to a violation of 
the hypothesis on attachment and the need to specify ap- 
propriate boundary conditions. 

This anomalous behavior of materials in a plastic state 
(slurry, grease, fluids and polymer melts) at solid sur- 
faces requires a comprehensive study of both rheological 
properties and calculating the flow parameters and char- 
acteristics of the processing equipment. In the first place, 
there are rather complex problems of determining the 
rheological characteristics of the material results accord- 
ing to the viscometric studies. The next stage is associ-
ated with specific problems on the motion of fluids which 
exhibit abnormalities in solid surfaces and the direct use 
the sliding velocities as boundary conditions. 

It should be noted that the study of this issue is re- 
viewed in a large number of papers in [1], where it was 
noted that there are two approaches to study of this phe- 
nomenon. 

The first approach is a detailed study and considera- 
tion of molecular properties of contacting media, the for- 
mulation of a mechanism of slippage and checking the 
adequacy of the proposed approach. Moreover, the re- 
sults for different physical systems have much in common, 
which indicates the possibility of a unified approach to 

the study of this effect. 
The second approach is to specify explicitly the slip 

velocity at the wall – 0 , which is generally a function of 
stress at the wall – 0 , the geometric dimensions and tem- 
perature. And this dependence of slip velocity at the wall 
of these factors can be found from viscometric measure- 
ments [1]. 

From the mathematical point of view, the result of 
each approach leads to dependence –  0 f 0  , and 
this dependence is taken from the processed experimental 
data. At the same time as an argument, you can choose not 
only – 0 , but the pressure gradient and the specific con- 
sumption and the choice of a particular function in the 
study depending on how easily one can apply the law in 
the calculations. 
 
2. Rheological Model 
 
In modeling the flow of solutions and melts of linear po- 
lymers formulating rheological constitutive relations plays 
an important role. It establishes the relationship between 
the kinematic characteristics of the flow and internal 
thermodynamic parameters. Previously a simple rheological 
model based on microstructural representations [2,3] was 
proposed 
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where ik —the stress tensor; p—hydrostatic pressure, 

0  and 0 —the initial values of the shear viscosity and 
relaxation time, ik —the tensor of velocity gradients; 

ik —symmetric second rank anisotropy tensor; a jjI a  
—the first invariant of the anisotropy tensor,  

  2ik ki —the symmetrized velocity gradient 
tensor, —phenomenological model parameters that 
take into account in the equations of the dynamics of the 
macromolecule size and shape of the molecular coil. This 
model was tested for compliance by viscosimetric flow 
of real polymeric liquids [2-7] and by calculating the 
overlap of small oscillatory fluctuations in simple shear 
flow in the parallel and orthogonal shear directions [7]. 
In conducting the numerical experiment dependences on 
the stress tensor of velocity gradients and from time to 
time were obtained, allowing for calculations of the com- 
plex shear modulus, dynamic viscosity and dynamic loss 
angle depending on the frequency of forcing oscillations, 
shear rate and the number of Deborah (De). The depen- 
dences obtained are compared with experimental data 
that showed qualitative compliance between theory and 
experiment. 

ik  
, 


Also on the basis of the rheological model (1) second- 
dary flows in rectangular channels were calculated. Paper 
[5] considered the steady flow in a smooth round pipe 
under constant pressure gradient. The system of equa- 
tions for solving the complete hydrodynamic problem 
was recorded in a cylindrical coordinate system. 

In this paper we will solve the problem of determining 
the velocity profile of a nonlinear viscoelastic fluid mo- 
ving between parallel planes under a constant pressure  

gradient: 
p

A
x


 


, based on model (1). We arrange the  

origin of one of these planes, axis  directed along 
the flow, axis —perpendicular to the plane and axis 

—perpendicular to axes  and . 
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Then the system of equations of dynamics in Cartesian 

coordinates will be: 
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(2) 

where: xV , yV , zV —velocity along the axes , and 
respectively,

Ox Oy
Oz  —the density. 

Since along axis  velocity profile will not change, 
the final expression does not depend on the variable z 
and the system of Equations (1)-(2) becomes: 
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The system of Equations (3) describes the flat two- 
dimensional unsteady flow of polymer media. Further, 
we find independent of variable x solutions of the system 
and we obtain: 
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Second Equation of (5) shows that non-zero pressure 
gradient in the direction perpendicular to the flow veloc- 
ity is found. However, that does not lead to the emer- 
gence of secondary flows. Th re gradi t may be 
due to the effect of swelling t at the exit of the 
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The first Equation (4) implies that —linear 
function y, but due to boundary conditions: 

, which shows that: 
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In the stationary case we have: 
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In Ref. [6], the system of Equations (5) was solved b  
successive approximations method up to the first order in 
the parameters of the induced anisotropy, and obtained 
the following expressions for the components of the 
stress tensor and the longitudinal velocity components: 
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 (12) can be solved by one of the iterative 
methods, such as the method of successive approxima-
tions, and taking into account the expression (6), 
find the dependence: that is, by virtue of (11) 
leads to dependence and. Next numerically integrating, 
using (7) and using the boundary condition the depend-
en

e additional flow rate calculated under the 
e wall sticking. If we assume that 

Equation

we can 
and (10) 

ce can be found. 
 
3. Results 
 
It turns out that as an additive constant of integration, the 
total flow rate will have the form 

0 0Q v h Q   

where 0Q —th
condition at th 0  is a 

nctio  fu n of 0 —the stress at the wall, when calcu ating l
the velocity profile becomes necessary in an iterative 
procedure for approval 0  and 0 . 

If we  that  assume 0  is n of the , then 
ce

ugh the die width 
of un et

ge at the w

a functio 0

this pro dure isn’t necessary to carry out The depend- 
ence  0 0v f Q  can be easily obtained by processing 
experimental ata, as done in Figure 1 for data from [9], 
where melt flows polyethylene high and low density were 
studied. These melts are extruded thro

Q

 d

 1 mm and it was fo d that low-density poly hylene 
adheres to the interface, high-density polyethylene shows 
slippa all. For the sliding velocity by the fol- 
lowing relation was obtained: 

   0 0 0 00,95 6 6v f Q Q Q      

Values themselves were determined by the formula: 

0 0Q Q v h  . 
Note that the data for low density polyethylene have 

been described based on the approach (1) in [8]. 
 

 

Figure 1. Approximation of experimental dependence of the 
slipping velocity at the wall on the additional flow rate. 

Let us now consider how to influence the parameters 
of the model, and the type of derived dependencies. To 
this end, fix scale parameters, and (in this case), and will 
take into account that in many cases, as shown in [7]. 
The results are shown in Figure 2, which shows the flow 
of the pressure gradient for different values and which 
shows that increases with increasing deviation of the 
flow from the law of Poiseuille, as appropriate ,  . In 
this case, the dependences of the accounting slip appears 
a kink, which is associated with an approximation used 
for Figure 1. The curves corresponding accounting slip 
located above the curves are constructed by taking into 
account the slip at the wall. 

In order to allow comparison with experimental data 
[9], we note that in [9,10] there are no data on the values
of the pressure gradient and therefore its definition

 
 

should be used according to Figure 2 and the known 
values of flow rate to determine the value of the pressure 
gradient and then using it to calculate the velocity pro- 
files. Comparison of experimental and theoretical curves 
for the velocity profile in the gap between the parallel 
planes are shown in Figure 3. 

Thus, in considering the case of plane Poiseuille flow 
with allowance for slippage of the polymer material at 
the boundary, the system of equations of the modified 
model Vinogradov and Pokrovskii describes non para- 
bolic velocity profile in the gap between parallel plates, 
which is confirmed by experimental data. Dependence 
obtained in this can be used to develop numerical meth- 
ods for 2-dimensional and 3-dimensional flows as an 
initial approximation of input and output profiles in the 
simulation of flows of polymer fluids in the gap between 
parallel planes, for example, when forming thin films. 
 

 

F
d

igure 2. Dependence of flow on the pressure gradient in 
ifferent flow regimes in the presence of stick and slip phe- 

nomena. 
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Figure 3. Comparison of experimental (points) and theo
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