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Abstract 

Numerical solution of a radiative radial fin with temperature-dependent 
thermal conductivity is presented. Calculations are implemented along the 
lines of a boundary integral technique coupled with domain discretization. 
Localized solutions of the nonlinear governing differential equation are 
sought on each element of the problem domain after enforcing inter-nodal 
connectivity as well as the boundary conditions for the dependent variables. 
A finite element-type assembly of the element equations and matrix solution 
yield the scalar profile. Comparison of the numerical results with those found 
in literature validates the formulation. The effects of such problem parame-
ters as radiation-sink temperature, thermal conductivity, radiation-conduction 
fin parameter, volumetric heat generation, on the scalar profile were found to 
be in conformity with the physics of the problem. We also observed from this 
study that the volumetric heat generation plays a significant role in the overall 
heat transfer activity for a fin. For relatively high values of internal heat gen-
eration, a situation arises where a greater percentage of this energy can not 
escape to the environment and the fin ends up gaining energy instead of los-
ing it. And the overall fin performance deteriorates. The same can also be said 
for the radiation-conduction parameter ψ , whose increases can only give 
physically realistic results below a certain threshold value. 
 

Keywords 

Radiative Radial Fin, Temperature-Dependent Thermal Conductivity,  
Discretized Problem Domain, Boundary Integral Technique, Generic  
Elements, Assembly of Element Equations 

 

1. Introduction 

Fins are vastly used in different heat transfer applications such as air-conditioning 
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systems, heat exchangers, power plants, refrigeration, chemical processing 
equipment, computers, fluid-conveyance structures etc. Their chief purpose is 
the transfer of heat from a surface to the surrounding. This process is usually 
enhanced by attaching highly conductive materials to a surface in order to faci-
litate heat flow between a source and a sink. Though linear differential equations 
can be used to model rectangular fins, however thermal conductivity is known to 
depend on temperature because of the high temperature gradient that exists in 
fin operation. The heat transfer coefficient should therefore reflect the tempera-
ture variation along the fin or the local temperature difference between the fin 
and the surrounding fluid. Since this is a highly significant consideration, we 
should end up considering a nonlinear differential equation for modelling fin 
energy transfer performance and thermal optimization [1] [2]. Fin research has 
broadly developed into two major areas namely: optimal representation of fin 
profiles [3] [4] [5] [6] and consideration of thermal characteristics [7] [8] [9] 
[10]. In this regard, rectangular fins are the most studied, not only because of 
their relatively easier mathematical representation but also their uncomplicated 
manufacturing procedure. Other considerations which lead to the analysis of 
other shapes include efficiency and the possession of thermo-physical characte-
ristics that enhance fin design. Treatment of trapezoidal profiles as triangular in 
order to render the governing equation solvable is worthy of mention (Kraus et 
al. [11]). This approach led to a wrong treatment of the boundary condition and 
therefore wrong results (see comments in [12]). Rusagara and Harley [13] got 
rid of this issue by providing a well balanced numerical scheme that dealt with a 
proper form of the triangular fin. The incorporation of zero flux condition into 
their so called well balanced numerical scheme and the validity of the solutions 
for a triangular fin confirmed the originality of their work. Khani and Aziz [10] 
developed a homotopy analysis method (HAM) for the thermal performance of 
a trapezoidal fin in which both the thermal conductivity and the heat transfer 
coefficient are temperature dependent. Their solution was found to be superior 
to an earlier attempt [14]. A comprehensive study of a radial fin with rectangular 
and hyperbolic profiles was carried out by Moitsheki [15]. Both the thermal 
conductivity and heat transfer coefficient were considered to be power laws and 
temperature dependent. The resulting nonlinear problems were analyzed by Lie 
symmetry technique. His work not only provided faithful benchmark solutions 
but significant addition to existing closed form solutions. Both the initial and 
boundary conditions considered in [15] did not remain invariant; as a result, a 
numerical approach was adopted to solve this problem. His results displayed 
some interesting observations including the inability of the scalar profile to dis-
play adiabatic conditions for long periods of time. His overall approach had ear-
lier been inferred to by Arslanturk [16] in his optimum design of space radiators 
with temperature-dependent thermal conductivity. This is remarkable because 
the governing equations that usually describe energy transfer for fins were also 
found to be applicable in handling the immense heat generated during a space 
vehicle entry into the earth’s atmosphere. 
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The other broad area of fin literature focuses on the fin’s thermophysical 
properties for any chosen geometry. Some of the work treated in this area, in-
volved the use of analytic and semi analytic techniques in predicting the fin’s 
scalar profiles especially for idealized cases. Atay and Coskun [17] carried out a 
comparative analysis of power-law fin-type problems using both the variational 
iteration method as well as the finite element technique. Their case studies 
showed that an increase in nonlinearity arising from and the increase of certain 
problem parameters resulted in an increase in error values for both methods. 
Having made this observation, their overall results showed a good agreement 
between the variational iteration technique and the finite element method. Aziz 
and Enamul-Huq [18] in an earlier study, adopted a perturbation techniques to 
solve a fin problem involving pure convection and temperature-dependent 
thermal conductivity. Aziz [19] later included a uniform heat generation term in 
the governing equation. Pozzesh et al. [20] used the differential transformation 
method (DTM) to study the efficiency of a convective-radiative fin with temper-
ature dependent thermal conductivity and successfully carried out parametric 
studies for various problem parameters. The problem of heat enhancement in 
annular fins using functionally graded material was considered by Hassanzadeh 
and Pekel [21]. They considered the thermal conductivity of the annular fin to 
obey a power-law function; and replaced the variable coefficients related to the 
second and third terms of the governing differential equation by their 
mean-values. Their studies led them to the conclusion that the temperature gra-
dient for the functionally graded annular fin is lower for the non-graded or ho-
mogeneous case. They also determined that an increase in the fin inhomogeneity 
parameter β  decreased the thermal resistance along the fin radius. Their study 
led them to conclude that for a functionally graded fin, the heat transfer between 
the annular fin and surrounding fluid was more efficient in comparison with the 
homogeneous annular fin.  

Considerable work has also been devoted to the application of domain-based 
numerical techniques to fin study and analysis since most of the analytic and 
semi-analytic methods contain complex terms which may not be convenient for 
fin design. For example the finite difference technique presents an accurate and 
a straight forward way to resolve nonlinear fin equations (Jain et al. [22]). So-
bamowo [23] adopted a MATLAB finite-difference solution of the fin equation. 
His results confirmed that the fin temperature distribution, total heat transfer 
and fin efficiency were all significantly affected by the thermo-geometric proper-
ties of the fin. And that for a thermally stable scalar profile, the fin ther-
mo-geometric parameter must not exceed a specific value. In addition, he de-
termined that from his results, that an increase in the fin internal heat genera-
tion values affected the stability range of the thermo-geometric parameter. In a 
later work, Oguntala and Sobamowo [24] used the Galerkin’s method of 
weighted residual to study the temperature distribution of a rectangular fin with 
temperature-dependent thermal properties and internal heat generation. Their 
results displayed a monotonic drop in scalar profiles for various ther-
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mo-geometric, thermal conductivity and convective heat transfer parameters. 
They further conducted various parametric studies related to the fin ability to 
conduct heat. These studies show that larger values of the fin thermo-geometric 
properties guarantee better heat convection along the fin length. And for cases 
where there is a negligible heat loss from the fin tip to the environment, the fin 
temperature decreases along the fin length.  

It comes as no surprise that earlier work in fin calculations were phrased in 
terms of finite difference schemes. It was only after the numerical advantages of 
integral formulations became apparent that attempts to use boundary integral 
and finite element became widespread. This trend has caught up so fast in the 
field of solid mechanics to the extent that approximations based solely on fi-
nite-difference approximations are hardly ever used. This is however not the 
case in fluid dynamical computations where the oftentimes the nonlinear inertia 
terms renders the governing equations non-self adjoint and as a result differen-
tial approximations come as a natural choice.  

In the work reported herein, we adopt a domain-decomposed singular integral 
formulation to solve the one-dimensional nonlinear fin equation whose com-
plimentary equation comprises a one-dimensional Poisson equation with a di-
rac-delta forcing function. Its solution is known as the fundamental solution and 
together with the Green’s second identity yield the basis for the integral repre-
sentation of the governing equation in a generic element of the discretized prob-
lem domain. The boundary integral representation of the governing equation on 
each element of the discretized domain is similar to a finite element system of 
equations and come with all the advantages and properties of the finite element 
method (FEM) ability of dealing with nonlinearity and non-homogeneity. The 
classic nonlinear fin equation with a temperature dependent thermal conductiv-
ity is solved and the results are validated through the use of benchmark solutions. 
To the author’s best knowledge, the version of the integral method of solution of 
the fin problem adopted herein is novel or barely existent in fin literature.  

Symbols 
b: Fin tip length, m 
D: Problem domain 
H: Constant 
K: Temperature-dependent thermal conductivity Wm−1K−1  

0K : Thermal conductivity at base temperature, Wm−1K−1 
q: Volumetric heat generation Wm−3 
Q: Dimensionless heat generation 

fQ : Heat transfer rate from the surface of a fin 
T: Temperature, K 

bT : Fin’s base temperature 

sT : Radiation sink temperature 
( )kχ : Transformed analytical function 
( )x k : Original analytical function 

w: Semi thickness of fin, m. 
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Greek Symbols 
β : Thermal conductivity parameter 
ε : Emissivity 
η : Fin efficiency 
λ : Slope of the thermal conductivity temperature curve, K−1  
σ : Stefan-Boltzman constant, Wm−2K−4  
θ : Dimensionless temperature 

sθ : Dimensionless radiation sink temperature 
ψ : Radiation-conduction fin parameter 

2. Problem Formulation 

Problem specification and non-dimensionalization described herein follow that 
of Torabi et al. [25]. Figure 1 shows a schematic of a radiative radial fin. Both 
surfaces radiate to an outer space assumed to be zero absolute. The thermal 
conductivity, k of the fin varies linearly with temperature, and the fin is dif-
fuse-grey with emissivity ε . Both the surface and base temperatures of the fin 
( ),s bT T  are constants. The fin is assumed to be thin with respect to the heat 
pipe to which it is connected to, hence temperature distribution along the fin is 
one-dimensional. The fin tip length, b is considered as the computational do-
main. Convection between the fin and the heat pipe is neglected. 

The energy balance equation for a differential element of the fin [25] is given 
by 

( ) ( )4 4d d2 2 0
d d s

Tw k T T T q
x x

εσ  − − + =  
              (1) 

where ( ) ,k T σ  are thermal conductivity and the Stefan Boltzman constant, 
respectively. The thermal conductivity of the fin material is assumed to vary li-
nearly with temperature and is specified as  

( ) ( )0 1 ak T k T Tλ = + −                       (2) 

where 0 , ak T  are the thermal conductivity at the aT  temperature of the fin and 
λ  is the measure of variation of the thermal conductivity with temperature. In 
order to ease the process of dicretization, Equation (1) is non-dimensionalized 
in the following manner. 

2 3 2

0

, , ,

, , ,

a s
a s

b b b

b
b

b o

T TT
T T T

b Tx b qT Q
b k w T k

θ θ θ

εσ
ξ β λ ψ

= = =

= = = =
           (3) 

The non-dimensional version of the fin problem becomes  

( )( ) ( )4 4d d1 0
d da s Qθβ θ θ ψ θ θ
ξ ξ
 

+ − − − + = 
 

          (4a) 

Equation (4a) is a one-dimensional, nonlinear, boundary-value problem with 
the following boundary conditions 
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Figure 1. Schematic of fin pipe and radiative radial fin. 

 

( ) ( )d 0 0, 1 1.0
d
θ θ
ξ

= =                    (4b) 

A very useful parameter for fin design is the efficiency defined by the ratio of 
actual and ideal heat transfer rate of the fin.  

14
4

4
, 0 0

1 d d
b

f

f ideal b

Q T x
Q b T

η θ ξ= = =∫ ∫                  (4c) 

3. Elemental Discretization and Integration of the Fin  
Equation 

A major challenge here is to create an integral analog of Equation (4a). From a 
theoretical viewpoint, we need a transformation that will convert our governing 
differential equation to an integral form that can then be resolved within a prob-
lem domain. A key feature of this approach, involves the use of the Laplacian 
1-D operator as an auxiliary equation: ( ) ( )2 2d d , ,iG x x x xδ= − ∈ −∞ ∞  with a 
fundamental solution ( ) ( ), 2i i aG x x x x k= − + , where ak  represents an arbi-
trary constant often taken as the length of the longest element in the problem 
domain, and the distance between the source point and any other point is given 
by ix x− . Applying the Green’s identity together with the auxiliary equation to 
Equation (4a) and relating the whole procedure to a generic element defined by 
the span [ ]1 2,x x  inside the problem domain yields 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )( )

2

1

2 2 2 1 1 1

2 2 1 1

2

ln 1 , d 0

i i i i i

i i

i

H H H H

l l

D
l f t Q

D

ξ

ξ

ζθ ξ ξ ξ ξ θ ξ ξ ξ ξ θ

ξ ξ ϕ ξ ξ ϕ

θ
ξ ξ ξ ξ

ξ θ

   − + − − − − − − −   

− − + + − +

 ∂
+ − + − + − = 

∂  
∫

 



     (5) 

where ( ) ( ) ( ) ( )4 4d d , , , 1s af t Dϕ θ ξ ξ ψ θ θ θ β θ θ= = − = + −  H is the Heavi-
side function, and 0.5λ = , when 0.5iζ = , for 1iξ ξ=  or 2iξ ξ= .  

We deal with the line integral in Equation (5) by approximating the depen-
dent variable and its function with linear interpolating functions in space, i.e. 
( ) ( ) ( ), jf t f tξ ς≈ Ω  where jΩ  is the interpolating function and 
( )1 lς ξ ξ= −  is a local coordinate for an element length 2 1l ξ ξ= − . Equation 
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(5) is the element integral analog the governing differential equation. And is 
solved at each node of the elementized problem domain to give the following 
equations at node 1 and then at node 2 

( ) ( )

( ) ( )

2

1

2

1

1 2 1 2 1

1

d1 d
d

d 0

n
m m m j j n

m n n j j

l l l l
l

l f Q

ξ

ξ

ξ

ξ

θ θ ϕ ϕ ξ ξ ϕ ξ
ς

ξ ξ χ ξ

Ω 
− + + − + + − + Ω − Θ 

 

+ − + Ω Ω + =

∫

∫
    (6a) 

( ) ( )

( ) ( )

2

1

2

1

1 2 1 2 1

1

d1 d
d

d 0

n
m m m j j n

m n n j j

l l l l
l

l f Q

ξ

ξ

ξ

ξ

θ θ ϕ ϕ ξ ξ ϕ ξ
ς

ξ ξ χ ξ

Ω 
− − + − + − + Ω − Θ 

 

+ − + Ω Ω + =

∫

∫
    (6b) 

A compact matrix representation of Equations (6a) and (6b) results in 

( ) ( )ij j ij inj n j inj n j nR L B E f Qθ ψ χ+ − Θ + +             (6c) 

where the element coefficient matrices are defined as 

( )
( )

( ) ( )
1 1

0 0

1 1
, ,

1 1

d
, d , , d

d

m m
ij ij

m m

n
inj i j inj i n j

l l l
R L

l l l

B G E G
ς ς

ς ς

ς ς ξ ς ς ς
ς

 − +− 
= =    + −−   

Ω
= Ω = Ω Ω∫ ∫

       (7a) 

For the moment, it is significant to note that by discretizing the problem do-
main and formulating element equations, BEM integral formulation is now 
painlessly incorporated into an algorithm usually associated with finite element 
method (FEM). We now have an integral form of equation which possesses bet-
ter numerical and accurate properties than its differential equivalent. 

At this point, there are only two major concerns left for this hybrid formula-
tion: 
1) How to deal with nonlinearity  
2) How to implement the calculations for the dependent variables with an effi-

cient computational procedure. 
Domain discretization, despite its spatial and temporal locality, has always 

been considered a huge disadvantage in BEM circles. Its major feature ensures 
that local updates of the dependent variable can be processed in contiguous ele-
ments. This allows efficient handling of the coefficient matrix as well as provide 
a viable numerical technique for dealing with issues related to nonlinearity, in-
homogeneity, transience, and body force terms. We exploit this characteristic 
further by assuming that the nonlinear diffusivity is uniform within a generic 
element and can therefore be weight-averaged as shown. 

( ) ( ) ( )1 , 0 1, 1D D κ κθ αθ ωθ α ω α+ = + ≤ ≤ = −           (7b) 

where ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1
1 2 1 22, 2κ κ κ κ κ κθ θ θ θ θ θ+ + += + = +  and κ  is the itera-

tion counter. As a consequence of this approximation, 0D θ∂ ∂ =  and Equa-
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tion (6c) now becomes 

( ) ( )ij j ij j inj n j nR L E f Qθ ψ χ+ + +                  (8) 

Equation (8) is still nonlinear and is handled by the Picard algorithm. 
( ) ( ) ( )( )11 k
j ij i jAκ κθ π θ

−+  =    where ( )
ijA κ  is made up of elements that depend on 

the solution at the previous time step. The nonlinear system of equations is 
solved iteratively until ( ) ( )1

n
κ κθ θ ε+ − ≤ . The main drawback of the Picard ite-

ration is its linear convergence rate, otherwise unlike the Newton’s technique it 
does not require Jacobian information.  

4. Results and Discussion 

The validity of the formulation developed herein was tested by comparing the 
numerical results with those of Torabi et al. [25]. They applied a seminumeri-
cal-analytic technique known as the differential transformation method (DTM) 
to calculate the temperature profile of a radiative radial fin. To justify compari-
son, the values chosen for their calculations are the same as those of the current 
study unless otherwise indicated in graphs 
( )0.4, 1.0, 0.2, 0.2, 0.1a s Qβ ψ θ θ= = = = = .  

Table 1 shows the closeness of the numerical and semi-analytic results. At 
some points, they are identical up to the fourth decimal place. This validation 
provides an assurance that the numerical formulation produces faithful numeri-
cal simulations where closed form or analytical results are not available. 

Figure 2 shows the effect of the thermal conductivity parameter on the di-
mensionless temperature profile along the fin length. As β  increases the rate 
of heat transfer through the fin increases. This happens because more heat 
transferred by conduction through the fin increases the temperature distribution 
and consequently the rate of heat transfer. The effect of the internal heat genera-
tion parameter, Q on the temperature profile is depicted in Figure 3. It can be 
observed that an increase in Q results in a decrease of temperature gradient. This 
illustrates a decrease in thermal performance of the fin as the fin’s dimensionless 
volumetric heat generation increases. Figure 3 also suggests that at a particular 
limiting value of Q, the temperature profile becomes almost parallel to the 
non-dimensionless fin length and the temperature at the base of the fin becomes 
invariant with that at the tip. As a result, the conservation law supporting the 
formulation of the governing equation collapses and the fin becomes 
non-functional. It can therefore be inferred that a relatively high value of volu-
metric heat generation results in a situation where a greater portion of the heat 
generated can not escape to the environment fast enough and finally ends up in 
the fin surface. In this case, there is an overall gain in heat instead of heat loss. It 
is therefore necessary that an optimal value of Q should be known for design 
purposes. 

Figure 4 illustrates effects of the radiation-conduction fin parameter on the 
scalar profile. It is observed that an increase in ψ  results in a decrease in tem-
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perature and a higher temperature gradient. An increase in ψ  signifies an in-
crease in radiative transport. The concomitant radiative cooling sets up a higher 
temperature gradient around the base of the fin where a Dirichlet boundary 
condition exists. The overall effect is a lowering of temperature along the fin. 
Figure 5 displays the impact of the radiation sink temperature sθ  on the fin 
temperature. As can be observed, an increase in the radiative sink brings about a 
decrease in heat loss along the fin and a consequential rise in the temperature of 
the fin. In this case, the fin material acts as a sink, and further increases will 
eventually hinder the thermal performance of the fin.  
 
Table 1. Comparison of numerical and analytic solutions. 

ξ coordinate Current results DTM Results [25] 

0.00 0.82939e+00 0.82940e+00 

0.04 0.82963e+00 0.82964e+00 

0.08 0.83034e+00 0.83035e+00 

0.10 0.83088e+00 0.83089e+00 

o.14 0.83231e+00 0.83232e+00 

0.16 0.83321e+00 0.83321e+00 

0.20 0.83536e+00 0.83537e+00 

0.24 0.83801e+00 0.83801e+00 

0.30 0.84291e+00 0.84292e+00 

0.34 0.84681e+00 0.84682e+00 

0.40 0.85364e+00 0.85365e+00 

0.44 0.85886e+00 0.85887e+00 

0.50 0.86774e+00 0.86774e+00 

0.54 0.87437e+00 0.87437e+00 

0.60 0.88543e+00 0.88543e+00 

0.64 0.89358e+00 0.89358e+00 

0.70 0.90704e+00 0.90702e+00 

0.74 0.91686e+00 0.91683e+00 

0.80 0.93296e+00 0.93290e+00 

0.84 0.94466e+00 0.94455e+00 

0.90 0.96373e+00 0.96354e+00 

0.94 0.97753e+00 0.9772e+00 

0.96 0.98478e+00 0.98446e+00 

0.98 0.99227e+00 0.99188e+00 

https://doi.org/10.4236/jamp.2019.73037


O. O. Onyejekwe 
 

 

DOI: 10.4236/jamp.2019.73037 522 Journal of Applied Mathematics and Physics 

 

 
Figure 2. Dimensionless temperature for various values of β. 

 

 
Figure 3. Dimensionless temperature profile for various values of Q. 

 

 
Figure 4. Dimensionless temperature profile for values of ψ. 
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Figure 5. Temperature distribution for values of θs. 

 
Next we consider the net effect of aθ  variation on the dimensionless temper-

ature profile along the fin length. The governing differential equation (Equation 
(4a)) gives us a clue. The more aθ  is increased, the less the thermal conductivi-
ty parameter β  plays a role in the fin’s heat transfer thermal operation. Energy 
conservation requires that the radiation-conduction fin parameter ψ  becomes 
more dominant. It can also be noted that the fin dimensionless temperature θ  
raised to the power 4 is multiplied by ψ . This results in an overall increase in 
radiative transport and a consequential decrease in temperature along the fin. 
This is the reason why Figure 6 resembles Figure 4 but with less slope. Table 2 
illustrates the effect of the variation of some fin parameters , ,Q ψ β  on the fin’s 
efficiency. For each case it can be noted that for any fixed values of ψ  and Q an 
increase in thermal conductivity parameter β  results in an increase in effi-
ciency. This enables us to closely study the effects of variation of the dimension-
less heat generation parameter together with the radiation and conduction ef-
fects on the overall fin performance. It was observed that further increase in ψ  
gave physically unrealistic results. This tends to suggest that the radia-
tion-conduction parameter must have a particular threshold value beyond which 
the numerical solution becomes highly unstable. We found this value to be 

max 1.6ψ ≥ . A similar observation under different circumstances has been made 
by Sobamowo [23] as well as Oguntala and Sobamowo [24] where they demon-
strated the effects of thermal-geometric parameter M and internal heat genera-
tion Q on the thermal performance of a fin. They concluded that M should not 
exceed a certain value ( )maxM  in order to avoid instability.  

5. Conclusion 

In the work reported herein a simplified, hybrid integral formulation [26] [27] 
has been applied to the heat transfer analysis of a radiative radial fin with a tem-
perature dependent thermal conductivity. From the parametric studies con-
ducted, it could be deduced that the following fin parameters namely thermal  
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Figure 6. Temperature distribution for values of θa. 

 
Table 2. Fin efficiency for values of ,Qψ  and β . 

ψ  
0.8Q =  0.8Q =  0.1Q =  0.1Q =  

0.6β = −  0.2β = −  0.2β = −  0.6β = −  

1.0 0.436610 0.4553182 0.2388557 0.2015405 

1.2 0.400292 0.4138134 0.2245216 0.1891190 

1.3 0.381490 0.3965850 0.2183046 0.1837692 

1.4 0.364861 0.3811712 0.2126007 0.1788790 

1.5 0.350031 0.3672752 0.2073447 0.1743871 

 
conductivity, radiation-conduction fin parameter, dimensionless radiation sink 
parameter, volumetric heat generation all play a significant role in the fin’s 
energy heat transfer analysis [28] [29]. The overall temperature gradient espe-
cially noticeable near the fin base indicates an area of activity and fin perfor-
mance that should play a paramount role in fin design and analysis. In fact the 
overall process of extracting heat from a body and dissipating it together with 
the internally generated heat to the ambient actually starts from there. However 
as observed in Figure 2 a high value of internally generated heat, gives rise to a 
situation where a greater portion of this energy can not escape to the ambient 
and the fin ends up gaining heat rather than losing it. It was also observed in 
Table 2, that a threshold value exits for the radiation-conduction parameter ψ  
beyond which the numerical results become physically unrealistic. Hence design 
parameters for fin design should put these into consideration. 
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