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Abstract 
This paper focuses on the study and control of a non-linear mathematical epi-
demic model ( vihSS VELI ) based on a system of ordinary differential equation 
modeling the spread of tuberculosis infectious with HIV/AIDS coinfection. 
Existence of both disease free equilibrium and endemic equilibrium is dis-
cussed. Reproduction number 0  is determined. Using Lyapunov-Lasalle 
methods, we analyze the stability of epidemic system around the equilibriums 
(disease free and endemic equilibrium). The global asymptotic stability of the 
disease free equilibrium whenever 1vac <  is proved, where 0  is the re-
production number. We prove also that when 0  is less than one, tubercu-
losis can be eradicated. Numerical simulations are conducted to approve 
analytic results. To achieve control of the disease, seeking to reduce the infec-
tious group by the minimum vaccine coverage, a control problem is formu-
lated. The Pontryagin’s maximum principle is used to characterize the optim-
al control. The optimality system is derived and solved numerically using the 
Runge Kutta fourth procedure. 
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1. Introduction 

Tuberculosis is one of the top 10 causes of death in the world [1]. In Cameroon, 
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tuberculosis and HIV infection account for 25% of the morbid burden. TB is 
caused by bacteria (Mycobacterium tuberculosis) that most often affects the 
lungs. Tuberculosis is curable and preventable. TB is spread from person to 
person through the air. When people with lung TB cough, sneeze or spit, they 
propel the TB germs into the air. A person needs to inhale only a few of these 
germs to become infected. About one-third of the world population has latent 
TB, which means people have been infected by TB bacteria but are not (yet) ill 
with the disease and cannot transmit the disease. People infected with TB 
bacteria have a 10% lifetime risk of falling ill with TB. However, persons with 
compromised immune systems, such as people living with HIV, malnutrition or 
diabetes, or people who use tobacco, have a much higher risk of falling ill. When 
a person develops active TB disease, the symptoms (such as cough, fever, night 
sweats, or weight loss) may be mild for many months. This can lead to delays in 
seeking care, and results in transmission of the bacteria to others. People with 
active TB can infect 10 other people through close contact over the course of a 
year. The population of Cameroon is estimated in 2017 to 24 million inhabitants. 
In the same year, 24,905 cases of tuberculosis were reported. The medical 
coverage is estimated at 52%. The death rate due to the tuberculose is 
approximatively 0.29% [2]. In 2018, the national budget allocated to the control 
of the tuberculosis is 10 million American dollars, and distributed as follows: 
14% of internal source, 27% of external source and 59% of deficit. 

The theme “End the global TB” has been decided by the world health 
organization and it covers the period 2016-2035 and the overall goal is to end the 
global TB epidemic. As part of the necessary multidisciplinary research approach, 
mathematical models have been extensively used to provide a framework for 
understanding tuberculosis transmission dynamics and control strategies of the 
infection spread in the host population [3] [4] [5] [6] [7]. Arthur et al. [6] study 
social and cultural factors in the successful control of tuberculosis. Optimal 
control theory has been applied to some biological models (VIH/AIDS 
treatment, Cancer, Fish harvestime) [8]-[14] and transmission model.  

Some mathematical models have been used to control tuberculosis. In [15], 
optimal control theory is applied to investigate optimal strategies for controlling 
the spread of tuberculosis using treatment of infected individuals with TB as the 
system control variables. In [16], the tuberculosis control is formulated and 
solved as an optimal control theory problem, indicating how a control term on 
the chemoprophylaxis should be introduced in the population to reduce the 
number of individuals with active TB. The papers [17] consider the optimal 
control of tuberculosis through education, diagnosis campaign and 
chemoprophylaxis of latently infected. In [6], it talks about the Impact of an 
effective multidrug-resistant tuberculosis control programme in the setting of an 
immature HIV epidemic. 

This paper deals with the stability analysis of an ,vihSVS ELI  transmission 
model and uses optimal control technique to find and evaluate the impact of a 
mass vaccination schedule in the spread of TB/VIH coinfection. Individuals are 
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classified as one of susceptible (S) V vaccinated, AIDS patients ( vihS ), earlier 
latent (E) late latent (L) infectious or tuberculous (I), but allow that susceptible 
individuals may be given an imperfect vaccine that reduces their susceptibility to 
the disease, the V-compartment of vaccinated individuals is considered [18] as a 
susceptible compartment. AIDS patients are considered as another type of 
susceptible with hight level of susceptibility due to the fact that their immune 
system are compromised. 

Since V and vihS  are considered as the susceptible compartments, thus we 
are dealing with a differential susceptibility system with bilinear mass action as 
in Hyman and Li [19]. However, we include one-way flow between these two 
compartments, to denote the prevalence of AIDS in community. For analysis 
and stability issues;We use Lyapunov-LaSalle methods, we fully resolve the 
global dynamics of the model for the full parameter space. We demonstrate that 
the model exhibits threshold behavior with a globally stable disease-free 
equilibrium if the basic reproduction number is less than unity and a globally 
stable endemic equilibrium if the basic reproduction number is greater than 
unity. Our goal is to minimise number of TB infectious persons and the overall 
cost of the vaccine during a fixed period. 

For numerical simulation, the programs used in this paper are designed so 
that no knowledge of MATLAB is required. For the control problem, there is a 
user-friendly interface that will guide you through. We have two different 
MATLAB programs, plotTB.m and codeTB.m. Here, .m is the extension given to 
all files intended for use in MATLAB.The file codeTB.m is the Runge-Kutta 
based, forward-backward sweep solver. It takes as input the values of the various 
parameters in the problem and outputs the solution to the optimality system. 
The ?le plotTB.m is the user friendly interface. It will ask you to enter the values 
of the parameters one by one, compile codeTB.m with these values, and plot the 
resulting solutions. All the files must be in the directory that MATLAB treats as 
the home directory. This is usually the Work directory. This paper is organized 
as follows. 

In next section, model is described, in Section 3 we investigate stability 
analysis for the ( vihSS VELI ) epidemic model in this section We followed the 
methods of Nkamba, Leontine Nkague et al. 2019 [20] A control system for the 
optimality and its existence,and the optimal control are derived in Section 4. In 
Section 5, utilizing the representation of the optimal control, we describe a 
numerical solution of the optimality system consisting of the original state 
system, the adjoint system, and their boundary conditions. In Section 6, we 
describe, in detail, a real application of our optimal control theory. Finally, we 
conclude in Section 7. 

2. Model Description 
2.1. Basic Model of vihSS VELI , Preliminaries 

When first infected with TB bacteria, a person typically goes through a latent, 
asymptomatic and non-infectious period during which the body’s immune 
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system fights the TB bacteria. There are two distinct stages of the latent TB 
infection. During the first two years, the risk of developing active disease is 
much higher, whereas during the later stage, the progression to active disease is 
much slower. 

Compartmental modeling is used among epidemiologists to simulate disease 
dynamics. These models treat each disease state as a different compartment that 
contains a homogeneous population of individuals. Using a compartmental 
approach, the total host population can be partitioned into seven compartments: 
susceptible individuals (S), susceptible infected with AIDS ( vihS ), vaccinated 
individuals (V) early latent (E) late latent (L) individuals, individuals with active 
TB disease (I) and recovered individuals (R). ( ) ( ) ( ) ( ) ( ), , , ,vihS t S t V t E t L t  and 
( )I t  denote the density of populations in the four corresponding 

compartments at time t. Only individuals in compartment I are infectious, and 
new infections result on the one hand from contacts between a susceptible and 
an infectious individual, with an incidence rate ( ) ( )S t I tβ ; from contacts 
between a HIV patient and Tuberculous, with an incidence ( ) ( ) ( )1 vihS t I tσ β+ , 
and on the other hand from contacts between a vaccinated and infectious 
individual, with an incidence ( ) ( )1 V t I tθ β , due to the fact that the vaccine does 
not confer a total immunity, but Vaccination reduces the risk of infection by a 
factor [ ]1 0,1θ ∈  and the efficacy of the vaccine is 11 θ− . AIDS increases the 
risk of infection by a factor, the immune deficiency rate [ ]0,1σ ∈  41 CDTσ = −  

4CDT  is the rate of CD4 cells. Let us pose ( )2 1θ σ= +  the cost induced by the 
immune deficiency status in the transmission of tuberculosis. The per capita 
death rates for susceptibles, HIV patients, early latents, late latents and infectious 
individuals are Sµ , vihµ , Eµ , Lµ  and Iµ  respectively. Once infected, 
individuals progress through the early latent stage with an average rate ω . A 
fraction ;0 1p p< ≤ ; of these individuals progress directly to the active TB stage, 
and the remaining 1 p−  fraction progresses to the late latent stage. Once there, 
the rate of progression to active disease is at a lower rate ν . The recruitment 
makes respectively into the susceptible class, the vaccinated class, the VIH/patient 
class with the constant rate 1π  2π  and 3π . α  is the vaccination coverage 
rate. 2π  is the recruitment of vaccinated a few day after birth, so we suppose 
that immunity is passed during the birth. 3π  is VIH/AIDS vertical 
transmission recruitment, it’s means some peoples born with VIH/AIDS 
infection. 

The dynamical transfer among the seven compartments is depicted in the 
transfer diagram (Figure 1). 

2.2. Description of Variables and Parameters 

All parameters described in Table 1 are assumed to be positive. 

2.3. Compartmental Diagram and Differential Equations of  
vihSS VELT  Model 

Our model consists of the following system of ordinary differential equations: 
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Figure 1. This is a flow chart for our model. The seven boxes represent the seven groups 
of individuals. The arrows show the movement between groups, and into and out of the 
population. 
 
Table 1. Description of variables and parameters. 

(S) Susceptible: Health and non immune individuals 

(V) Vaccinated: immunized individuals 

(Svih) AIDS patient: people infected with HIV 

(E) Earlier latent: people infected but without clinic signs of disease 

(L) Later latent: People who remains without clinic signs 

(α ) Vaccination coverage 

Sη  Recruitment rate of susceptible 

1 S Sπ η=  Number of susceptible rescued at birth 

2 VVπ η=  Number of vaccinated rescued at birth 

3 vih vihSπ η=  Number of VIH/AIDS patients rescued at birth 

(I) People infected with Tuberculosis and are infectious 

( ε ) AIDS-HIV prevalence 

(ω ) Progression rate to latent earlier stage 

( SIβ ) Incidence rate: number of new infected cases 

( CD41 Tσ = − ) Immune deficiency rate 

( 2 1θ σ= + ) Cost of immune deficiency rate 

( 1θ ) Vaccine efficacity 

0, 0, 0, 0X E E Td d d d≥ ≥ ≥ ≥  Removal rate, include death due to the TB 

( β ) Effective contact rate 

vihµ  HIV specific death rate 

p Fraction of individuals who progress directly in TB active stage 

ν  Progression rate to active disease 

1 p−  Progression fraction to the late latent stage 
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                (1) 

with initial conditions ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 50 , 0 , 0 0 , 0 , 0 0vihS S V E L I R +∈ . We 
have also 2 1θ σ= +  and 41 cdTσ = − . 

3. Stability Analysis 
3.1. A Compact Positively Invariant Absorbing Set 

In order that the model be well-posed, it is necessary that the state variables 
( )S t , ( )vihS t , ( )V t  ( )E t , ( )R t  ( )I t  and ( )I t  remain nonnegative for 

all 0t ≥ . That is, the nonnegative orthant 5
+  must be positively invariant. 

Let  

( ) 5
0 0 0, , , , , : 0 ,0 ,0 ,0vih vih vihS S V E L I S S S S V V N

µ+
 Λ

Γ = ∈ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 
 

  

(2) 

where { }min , , , ,S vih V E L Iµ µ µ µ µ µ µ=  and 1 2 3π π πΛ = + +  with  
( )0 0 0 0000vihS V S  the disease free equilibrium. 

Lemma 1. The compact set Γ  is a positively invariant and attracting. 

3.2. Existence of an Disease Free Equilibrium (DFE) 

It is easy to check that model 1 always has the disease-free equilibrium  
( )0 0 0 0, , ,0,0,0,0vihP S S V=  

where 

0 3 0 21
0 0 0, andvih

S vih V

S S
S S V

ε π α ππ
µ ε α µ µ

+ +
= = =

+ +
          (3) 

In order to assume that vaccinated people don’t produced infected more than 

susceptible people we should have 0
1

0

0
S
V

θ≤ ≤ . 

Additionally, an endemic equilibrium ( )* * * * * * *, , , ,vihP S S V E L I=  may also 
exist. 

To consider the existence and uniqueness of endemic equilibrium 

( )* * * * * * *, , , ,vihP S S V E L I= , we firstly study the basic reproductive number 
induced by vaccine vacR  of model. 

3.3. Basic Reproduction Ratio 

Using the method of James Watmouth and all the next generation matrix [21] 
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[22], the basic reproduction number 0  is giving by  

( ) ( ) ( )
( )( )( )

0 1 0 2 0
0

1
.vih L

I E L

S V S p pβω θ θ ν µ ν
µ τ µ ω µ ν

+ + − + +  =
+ + +

            (4) 

We will see in the Section 3.4 theorem 1 that, when 0  is less than unity, 
infection can disappear in the population. Numerical simulations will confirm 
our results. 

3.4. Stability of Equilibriums 
Stability of Disease Free Equilibrium (DFE) 
In this section, we show that the disease-free equilibrium 0P  is globally 
asymptotically stable with respect to if 0 1R ≤ ; and 0P  is unstable if 0 1R > : 

Theorem 1. If 0 1≤ , then the disease-free equilibrium is globally 
asymptotically stable. 

Proof. Consider a Lyapunov function,  

( ) ( ) ( ) ( )( ), , , , , .vih L E E LS S V E L I p E L Iω µ ν ν µ ω µ ω µ ν= = + + + + + +   (5) 

Direct calculation leads to  

( ) ( ) ( )( )
( )( ) ( )( )

( )( )( )
1 2 1

L E E L

L vih E

E L I

p E L I

p SI VI S I p E

I

ω µ ν ν µ ω µ ω µ ν

ω µ ν β θ β θ β ν µ ω

µ ω µ ν µ τ

= + + + + + +

= + + + + − +

+ + + +

   

      (6) 

at equilibrium we have the relation 

( )2 1vih ESI S I VI Eβ θ β θ β µ ω+ + = +  

then 

( )( )( )
( ) ( ) ( )

( )( )( )
2 1 1

1

E L I

vih L

E L I

S S V p p
I

µ ω µ ν µ τ

β θ β θ β ω µ ν νω
µ ω µ ν µ τ

= + + +

 + + + + −  × − 
+ + +  



     (7) 

Because , , vihS V S ∈Γ  we have: 

( )( )( )
( ) ( ) ( )

( )( )( )
( )( )( )[ ]

0 2 0 1 0 1
1

1 .

E L I

vih L

E L I

E L I vac

S S V p p
I

I

µ ω µ ν µ τ

β θ β θ β ω µ ν νω
µ ω µ ν µ τ

µ ω µ ν µ τ

≤ + + +

 + + + + −  × − 
+ + +  

≤ + + + −







 

    (8) 

Furthermore  

0 0 0 0I I L E= ⇔ = ⇒ = ⇒ = =   

Therefore, the largest compact invariant set in  
( ){ }; ; ; ; ; : 0vihG S S V E L I= ∈Γ = ; when 1vac ≤ , is the singleton { }0P : 

LaSalle’s Invariance Principle implies that all solutions in Γ  converges to 0P . 
This establishes the theorem.  

Theorem 1 completely determines the global dynamics of (1) in Γ  when 

0 1R ≤ . It establishes the basic reproduction number 0R  as a sharp threshold 
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parameter. Namely, if 0 1R < ; all solutions in the feasible region converge to the 
disease-free equilibrium 0P ; and the TB will die out from the population 
irrespective of the initial conditions. If 0 1R > ; 0P  is unstable, it could exist 
and endemic equilibrium and the system is uniformly persistent, TB epidemic 
will always become endemic. 

3.5. Numerical Simulation of DFE and Endemic Equilibrium 

In matlab code, the parameters are named as followed: 
pi1 = π1 pi2 = π2 pi3 = π1; beta = β varepsilon = ε; muvih = μvih; sigma = σ; 

theta1 = θ1; theta2 = θ2 p; muS = μS muV = μV muE = μE omega = ω muL = μL nu 
= ν muI = μI tau = τ A; alpha = α S0 = S0 V0 = S0 Svih0 = S0 E0 = E0 L0 = L0 I0 = 
I0. 

Let us take the following set of parameters  
pi1 = 15; pi2 = 0.1; pi3 = 0.1; beta = 0.085; varepsilon = 0.2; muvih = 0.05; 

sigma = 0.01; theta1 = 0.001; theta2 = 1.01; p = 0.2; muS = 0.01; muV = 0.01; 
muE = 0.02; omega = 0.0645; muL = 0.02; nu = 0.00375; muI = 0.3; tau = 0.5; 
alpha = 0.2; S0 = 80; V0 = 50; Svih0 = 10; E0 = 20; L0 = 15; I0 = 25. 

When 0.01β =  and 0 0.57R =  0R  is less than unity, the trajectory of TB 
patients (I) reach axis axe by 10 years and remains at that position with time 
(Figure 2) black line. 

We remark also that when 0.085β =  0 4.58R =  greater than unity, the TB 
patients remains in the community, so it could exist an endemic equilibrium 
stable in Figure 2 of the blue line. 

4. Optimal Control of System 1 

In this section, an optimal control is formulated and it examined to study 
properties of optimal control strategies. 

Let ( ) ( )1u t tα=  (vaccine coverage), the first control, be the percentage of 
susceptible individuals being vaccinated per unit of time. As vaccination of the 
entire susceptible population is impossible, we bound the control with 

( )0 0.9u t≤ ≤ . In cash we seek to minimise the infectious group with the 
minimum possible of vaccine coverage. We consider an optimal control problem  
 

 
Figure 2. Dynamic and stability of system 1. 
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to minimize the objective functional  

( )2

1
min d

T

u
I Au t x+∫                       (9) 
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
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( ) ( )1 2 3 6

with 1,2, ,6

, , , ,
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X t X X X X

λ λ= =

=





              (11) 

Hamiltonian of our control problem is 

( ) ( ) ( )( ) ( ) ( ) ( )
62

1
1

i i
i

H tX t u t t I Au t t X tλ λ
=

= + +∑   

( ) ( ) ( )( )
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2
1 1

2 2 1

3 3 2

S

V
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λ π ε µ θ β
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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   (12) 

The adjoint equations and transversality conditions can be obtained by using 
Pontryagin’s Maximum Principle such that 

( ) ( ) ( )

( ) ( )
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( ) ( )
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1 1 4 1 2 3 1
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Taking into account the bounds on control 0 0.8u≤ ≤  Optimal control 
( )*u t , is derived using the following optimality conditions: 

0 if 0

0 0.8 if 0

0.8 if 0

Hu
u
Hu
u
Hu
u

∂ = ≥ ∂
∂ ≤ ≤ =
∂
∂

= ≤ ∂

                   (14) 

From relations 14 we have:  

( )* * *
2 12 0 when 0 0.8H Au S u

u
λ λ∂

= + − = ≤ ≤
∂

          (15) 

( )* *
2 10 2 0H Au S

u
λ λ∂

= ⇔ + − =
∂

               (16) 

From relations 16 we have:  

( ) ( )*
1 2* *where 0 0.8

2
S

u t u
A

λ λ−
= ≤ ≤             (17) 

Taking account the optimality conditions 14 induce by the bounds conditions 
of control u we have 

( ) ( )*
1 2* min 0.8,max 0,

2
S

u t
A

λ λ  −
=       

            (18) 

5. Numerical Simulations of the Spread of Tuberculosis/VIH  
Coinfection and Mass Vaccination Schedule 

5.1. The Numerical Algorithm 

The numerical algorithm presented below is a classical Rung -Kutta 4 method. 
We discretize the interval [t0,T = tf] at the points 0ti t ih= +  ( 0,1, ,i n=  ), 

where h is the time step such that tn T M= = , 2 2h h=  and 2j M i= + − . 
Next, we define the state and adjoint variables respectivily ( )S t , ( )vihS t , 
( )V t  ( )E t , ( )R t  ( )I t  and ( )1 tλ , ( )2 tλ , ( )3 tλ , ( )4 tλ , ( )5 tλ , ( )6 tλ )  
The control u in terms of nodal points ( )S i , ( )vihS i , ( )V i , ( )E i , ( )R i , 
( )I i  and ( )1 jλ , ( )2 jλ , ( )3 jλ , ( )4 jλ , ( )5 jλ , ( )6 jλ  ( )u i . 

5.2. Parameters Description and Values 

Most of parameters values are from Cameroon, like natural rate of mortality and 
rate of birth according to the World Health organisation report 2017. Other 
parameters are extracted to the data collected at the Hospital Jamot Center, 
where is housed the screening center of tuberculosis. This center receive 
approximatively one thousand new cases of tuberculosis each year. Data have 
been collected during one year (31 March 2016 to 31 March 2017). Those data 
concerned new cases of pulmonary and extrapulmonary TB patients; number of 
TB patients tested HIV; Number of TB patients co-infected by VIH; The 
distribution of TB patients by 11 age and sex. Helped by theses data we found 
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out that, about three new cases are detected by day, the mortality date is 0.1; the 
percentage of TB patients tested for HIV is 90% and about 35% of them are HIV 
positive.The mortality rate due to the infection is 0.1% Recovery rate and rate of 
apparition of clinical symptoms are coming from WHO. See Table 2 for the 
description of parameters and their based line or range value. 

5.3. Optimal Strategies of Mass Vaccination 

Some key parameters like the effective contact rate β  medical coverage rate of 
VIH/Patients σ , HIV vertical transmission rate 3π  and HIV prevalence ε  
have a great impact in the spread of TB infectious. we are going to simulate five 
different scenarios and observed the mass vaccination optimal strategy induced 
respectively by the low effective contact rate, the hight effective contact rate, the 
absence of HIV medical coverage, the hight HIV medical coverage and the 
combination (hight HIV medical coverage, low HIV vertical transmission rate, 
and the low HIV prevalence rate) which assure the eradication of TB infectious. 
 
Table 2. Description and values of parameters. 

Symbols parameters values source 

fixed disease parameters    

ω  Early progression rate 0.0645 years Diel et al. 2011 

ν  Reactivation 0.00375 years Blower et al. 1995 

fixed epidemiological 
parameters 

   

η  Recruitment rate of susceptible 0.038/year Cameroon 

{ }J J S Lµ ∈  specific death rate in population J 0.0098 Cameroon 

vihµ  VIH specific death rate [0.1] UNAIDS 2016 

Tµ  TB specific death rate [0.1] OMS 2015 

(α ) vaccination coverage variable  

1 S Sπ η=  number of susceptible 
rescued at birth 

variable  

2 VVπ η=  number of vaccinated 
rescued at birth 

variable  

3 vih vihSπ η=  number of VIH/AIDS 
patients rescued at birth 

variable  

1 p−  proportion to the 
late latent stage 

0.4105 
over 23 months 

James M, 
Justin T 

p infectious proportion fraction 0.5895  

modifiable parameters    

( )1 4CD rateσ = −  immune deficiency status rate variable Cameroon 

SηΛ =   variable Cameroon 

β  Effective contact rate variable Cameroon 

ε  AIDS prevalence rate variable  
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For simulations we have built two matlab file: 
The first one is tuberculosesida.m the main file and the second one is valt 

uberculosesida.m in order to plot some figures. 
In matlab code, the parameters are named as followed. 
pi1 = π1; pi2 = π2 pi3 = π1; beta = β varepsilon = ε; muvih = μvih; sigma = σ; 

theta1 = θ1; theta2 = θ2 p; muS = μS; muV = μV; muE = μE; omega = ω; muL = μL; 
nu = ν; muI = μI; tau = τ A; alpha = α; S0 = S0; V0 = S0; Svih0 = S0; E0 = E0; L0 = 
L0; I0 = I0. 

5.3.1. Optimal Control Induced by the Low Effective Contact Rate  
0.08β =  

Set of parameters values  
pi1 = 50; pi2 = 1; pi3 = 0.1; beta = 0.08; varepsilon = 0.00001; muvih = 0.05; 

sigma = 0.0001; theta1 = 0.3; theta2 = 1.0001; p = 0.6; muS = 0.01; muV = 0.01; 
muE = 0.02; omega = 0.0605; muL = 0.02; nu = 0.00375; muI = 0.12; tau = 0.1; A 
= 1; alpha = 0.2; S0 = 80;V0 = 50; Svih0 = 10; E0 = 8; L0 = 7; I0 = 5. 

With the precedents values of parameters we obtain a Reproduction number 
( 0R ) bigger than unity. In this case Figure 3, the system will reach definitively 
and endemic equilibrium. Controlling the system is not necessary until the 
trajectory of TB patients approach the endemic equilibrium and then optimal 
control appears in step 110 and goes until step 200 in order to have a better 
endemic equilibrium. 

5.3.2. Optimal Control Induced by A High Effective Contact Rate 0.6β =  

Set of parameters values  
pi1 = 50; pi2 = 1; pi3 = 0.1; beta = 0.6; varepsilon = 0.00001; muvih = 0.05; 

sigma = 0.0001; theta1 = 0.3; theta2 = 1.0001; p = 0.6; muS = 0.01; muV = 0.01; 
muE = 0.02; omega = 0.0605; muL = 0.02; nu = 0.00375; muI = 0.12; tau = 0.1; A 
= 1; alpha = 0.2; S0 = 80; V0 = 50; Svih0 = 10; E0 = 8; L0 = 7; I0 = 5. 

Here in Figure 4, the effective contact rate β  is higher than the precedent 
case, optimal control is more aggressive and appears earlier in the step 70, and is 
stopped before step 200; the consequence is that the trajectory of vaccinated  
 

 
Figure 3. Optimal control induced by low effective contact rate. 
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Figure 4. Optimal control induced by high effective contact rate. 
 
reached more later abscise axis and TB patients leave abscise axis later also, this 
means that spread of epidemic is retarded. we could conclude that more earlier 
system is controlling more later epidemic occurs in the population. 

5.3.3. Optimal Control to a Absence of HIV Medical Coverage:  
cdT 41 1σ = − =  and 0.4β =  

Set of parameters values  
pi1 = 50; pi2 = 1; pi3 = 0.1; beta = 0.4; varepsilon = 0.00001; muvih = 0.05; 

sigma = 1; theta1 = 0.3; theta2 = 2; p = 0.6; muS = 0.01; muV = 0.01; muE = 
0.02; omega = 0.0605; muL = 0.02; nu = 0.00375; muI = 0.12; tau = 0.1; A = 1; 
alpha = 0.2; S0 = 80; V0 = 50; Svih0 = 10; E0 = 8; L0 = 7; I0 = 5. 

In this case 5 4cdT  is nul, that’s suppose HIV patients are not cured. In 
Figure 5, we can see that optimal control appears quickly at years fourth, in the 
same time hen TB patients are leaving the abscise axis and epidemic occurs. We 
remark also that optimal control disappears after few months. We can conclude 
that:the lack of HIV medical coverage accelerate the propagation of TB 
infectious, and when the velocity of epidemic is hight optimal control appears 
quickly and disappears quickly also. Also mass vaccination is useless when we 
have lack of HIV medical coverage. 

5.3.4. Optimal Control Induced by a VIH Medical Coverage:  
cdT 41 0.01σ = − =   

When VIH patients are cured, optimal control appears later after 40 years and 
stay more than five years Figure 6 here Optimal control is better than the 
precedent case 5 more than 200 TB patients at equilibrium. In Figure 6, we have 
above 150 TB patients at equilibrium. 

5.3.5. Optimal Control Induced by a Hight VIH Medical Coverage:  
cdT 41 0.0001σ = − =   

Set of parameters values 
pi1 = 50; pi2 = 1; pi3 = 0.1; beta = 0.4; varepsilon = 0.00001; muvih = 0.05; 

sigma = 0.0001; theta1 = 0.3; theta2 = 1.0001; p = 0.6; muS = 0.01; muV = 0.01;  
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Figure 5. Optimal control induced by the lack of HIV medical coverage. 
 

 
Figure 6. Optimal control induced by a VIH medical coverage. 
 
muE = 0.02; omega = 0.0605; muL = 0.02; nu = 0.00375; muI = 0.12; tau = 0.1; A 
= 1; alpha = 0.2; S0 = 80; V0 = 50; Svih0 = 10; E0 = 8; L0 = 7; I0 = 5. 

When HIV medical coverage is hight, control optimal appears more later step 
80 and stay until step 200. In Figure 7, optimal control is more efficient because 
at endemic equilibrium we have 100 TB patients lesser than the precedent case 
where he have 150 TB patients in endemic equilibrium. 

5.3.6. Eradication of Desease with Hight VIH Medical Coverage  
0.0001σ = , the Low VIH Prevalence Rate 0.00001ε =  and the Low  

VIH Vertical Transmission 3 0.1π =   

Set of parameters values 
pi1 = 50; pi2 = 1; pi3 = 0.01; beta = 0.4; varepsilon = 0.00001; muvih = 0.05; 

sigma = 0.0001; theta1 = 0.3; theta2 = 1.0001; p = 0.6; muS = 0.01; muV = 0.01; 
muE = 0.02; omega = 0.0605; muL = 0.02; nu = 0.00375; muI = 0.12; tau = 0.1; A 
= 1; alpha = 0.2; S0 = 80; V0 = 50; Svih0 = 10; E0 = 8; L0 = 7; I0 = 5. 

Here we have reproduction number 0R  less than unity, and the system 1 
reach a disease free equilibrium (Figure 8). The number of TB patients decreases 
and reach abscise axis at step 50. Nowadays optimal control appears at step 70 
and the vaccination rate coverage decreases progressively until 0.5% at step 100. 
The combination (hight VIH medical coverage 0.0001σ = , the low VIH  
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Figure 7. Optimal control induced by a a hight VIH medical coverage. 
 

 
Figure 8. Eradication of TB infection. 
 
prevalence rate 0.00001ε =  and the low VIH vertical transmission 3 0.1π = ) 
assures the eradication of TB infectious in community. We can conclude that, 
well controlling the spread of VIH infectious (hight medical coverage of HIV 
patients, voluntary HIV screening campaign and HIV awareness campaigns) has 
positive effects in the propagation of TB infectious. Mass vaccination is not 
necessary when we have at least a good percentage of peoples who are vaccinated 
at birth. 

All the scenarios are resumed in the following Figure 9. 

5.3.7. Mass Vaccination Strategies Scenarios Synthesis 
See Figure 9. 

6. Discussions and Conclusion 

The goals of this paper were to study the overall and asymptotic stability of the 
system around the point of equilibrium on one hand and, to use optimal control 
techniques to find mass vaccination strategies for each situation and assess 
impact on the second hand. We simulated the spread of tuberculosis/HIV 
coinfection and mass vaccination schedule. The database used was essentially 
made of the World Health organisation report 2017 and the data collected at the 
Centre Jamot Hospital where is housed the screening center of tuberculosis. The  
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Figure 9. Mass vaccination strategy scenarios. 

 
approach of optimal control used in various cases with adapted tools, leads to 
some lessons learnt. The higher the effective contact rate will be, the earlier we 
should start the mass vaccination that could economically expensive (Figure 3 
and Figure 4). The better the medical coverage will be, the the later we should 
engage mass vaccination as we reach the equilibriums (Figures 5-7). We 
eradicate the TB propagation by ensuring a better medical coverage, by reducing 
the HIV transmission from the mother to the child and by reducing the 
prevalence of HIV within the population (Figure 8). 

In the area of HIV and TB co-infection, to reach the target of eradication of 
the TB propagation, we need to control the HIV propagation and make an 
emphasis on the immunization against the TB infection, the early screening and 
treatment of TB patients. 
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