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Abstract 
Propagation of Love waves in a transversely isotropic poroelastic layer bounded 
between two compressible viscous liquids is presented. The equations of mo-
tion in a transversely isotropic poroelastic solid are formulated in the frame-
work of Biot’s theory. A closed-form solution for the propagation of Love 
waves is obtained in a transversely isotropic poroelastic layer. The complex 
frequency equation for phase velocity and attenuation of Love waves is de-
rived for a transversely isotropic poroelastic layer when it is bounded between 
two viscous liquids and the results are compared with that of the poroelastic 
layer. The effect of viscous liquids on the propagation of Love waves is dis-
cussed. It is observed that the presence of viscous liquids decreases phase ve-
locity in both transversely isotropic poroelastic layer and poroelastic layer. 
Results related to the case without viscous liquids have been compared with 
some of the earlier results and comparison shows good agreement. 
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1. Introduction 

Deresiewicz [1] [2] discussed propagation of elastic waves in non-dissipative 
porous solid. A study on propagation of Love waves in a compressible viscous 
liquid layer bounded between an elastic layer and homogeneous isotropic elastic 
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half-space was done by Bhangar [3]. Phase velocity, group velocity, quality factor 
(Q) and displacement in the elastic layer and half space have been computed as a 
function of the frequency for various values of the ratio of thickness to coeffi-
cient of viscosity. It is shown that Love waves are not attenuated when the ratio 
takes the values zero and infinity. Also, the quality factor attains minimum value 
as a function of dimensionless angular frequency that the ratio is not equal to 
zero or infinity. Two dimensional wave propagation in a viscous liquid layer 
bounded between two poroelastic half-spaces was investigated by Nageswara 
Nath et al. [4]. Three types of bonding, i.e. welded interface, smooth interface 
and loosely bonded interface, are considered. The frequency equation of the in-
terfacial waves for each of the above three types of bonding for infinite wave-
length is obtained and it is observed that the frequency equation is independent 
of the nature of bonding. Love wave propagation in the elastic layered waveguide 
loaded with a viscous Newtonian liquid on the surface is investigated by 
Kiełczynski et.al. [5]. Love wave amplitude distribution as a function of depth 
has been determined. It was observed that for a viscous liquid loading, the am-
plitude of the wave changed with depth in an oscillatory way, and decayed to 
zero. The effect of gravity on propagation of Love waves in a fluid-saturated 
porous layer bounded above by a rigid boundary and below by an elastic 
half-space under gravity has been discussed by Anjana et al. [6]. It is observed 
that there is a significant effect of gravity, porosity and anisotropy simulta-
neously in the propagation of Love waves. The phase velocity of Love wave is less 
in the gravitating medium in comparison to that of non-gravitating medium. 
Wang and Zhang [7] studied Love wave propagation transversely isotropic po-
roelastic layered half-space. The frequency equation for the phase velocity and 
attenuation is solved using an iterative method. It is shown that the solution de-
pends upon a parameter involving the critical frequency and the thickness of the 
layer. The attenuation vanishes at extreme values of frequency i.e. at zero fre-
quency or infinite frequency. The effect of viscosity on propagation of Love 
waves in a fluid loaded transversely isotropic poroelastic layered half-space was 
studied by Nageswarnath et al. [8]. Phase velocity of Love waves is more for 
higher values of coefficients of viscosity in case of fluid loaded transversely iso-
tropic poroelastic layered half-space. Attenuation is more for lower values of 
frequency and it is steady with an increase in viscosity. Also, the phase velocity is 
highest when two solids are transversely poroelastic and it is lowest when two 
solids are just poroelastic. Nageswaranath et al. [9] discussed propagation of 
Love waves in viscous liquid layer bounded between poroelastic layer and 
half-space which was transversely isotropic. It is observed that there is no influ-
ence of coefficient of viscosity of liquid layer on phase velocity when the liquid 
layer is bounded between poroelastic layer and half-space. Kundu et al. [10] in-
vestigated the effect of initial stress on Love waves propagating in a homogene-
ous layer over a porous half-space with irregular boundary. It is observed that 
propagation of Love wave is influenced by initial stress parameters, corrugation 
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parameter and porosity of half-space. Particularly, it is found that the phase ve-
locity of waves decreases with increase in non-dimensional wave number, initial 
stress parameters and porosity of half-space. 

In the present analysis, propagation of Love waves in a transversely isotropic 
poroelastic layer bounded between two viscous liquids is discussed in the frame 
of work—Biot’s theory. The governing equations of motion in a transversely 
isotropic poroelastic layer are derived. The frequency equation for Love waves in 
a transversely isotropic poroelastic layer bounded between two viscous liquids is 
obtained and the results are compared with that of poroelastic layer. Phase ve-
locity has been computed and analyzed against non-dimensional wavenumber. 
The effect of presence of viscous liquids is studied and it is observed that pres-
ence of viscous liquids decreases phase velocity of Love waves in transversely 
isotropic poroelastic layer and in poroelastic layer. Also, it is observed that phase 
velocity for transversely isotropic poroelastic layer is more compared to poroe-
lastic layer. In general, phase velocity decreases as wave number increases. 

2. Basic Equations, Formulation and Solution of the Problem 

Consider a rectangular co-ordinate system (x, y, z) with x and y axes taken as 
horizontal and z-axis as positive downwards normal to the plane. Propagation of 
waves is taken as two-dimensional (i.e. propagation in xz-plane) along the x di-
rection. A transversely isotropic poroelastic layer of thickness ‘h’ bounded be-
tween two compressible viscous liquids is considered. The boundaries of the 
poroelastic layer are taken as 0z =  and z h= . At 0z =  the poroelastic layer 
is interacting with upper viscous liquid, whereas at z h=  it is interacting with 
lower viscous liquid. The physical parameters of two viscous liquids are denoted 
by a superscript j (1, 2) enclosed in parentheses. The parameters with superscript 
(1) & (2) refer to upper viscous liquid and lower viscous liquid, respectively. The 
parameters of poroelastic layer are without any superscript. The geometry of the 
problem is shown in Figure 1. 

The equations of motion of a homogeneous, transversely isotropic poroelastic 
solid in the presence of dissipation b are 

 

 
Figure 1. Geometry of the problem. 
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where ( ), ,x y zu u u  and ( ), ,x y zU U U  are displacements of the solid and liquid 
media, respectively, while e and ∈ are dilatations of the solid and liquid respec-
tively; A,N,Q,R,F,L,M and C are all poroelastic constants and 11 12 22, ,ρ ρ ρ  are 
the mass coefficients following Biot [11]. The stresses σij and the liquid pressure 
s of the transversely isotropic poroelastic solid given by Biot [12] are 
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The physical meaning of other parameters A, N, Q, R, F, L, M and C are given 
by Biot [3] as 
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where P is a poroelastic constant given by 2P A N= + , the two constants ,A N  
correspond to familiar Lame constants in purely elastic solid, which are positive 
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in sign. The coefficient N represents the shear modulus of the solid. The coeffi-
cient R is a measure of the pressure required on the liquid to force a certain 
amount of the liquid into the aggregate while total volume remains constant. 
The coefficient Q represents the coupling between the volume change of the 
solid to that of liquid. E are E′  Young’s moduli in the plane of transverse iso-
tropy and in a direction normal to it, respectively. ν  and ν ′  are Poisson’s ra-
tios characterizing the lateral strain response in the plane of transverse isotropy 
to a stress acting parallel or normal to it, respectively. G′  is the shear modulus 
in planes normal to the plane of transverse isotropy. 

For Love waves, the displacement is only along y direction thus the non-zero 
displacement component of the solid and liquid media are ( )0, ,0v  and 
( )0, ,0V  respectively. These displacements are functions of x, z and time t. Then 
the equations of motion of transversely isotropic poroelastic solid by Biot [11] 
that is Equation (1) reduces to 
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We assume the propagation mode shapes of solid and liquid yu  and yU  
are 

( ) ( ) ( ) ( )e , e ,i kx t i kx tv z V zω ωφ ϕ+ += =                 (4) 

where t is time, ω is circular frequency, k is wave number and i is the complex 
unity. 

Substitution of Equation (4) into Equation (3) yields 
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From the second equation of (5), we get 
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Substitution of Equation (7) into the first equation of (5) we obtain, 
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In Equation (9), V3 is shear wave velocity as in Biot [11]. 
On simplification, Equation (8) gives 
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( ) 1 2e e ,i z i zz C Cγ γφ −= +                     (10) 

where C1 and C2 are constants. 
From Equation (7), ( )zϕ  can be obtained as 

( ) ( )12
1 2

22

e e .i z i zMg z C C
M

γ γ−= − +  

Substituting f (z) from Equation (10) into the first equation of (4), the dis-
placement uy is 

( ) ( )
1 2e e e .i kx ti z i zv C C ωγ γ +−= +

                  
(11) 

Following Equations (2) and (11), the only non-zero stress can be obtained as 
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From Equation (4), it can be shown that the normal strains of solid and liquid 
are zero, hence the dilatations of solid and liquid media vanish. Since the dilata-
tions of solid and liquid are zero, the liquid pressure s developed in the sol-
id-liquid aggregate following Equation (2) is zero. Thus, no distinction is made 
between a pervious and an impervious surface of the solid in case of Love waves. 

In the absence of body forces, the equations of motion [1] for viscous com-
pressible liquid are 

( ) 2 ,
3

l
l lp

t
η

ρ η∂  = −∇ + ∇ ∇⋅ + ∇ ∂ 

V V V
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where ( ), ,l l lu v wV  is the velocity vector, lρ  is density of liquid, lη  is coeffi-
cient of viscosity, p is over pressure. 

For Love waves, ( )0, ,0lv=V  and ∇⋅ =V 0 . Hence, Equation (13) reduces 
to 

2 ,l
l l

v
v

t
α

∂  = ∇ ∂                         
(14) 

where l l lα η ρ=  is the kinematic viscosity. 
Solution of Equation (14) can be written as 

( )e ei kx tz
lv D ωβ +=                        (15) 

where 2 2

l

ik ωβ
α

= −  and D is a constant. 

Following (15), stresses in compressible viscous liquid layer can be shown as 
( )e e .i kx tz

yz lD ωβτ η β +=                      (16) 

3. Frequency Equation 

For contact between the poroelastic layer and the viscous liquids, we assume that 
the stresses and displacement components are continuous at the interfaces z = 0 
and z = h. 

Thus, the boundary conditions are given by  
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at 0z = ; ( ) ( )1 1,yz yz lv i vτ σ ω= =  

at z h= ; ( ) ( )2 2, .yz yz li v vσ τ ω= =                  (17) 

Equation (17) results in a system of four homogeneous algebraic equations in 
four constants. 

For a nontrivial solution, the determinant of the coefficients must vanish. By 
eliminating these constants the frequency equation of wave propagation in an 
isotropic poroelastic layer bounded by viscous liquid layers is 
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On simplification Equation (18) reduces to 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 22 2 24 tan 2f f f fL h i Lγ ω η β η β γ ωγ η β η β   + = +    .   (19) 

Equation (19) represents frequency equation of Love waves in a transversely 
isotropic poroelastic layer bounded between two viscous liquids. 

If the upper liquid is inviscid i.e. ( )1 0lη = , then the above frequency Equation 
(19) reduces to 

( ) ( ) ( )2 2tan 2 0.fL h iγ γ ωη β− =                   (20) 

Equation (20) represents frequency equation of Love waves in a transversely 
isotropic poroelastic layer in contact with a viscous liquid. 

If both upper and lower liquids are inviscid then the frequency Equation (19) 
reduces to 

( )sin 0.hγ =                         (21) 

On simplification of Equation (21), we obtain the frequency ω  as 
2 2

2
3 2

πl LV k
Nh

ω = + , where 1,2,3,l =   

Here ω  represents frequency of Love waves in a transversely isotropic po-
roelastic layer when it is free from two viscous liquids. 

4. Numerical Work 

Frequency Equations (19)-(21) are investigated numerically by considering two 
distinct poroelastic materials with parameters N = 0.234, L = 0.8. The physical 
parameters of two viscous liquids are taken as 1 10.1, 0.5ρ η= =  and  

2 21, 2.5ρ η= = . Poroelastic medium is dissipative in nature and thus the wave 
number k is complex. The waves generated obey diffusion type process and 
therefore get attenuated. Let k = kr + iki, where kr is real and ki is the imaginary 
part of the wave number k. The real and imaginary part of the wave number 
corresponds to propagation and attenuation of waves. Hence, the phase velocity 
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Cp and attenuation coefficient δ  are, respectively 

 and .i
p

r r

k
C

k k
ω δ= =  

The effect of presence of viscous liquids on phase velocity against wave num-
ber (krh) in transversely isotropic poroelastic isotropic layer is depicted in Fig-
ure 2. Phase velocity is less when the solid layer is bounded between viscous liq-
uids than it is free from the liquids. Thus, presence of viscous liquids reduces the 
phase velocity of Love waves in transversely isotropic poroelastic layer. Also, 
phase velocity decreases as wave number increases. A sudden decrease observed 
in phase velocity when krh increases from 0.2 to 0.4 then onwards it decreases 
gradually. From Figure 3, a similar observation is found in case of poroelastic 
layer. In Figure 4, phase velocity against wavenumber is depicted for both trans-
versely isotropic poroelastic layer and poroelastic layer when each is bounded be-
tween viscous liquids. It is observed that phase velocity for transversely isotropic  

 

 
Figure 2. Phase velocity as a function of non-dimensional wave number—transversely 
isotropic poroelastic solid layer. 

 

 

Figure 3. Phase velocity as a function of non-dimensional wave number—poroelastic 
solid layer. 
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poroelastic layer is more compared to poroelastic layer. Phase velocity decreases 
as wave number increases and a sudden decrease observed in phase velocity 
when krh increases from 0.2 to 0.4 then onwards it decreases gradually. Phase 
velocity at the interface of solid layer and lower viscous liquid is plotted in Fig-
ure 5 for both transversely isotropic poroelastic layer and poroelastic layer. 
Phase velocity for transversely isotropic poroelastic layer is very much higher 
than that of poroelastic layer. A sudden decrease observed in phase velocity 
when krh increases from 0.2 to 0.4 and then from 0.6 to 1 and phase velocity in-
creases when krh increases from 0.4 to 0.6. Phase velocity against wave number 
in the absence of liquids is presented in Figure 6. A sudden decrease is observed 
in phase velocity when krh increases from 0.2 to 0.4 then onwards it decreases 
gradually. Attenuation as a function of non-dimensional wave number is depicted 
in Figure 7 for transversely isotropic poroelastic layer bounded by viscous liquids 
for different values of phase velocity i.e. m = 3, 5, 10 and 15. It is ob served  

 

 

Figure 4. Phase velocity as a function of non-dimensional wave number—solid layer 
bounded between two viscous liquids. 

 

 

Figure 5. Phase velocity as a function of non-dimensional wave number—solid layer in 
contact with viscous liquid. 
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Figure 6. Phase velocity as a function of non-dimensional wave number—solid layer. 
 

 

Figure 7. Attenuation as a function of non-dimensional wave number—transversely iso-
tropic solid layer bounded between two viscous liquids. 

 
that attenuation increases for higher values of phase velocity. A similar pheno-
menon is noticed in the case of poroelastic layer bounded by viscous liquids 
from Figure 8. But the attenuation for poroelastic layer is less when compared to 
transversely poroelastic layer. 

5. Conclusions 

A study of propagation of Love waves in an infinite poroelastic layer bounded by 
viscous liquids leads to the following conclusions: 

1) Presence of upper and lower viscous liquids decreases phase velocity of 
Love waves for both transversely isotropic poroelastic layer and poroelastic layer. 

2) Phase velocity of Love waves is more in transversely isotropic poroelastic 
layer than in poroelastic layer when they are bounded between viscous liquids as 
well as when they are free from viscous liquids. In both cases phase velocity de-
creases gradually.  

3) Phase velocity of Love waves in transversely isotropic poroelastic layer is 
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Figure 8. Attenuation as a function of non-dimensional wave number—poroelastic solid 
layer bounded between two viscous liquids. 

 
very much higher than that of poroelastic layer when they are in contact with 
lower viscous liquid. 

4) Attenuation in transversely isotropic poroelastic layer when it is bounded 
by viscous liquids is more when compared to the case of poroelastic layer bounded 
by viscous liquids. In both the cases, attenuation increases as phase velocity and 
wave number increase. 
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