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Abstract 
 
In this paper, the problem of unsteady laminar boundary-layer flow and heat transfer of a viscous income- 
pressible fluid over stretching sheet is studied numerically. The unsteadiness in the flow and temperature is 
caused by the time-dependent stretching velocity and surface temperature. A similarity transformation is 
used to reduce the governing boundary-layer equations to couple higher order non-linear ordinary differential 
equations. These equations are numerically solved using quasi-linearization technique. The effect of the go- 
verning parameters unsteadiness parameter and Prandtl number on velocity and temperature profile is dis- 
cussed. Besides, the numerical results for the local skin friction coefficient and local Nusselt number are pre- 
sented. The computed results are compared with previously reported work. 
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1. Introduction 
 
The study of heat transfer over stretching surface has a 
significant importance in a number of engineering appli- 
cations. For more than three decades, researchers were 
studying the flow over stretching sheet because of its 
wide applications in different areas of industrial manu- 
facturing processes, such as in Aerodynamics, extrusion 
of plastic sheets, the boundary-layer along a liquid film, 
condensation process of metallic plate in a cooling bath 
and glass blowing, polymer industries, paper production, 
metal spinning, drawing plastic films and artificial fibres. 
In all such applications the final product depends on the 
rate of cooling and boundary layer flow near the stretch- 
ing surface. 

Crane[1] studied the boundary-layer flow due to a mo- 
ving stretching surface with a constant surface tempera- 
ture in an ambient fluid. He gave a similarity solution in 
closed analytical form for steady two dimensional incom- 
pressible boundary layer flow. The study considered the 
case when velocity varies linearly with distance from a 
fixed point. Furthermore, Carragher and Crane [2] stud- 
ied the influence of heat transfer on the flow over a 
stretching surface in the case when the temperature dif- 
ference between the surface and the ambient fluid is pro- 
portional to a power of distance from the fixed point. 
Other studies, for example, Dutta [3], Grubka and Bobba 

[4], discussed the temperature field in the flow over a 
stretching surface when a uniform heat flux is exerted to 
the surface. 

Furthermore, Elbashbeshy [5] conducted a numerical 
study of steady heat transfer over a stretching surface 
with a variable surface heat flux and uniform heat flux 
subjected to injection and suction. The findings show 
that suction increases heat transfer from the surface, 
where as injection causes a decrease in heat transfer. In 
all the above studies, the researchers considered the case 
of steady flow and heat transfer. However, Elbashbeshy 
and Bazid [6] extended the previous work of Elbashybesh 
[5] to unsteady flow and heat transfer over a stretching 
sheet in laminar boundary-layer. Further, Sharidan et al. 
[7] investigated the unsteady boundary layer flow and 
heat transfer due to stretching sheet for the especial dis- 
tribution of the stretching velocity and surface tempera- 
ture. Moreover, Ishak et al. [8] extended the dimension 
of the problem of heat transfer due to stretching sheet to 
unsteady laminar mixed convection boundary layer flow 
and heat transfer due to a stretching vertical surface. 
They discussed the effects of unsteadiness parameter, 
buoyancy parameter and Prandtl number on the flow cha- 
racteristic. They found that the heat transfer rate at the sur- 
face increases with unsteadiness parameter, buoyancy pa- 
rameter and Prandtl number. In all the above studies the 
influence of heat source or sink concept was not considered. 
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However, Elbashbeshy and Aldawody [9] incorporated 
the idea of heat source and sink and studied unsteady 
boundary layer flow and heat transfer of an incompressi- 
ble fluid over stretching surface with variable heat flux in 
the presence of heat source or sink. Their numerical re- 
sult shows that an increase in the heat source or sink pa- 
rameter leads to an increase in the surface temperature 
and a decrease in the local Nusslet number. 

In this study, quasi-linearization technique is used to 
solve unsteady boundary-layer flow and heat transfer due 
to a stretching sheet. This technique was introduced in 
1965 by Bellman and Kalaba [10]. Since then different 
authors ([11-16]) have employed the technique to solve 
different types of non-linear equations and higher order 
differential equations arising in the fields of engineering, 
science, fluid dynamics, solid mechanics and heat and 
mass transfer. This proves that the method used in the pre- 
sent study is widely used and is believed to be valid and 
effective for the study of our problem. 

The objective of the present study is to find numerical 
solution for unsteady boundary-layer and heat transfer 
due to stretching sheet by quasi-linearization technique. 
The analytic solution of same problem was obtained by 
Rashid and Mohimanian [17] by using homotopy analy-
sis method. Accordingly, the present study tries to solve 
the same problem numerically using quasi-linearization 
technique. It presents results for velocity and temperature 
profiles graphically. 
 
2. Mathematical Formulation 
 
Consider a two-dimensional, unsteady flow and heat 
transfer of a viscous incompressible fluid past a semi- 
infinite stretching sheet in the region y > 0, as shown in 
Figure 1. 
 

 

Figure 1. Physical flow model of the problem. 

The flow is generated due to stretching sheet caused 
by the simultaneous application of two equal and oppo-
site forces which are suddenly applied along the x-axis 
and results in stretching of the sheet. Its speed varies 
linearly with the distance from the origin x = 0, keeping 
the origin fixed. At the same time, the wall temperature  

 ,w t xT of the sheet is suddenly raised from T  to 

 ,w t xT T

q

 or there is a suddenly imposed heat flux 

 ,w t x  at the wall. VHF denotes variable heat flux and  

VWT denotes variable wall temperature. Under the 
boundary-layer approximation, the continuity, momen-
tum and energy equation are given by 
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Subjected to boundary conditions 

 ,wu u t x  v = 0 at y = 0         (4) 

 ,wT T t x  for (VWT) or 
 ,wq t xT
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where t is the time, u and v are the velocity components 
along the x and y-axis respectively, T is the temperature, 
  is the thermal diffusivity,   is the kinematics vis- 
cosity and k is the thermal conductivity. 

The velocity of the sheet , the sheet tempera-
ture 

 ,wu t x
 ,wT t x  and the heat flux  are defined as  , xwq t
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where c is the stretching rate being a positive constant, 
  is positive constant, which measures the unsteadiness 
and 0w  is a characteristics heat transfer quantity. The 
mathematical analysis of the problem is simplified by 
introducing the following similarity transforms due to [7] 
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where   is the stream function and is defined as  
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Using the similarity transformation quantity, the gov- 
erning Equations (1), (2) and (3) are transformed to the 
non-dimensional form as follows: 
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with the boundary condition 

     0 0, 0 1, 0f f f     

         0 1 VTW or 0 1 VHF , 0      (10) 

where Pr is the Prandtl number, A
c


 , is non-dimen-  

sional constant which measures unsteadiness of the flow 
and heat transfer and the prime denotes the differentia- 
tion with respect to the similarity variable  . 

The skin friction coefficient fc  and the local Nusselt 
number ux  are the two important physical quantities and 
are defined as 
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where the skin friction w  and the heat transfer from the 
sheet  are given by wq
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And   is the dynamic viscosity. By using Equation 
(7) and (8), we get 
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where w
ex

u x
R


 is the local Reynolds number. 

 
3. Numerical Solution 
 
The numerical solution for the above equations for dif- 
ferent values of unsteadiness parameter A and Prandtl 
number Pr are developed using quasi-linearization tech- 

nique. The quasi-linearization technique applied for sol- 
ving the Equations (9) and (10) is as follows: 

Equations (9) and (10) can be expressed as 
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Now defining new variables by the equation 
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The two coupled higher order differential equations 
and the boundary conditions may be transformed to five 
equivalent first order differential equation and boundary 
conditions respectively as given below 
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And the boundary conditions are 
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The above equation (17) is in the form of 
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By performing the Taylor’s series expansion of dif- 
ferential equation (17), we obtain the following equa- 
tions expressed in matrix form 
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The element of the matrices are thus obtained as given 
below 
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The coefficient  and  are dependent on the 
nominal trajectories 

i ja ie
 0x  . 

Hence, depending on the initial guess of nominal tra- 
jectories  0x  , the solution of (20) yields the neighbouring  

trajectories  1x  . These neighbouring trajectories are 
treated as nominal trajectories and next neighbouring 
trajectories are obtained. This process is continued until 
the convergence is obtained. The solution said to be 
convergent when the following stopping criteria norm is 
satisfied where 
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It may be noted that the   defined in the equation 
(22) is the sum of maximum absolute difference between 
the nominal trajectories and neighbouring trajectories of 
all the dependent variables. If the value of   falls below 
a prescribed number  , the iterative procedure may be 
stopped and the sequence of solutions of the approximate 
linear differential equations may be converged. The va- 
lue of   = 0.001 is chosen in the current solution. The 
coupled Equation (20) can be solved by numerical inte- 
gration called Runge-Kutta fourth order scheme follow- 
ing the quasi-linearization procedures. 
 
4. Results and Discussion 
 
The transformed momentum Equation (9) and energy 
Equation (10) subjected to the boundary condition Equa- 
tion (11) were numerically solved by means of quasilin- 
earization technique as described by Bellman and Kalaba 

[10]. We have obtained velocity and temperature graph for 
different values of unsteadiness parameter A and Prandtl 
number Pr. The results obtained are presented through 
the graphs as shown in Figures 2-5. 

Figure 2 represents the variation of velocity with re- 
spect to the similarity variable  . It indicates that the 
velocity for any fixed   decreases with an increase in 
unsteadiness parameter A. The velocity graph in Figure 
2 also shows that the boundary layer thickness decreases 
monotonically when unsteadiness parameter A increases. 

Figure 3 shows the variation of temperature with re- 
spect to the similarity variable  . This reveals that the 
temperature for fixed value of   decreases with the 
increase of values of  . The temperature graph indicates 
that     decreases with the increase in  . Moreover, 
the graph shows that the thermal boundary layer thick- 
ness decreases with an increase in Prandtl number Pr, for 
all unsteadiness parameters. It is possible to see that the 
temperature     at the surface of a sheet is invariant 
with respect to unsteadiness parameter A. We also obser- 
ve that as the distance from the stretching sheet within 
dynamic region increases, temperature field decreases as 
unsteadiness increases. Physically, when unsteadiness in- 
creases the sheet looses more heat which causes decrease 
in temperature. 

Figure 4 stands for the variation of temperature with 
respect to Prandtl number Pr. It is possible to see that the 
temperature decreases as the Prandtl number Pr increases 
for a fixed value of   i.e. the temperature decrease as 
the distance away from the sheet increases and it become 
almost zero at 4   which ends the boundary layer 
thickness. The temperature field attains maximum value 
at the surface of the stretching sheet. The temperature 
decreases within the boundary layer for all values of the 
Prandtl number Pr. This is consistent with the fact that 
the thermal boundary layer thickness decreases with in- 
creasing in Prandtl number. 
 

 

Figure 2. Velocity graph for Pr = 0.01 and for different 
values of A. 
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Figure 3. Temperature graph for different values of A when 
Pr = 1.0. 
 

 

Figure 4. Temperature graph for different values of Pr when 
A = 1.2. 
 

 

Figure 5. velocity graph for different values of A (VHF) for 
Pr = 0.01 
 

Figure 5 shows the velocity graph for different values 
of unsteadiness parameter A for (VHF) at a fixed Prandtl 
number Pr = 0.01. The velocity graph decreases mono- 
tonically as unsteadiness parameter increases. From the 
graph, we can also observe that the velocity boundary 
layer thickness decreases as the distance from the sheet 
increases. 

When we compare the velocity and temperature graphs 
of this study with the result obtained by analytic method 
of previous study, our results are in good agreement with 
them. Furthermore, heat transfer at the surface for dif- 
ferent values of unsteadiness parameter A and Prandtl 
number Pr of this study has shown similarity with the study 
conducted by Sharidan et al. [7]. 

Table 1 shows the values of heat transfer  0   and 
skin friction coefficient – , for various values of 
unsteadiness parameter A and Pr. From the table, it is 
possible to see that heat transfer rate at the surface 

 0f 

 0   
increases with unsteadiness parameter A. However, when 
the value of unsteadiness parameter A = 0.8, the heat 
transfer rate at the surface  decreases as the val-
ues of Prandtl number Pr increases. The table further 
shows that at the values of Prandtl number Pr = 1.2 and 
Pr = 2, the heat transfer rate at the surface 

0  

 0   in-
creases. It is also indicated that skin friction coefficient 

 0f   increases with the increase in the values of un- 
steadiness parameter A and Pr . 

Table 2 shows the values of the heat transfer  0  , 
temperature on the wall  0  and skin friction coeffi- 
cient  0f  , for various values of A and Pr from the 
previous study of Shardian [7] for comparison purpose. 
 
Table 1. Results for the values of heat transfer   0  and 

skin friction   0f  for various values of A and Pr for the 
present study. 

A 0.8 1.2 2 

Pr  0   0f   0    0f    0   0f 

0.01 0.2502 1.9388 0.2584 2.0327 0.2745 2.2084

0.1 0.2476 1.9388 0.3176 2.0327 0.4391 2.2084

1 0.0472 1.9388 0.4209 2.0327 0.9651 2.2084

 
Table 2. Results for the values of the heat transfer   0  

and skin friction coefficient   0f  for various values of 
A and Pr from previous study [7]. 

A 0.8 1.2 2 

Pr  0   0f   0    0f    0   0f 

0.01 0.092274 1.261042 0.114053 1.377722 0.150317 1.587362

0.1 0.229433 1.261042 0.311720 1.377722 0.43875 1.587362

1 0.47119 1.261042 0.788173 1.377722 1.243741 1.587362
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5. Conclusions 
 
A numerical method has been employed to study un- 
steady flow and heat transfer in the laminar flow of an 
incompressible fluid over stretching sheet. The effect of 
the unsteadiness parameter A and Prandtl number Pr on 
the heat transfer were studied. The numerical results in- 
dicate the following. 

1) The thickness of velocity boundary layer decreases 
with increasing unsteadiness parameter. 

2) The thickness of thermal boundary layer decreases 
with increasing unsteadiness parameter. 

3) An increment in unsteadiness parameter A increases 
the skin friction coefficients and decreases the local Nus- 
slet number. 

4) Temperature decreases with an increasing in the 
value of unsteadiness parameter A. 

5) Increasing the Prandtl number Pr leads to a decrease 
in the surface temperature. 
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