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Abstract 
The purpose of this paper is to extend the concept topological entropy to 
nonautonomous linear systems. Next, we shall give estimation of the topo-
logical entropy for the class of bounded linear equations on n . Finally, we 
are about to investigate the invariant properties of one through the transfor-
mations such as topological conjugacy, topological equivalence and kinemat-
ically similar and then show that topological entropy of one is equal to sum of 
positive Lyapunov characteristic exponents.  
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1. Introduction and Preliminaries 

Topological entropy, which describes the complexity of a system, plays an im-
portant role in topological dynamical systems. It was first induced by Adler et al. 
[1] as an invariant of topological conjugacy. Later, Bowen [2] gave equivalent 
definition of topological entropy which measures for how fast the solutions of 
dynamical system move part. For a linear map on n , topological entropy is 
given by the sum of the logarithms of the operator’s eigenvalues with absolute 
value greater than 1, see [2]. Recently, Hoock generates for certain infi-
nite-dimensional linear systems, see [3]. In particular, he also showed that topo-
logical entropy of a strongly continuous semigroup is given by sum of real parts 
of the unstable eigenvalues of the infinitesimal generator, if the unstable part is 
finite-dimensional. The main result of present paper is a generalization of sever-
al results for nonautonomous linear systems in the finite-dimensional case. 
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Now we introduce some basic notations for nonautonomous differential equ-
ations. Let the linear equation  

( ) ,x A t x=                             (1) 

where ( )A t  is the real matrix function which is uniformly bounded on + . In 
this paper, we consider ( )X t  is a fundamental matrix solution of (1). For the 
basic theory of this Equation (1), we refer to the book of Dalecki et al. [4]. In or-
der to describe topological entropy for (1), we introduce the concept of spanning 
and separated sets following [2]. For any t +∈ , define a metrix ,t Xd  on n  
by  

( )
[ ]

( ) ( ), 0,
, : max for all , .n

t X t
d x y X x X y x y

τ
τ τ

∈
= − ∈  

Let K be a compact subset of n . For any 0ε > , a subset nR ⊂   is said to 
be an ( ),t ε -spanning set of K, if for any x K∈  there exists y R∈  such that 

( ), ,t Xd x y ε≤ . Let ( ), , , ,r t K A Xε  denote the minimal cardinality of any 
( ),t ε -spanning set of K. 

Analogously, a set S K⊂  is said to be an ( ),t ε -separated set of K, if 
,x y S∈ , x y≠ , implies ( ), ,t Xd x y ε> . Let ( ), , , ,s t K A Xε  denote the max-

imal cardinality of any ( ),t ε -separated set of K.  
Lemma 1.1. Let ( )X t  is a fundamental matrix solution above. Assume 

, 0tε >  and nK ⊂   be a compact set. We have that  

( ) ( ) ( ) ( ), , , , , , , , and ,2 , , , , , , , .r t K A X s t K A X s t K A X r t K A Xε ε ε ε≤ ≤  

Proof. Suppose S is the ( ),t ε -separated set with maximal cardinality. By de-
finition, if y K∈  then ( ), ,t Xd x y ε≤  for all x S∈ . Therefore S is the ( ),t ε
-spanning, it means the first inequality hold. To prove the second one, we set R 
is the minimal ( ),t ε -spanning set. Then we have  

( ) ( )( )1

0
, ,

x R t
K X B X x

τ
τ τ ε−

∈ ≤ ≤

=
 

 

where ( ),B x r  is a ball, centre x and radius r. Let S K⊂  is the maximal 
( ), 2t ε -separated set. If ( ) ( )( )1

1 2
0

, ,
t

x x X B X y
τ

τ τ ε−

≤ ≤

∈


 for some y R∈  
then  

( ) ( )
( ) ( ) ( ) ( ) [ ]

1 2

1 2 2 , 0, .

X x X x

X x X y X y X x t

τ τ

τ τ τ τ ε τ

−

≤ − + − ≤ ∀ ∈
 

It means 1 2x x=  (since the definition of ( ),t ε -separated set) and hence the 
second inequality is proved.                                         


 

By previous lemma, the following definition of topological entropy makes 
sense.  

Definition 1.1. Let 0ε > . For a compact set nK ⊂   and ( )X t  is a fun-
damental matrix solution of (1), topological entropy for ( )X t  is given by  

( ) ( )

( )

0compact

0compact

1, sup lim limsup log , , , ,

1sup lim limsup log , , , , .

K

K

h A X r K A X

s K A X

ε τ

ε τ

τ ε
τ

τ ε
τ

+

+

→ →∞

→ →∞

=

=
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Remark 1.1. If ( )A t A=  is a constant matrix for all t∈  then the defini-
tion above coincide the definition of A.-M. Hoock (see [3]), i.e. ( ) ih A λ= ∑ , 
The sum is taken over all eigenvalues iλ  of A with 0iλ > .  

Remark 1.2. If ( )Y t  is other fundamental matrix solution of (1) then 
( ) ( )h X h Y= . Indeed, by [5] there is a converse matrix C such that 
( ) ( )X t Y t C= . If x is belong to ( ),t ε -spanning set of a compact set K for 
( )X t  then x is the same for ( )Y t . Hence, ( ) ( )h X h Y≤ . Similarly, one also 

have ( ) ( )h Y h X≤ . It is our purpose.  
If we use A to present the Equation (1), by Remark 1.2, we define the topolog-

ical entropy for (1), denote ( )h A , as following  

( ) ( ),h A h A X=  

where X is some fundamental matrix solutions. 
Remark 1.3. Since all norms on n  are equivalent so ( )h A  does not de-

pend on the norm chosen.  
We now give an outline of the contents of this paper. In Section 2, one gives 

the upper estimation for topological entropy for the class of bounded equations. 
In particular, we are going to show that one is less than nM where n is dimen-
sion of space and M upper bounded of ( )A t  for all t +∈ . In Section 3, we 
concentrate the invariant property of topological entropy. As consequence, one 
shall prove that topological entropy of the periodic equations is equal to the sum 
of all positive Lyapunov characteristic exponents of them. Finally, Section 4, we 
shall show that topological entropy of (1) is equal to sum of positive Lyapunov 
characteristic exponents. 

2. Estimation of Topological Entropy for Bounded Linear  
Equation 

In this section we shall give the estimation of topological entropy for bounded 
linear equation. We shall begin with the following technique lemma. 

Assuming ( ) ( ){ }:nK diam Kδ δ= ⊂ < .  
Lemma 2.1. Let any 0δ > . Then  

( ) ( )sup , .
K

h A h A K
∈

=


                       (2) 

Proof. It is clear that ( ) ( )sup ,
K

h A K h A
∈

≤


. Converse, we know that for any 

nK ⊂  , one have 
1

m

i
k

K K
=

∈


 and  

( ) ( )
1

, , , , , , .
m

i
i

s t A K s t A Kε ε
=

≤ ∑  

Fix , 0t ε > . Choose ( ),i tK ε  such that  

( )( ) ( ), 1
, , , max , , , .ii t i m

s t A K s t A Kεε ε
≤ ≤

=  

Then 

( ) ( ), , , , , , is t A K m s t A Kε ε≤ ⋅  
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and so 

( ) ( ), , , log log , , , .is t A K m s t A Kε ε≤ +  

Since there are infinity sets iK , so, we can choose kt →∞  such that  

( ) ( )1 1lim log , , , limsup log , , ,kk tk

s t A K s t A K
t t

ε ε
→∞ →∞

=  

and ( ),ki tK ε  is fixed set (i.e. ( ) ( ),k ii tK K εε =  for any k). Therefore  
( ) ( )( ), , , , is A K s A K εε ε≤ . Similarly, we also can choose 0kt →  such that 

( )tiK ε  is fixed set. Conclusion,  

( ) ( )
1

, max , .ii m
h A K h A K

≤ ≤
≤  

Finally, any compact subsets K of n  can be covered by a finite number of 
balls 1, , mB B  of diameter 

2
δ  and hence  

( ) ( )
1

, max , ,ii m
h A K h A K B

≤ ≤
≤   

which give the relation (2).                                          


 
The following theorem is the main theorem in this section.  
Theorem 2.1. Assume the Equation (1) has matrix function ( )A t  satisfies 
( )A t M≤  for all t +∈ . Then  

( ) ,h A Mn≤  

where n is a dimension of matrix ( )A t .  
Proof. Let m is the Lebesgue measure on n , ( )X t  a fundamental matrix 

solutions of (1). First of all, we is proving the following claim  

( ) ( ) ( )1

0 0

1lim liminf log 0, .
t t

h A m X B
tε τ

τ ε−

→ →∞ ≤ ≤

 
=  

 


             (3) 

where we denote ( ),B a r  is the ball whose centre at a with radius r. Indeed, let 
K is a compact subset of n  with ( ) 0m K > . If R is a ( ),t ε -spanning set of K 
then  

( ) ( )( ) ( ) ( )1 1

0
, 0, .

x S x t x S t
K X B X x x X B

τ τ
τ τ ε τ ε− −

∈ ≤ ≤ ∈ ≤ ≤

 
⊂ = + 

 
   

 

It implies  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0

1

0

1

0

, , , 0,

1 1 1log log 0, log , , ,

1 1liminf log 0, limsup log , , , .

t

t

t tt

m K r t A K m X B

m K m X B r t A K
t t t

m X B r t A K
t t

τ

τ

τ

ε τ ε

τ ε ε

τ ε ε

−

≤ ≤

−

≤ ≤

−

→∞ →∞≤ ≤

 
≤ ⋅  

 
 

⇔ − ≤ 
 

 
⇔ ≤ 

 







 

Hence,  

( ) ( ) ( )1

0 00

1 1lim liminf log 0, lim limsup log , , , .
t tt

m X B r t A K
t tε ετ

τ ε ε
+ +

−

→∞→ → →∞≤ ≤

 
≤ 

 


 

The last relation is true for all the compact sets K in n . It means  
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( ) ( ) ( )1

0 0

1lim liminf log 0, .
t t

h A m X B
tε τ

τ ε
+

−

→∞→ ≤ ≤

 
≥  

 


            (4) 

To prove the converse inequality, suppose K δ∈   with δ  is a arbi-
trary number such that 1δ < . Suppose S is an ( ),t ε -separated subset of K. 
Then  

( ) ( ) ( ) ( )1 1

0 0
, , .
2 2t t

X B X x X B X y
τ τ

ε ετ τ τ τ− −

≤ ≤ ≤ ≤

       = ∅      
      



 

 

for all x y≠  in K. The well-known result that  

( )
2

,
1

2

n

n
nV r r

n
π

=
 Γ + 
 

                      (5) 

where Γ  is Euler’s gamma function, is the volume for ball of radius n. We have 

( ) ( ) ( )

( )

( ) ( )

1

0

1

0

1

0

1 ,
2

0,
2

, , , 0, .
2

x S t

x S t

t

V m X B X x

m x X B

s t A K m X B

τ

τ

τ

εε τ τ

ετ

εε τ

−

∈ ≤ ≤

−

∈ ≤ ≤

−

≤ ≤

  + ≥   
  

   = +   
   

  = ⋅   
  

 

 



 

Therefore,  

( ) ( ) ( )

( ) ( )

1

0

1

0 0 0

log 11 1log , , , log 0,
2

1 1lim limsup log , , , lim liminf log 0, .
2

t

tt t

V
s t A K m X B

t t t

s t A K m X B
t t

τ

ε ε τ

ε εε τ

εε τ
+ +

−

≤ ≤

−

→∞→ →→∞ ≤ ≤

+   ≤ −   
  

  ⇔ ≤   
  





 

Because the last inequality hold for all ( )K δ∈ , by Lemma 2.1, we obtain  

( ) ( ) ( )1

0 0

1lim liminf 0, .
t t

h A m X B
tε τ

τ ε
+

−

→∞→ ≤ ≤

 
≤  

 


             (6) 

From (4) and (6), the desired our claim hold. For any nx∈ , one have  

( ) ( ) ( ), .X t x X t x t +≤ ∀ ∈  

Therefore,  

( )
( ) ( ) ( )10, 0, , .B X t B t

X t
ε ε− +

 
⊂ ∀ ∈  

 
  

Hence,  

( )
( ) ( )1

0
0, 0, .

t
B X B

X t τ

ε τ ε−

≤ ≤

   
⊂       


 

It leads to  

( ) ( )( ) ( ) ( )1

0

1 1 1log log 0, log 0,
n

t
X t m B m X B

t t t τ
ε τ ε−

≤ ≤

 
− + ≤  

 


 (by (5)) 
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or  

( ) ( ) ( )1

0

1liminf log 0, limsup log .
t tt

nm X B X t
t tτ

τ ε−

→∞ →∞≤ ≤

 
≤ 

 


 

On the other hand, ( ) eMtX t ≤  (see J. L. Dalecki [4]), let 0ε → , the last 
inequality becomes  

( ) ( )1

0 0

1lim liminf log 0, .
t t

m X B Mn
tε τ

τ ε−

→ →∞ ≤ ≤

 
≤ 

 


 

Compare with the claim (3), the desired inequality hold.                


 

3. Topological Entropy and the Transformations 

Let the equation  

( ) ,x B t x=                            (7) 

where B is the real matrix function which is also uniformly bounded on + . Let 
( )X t , ( )Y t  are fundamental matrix solutions of (1) and (7), respectively. The 

solutions of the Equations (1) and (7) are said to be topological conjugate if 
there is a homeomorphism : n nh →   such that  

( ) ( ) ( ) ,h X t x Y t h x=   

for every t∈  and nx∈ . 
To start this section, we give the question: Is topological entropy invariant 

property with the topological conjugacy? The first, one considers the simple 
example. Let the two equations, namely A, B, corresponding,  

0 0
and ,

0 0
a c

x x y y
b d

   
= =   − −   
   

where , , , 0a b c d >  and a c≠ . As in [3], A.-M. Hoock shown that 
( ) ( )h A a h B c= ≠ = . On the other hand, by Theorem 2.50 in [5] two the equa-

tions above are topological conjugacy. Hence, topological entropy is not inva-
riant property with the topological conjugacy. The following, we shall give a 
compare critical of topological entropy in term of homeomorphism h and a suf-
ficient condition of homeomorphism h such that topological entropy is inva-
riant.  

Proposition 3.1. Let ( )X t , ( )Y t  are fundamental matrix solutions of (1) 
and (7), respectively. Assuming there exists homeomorphism : n nh →   sa-
tisfies h X Y h=  . Then the following statements hold  

1) h is a noncontraction (i.e. ( ) ( )x y h x h y− ≤ − ) then ( ) ( )h A h B≤ ,  
2) h is a nonexpanding (i.e. ( ) ( )h x h y x y− ≤ − ) then ( ) ( )h B h A≤ .  
Proof. Without lost the generation, we suppose that h is nonexpanding map. 

Let AK  is a compact set in n  and S is a separated set of AK  with Equation 
(1) which is has cardinality is equal to ( ), , , ,As t K A Xε . Let ,x y S∈ , by defini-
tion of S, we obtain ( ), ,t Xd x y ε> . Since the hypothesis of (1), one have esti-
mate  
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( ) ( ) ( ) ( )

( )( ) ( )( ) ( )
0

,0

max

max , .
t

t Xt

Y h x Y h x

h X x h X x d x y
τ

τ

τ τ

τ τ ε
≤ ≤

≤ ≤

−

= − = >
 

Therefore, ( )h S  is ( ),t ε -separated set of ( )Ah X  with Equation (7). 
Hence  

( ) ( )( ), , , , , , , , .A As t K A X s t h K B Yε ε≤  

It implies  

( )

( )( )

( )

0compact

0compact

0compact

1sup lim limsup log , , , ,

1sup lim limsup log , , , ,

1sup lim limsup log , , , , .

A

A

B

A
K t

A
K t

B
K t

s K A X

s h K B Y

s K B Y

ε

ε

ε

τ ε
τ

τ ε
τ

τ ε
τ

+

+

+

→ →∞

→ →∞

→ →∞

≤

≤

 

In other word, ( ) ( )h A h B≤ . The proof of (2) is similar.               


 
Corollary 3.1. If h is a isometric homeomorphism such that h X Y h=   

then  

( ) ( ).h A h B=  

Remark 3.1. For the case of discrete, topological entropy is invariant to topo-
logical conjugacy, but it is no longer true for continuous case, even for the coef-
ficient matrix is constant. This implies that topological entropy becomes more 
complex in continuous case. In other words, topological conjugacy cannot pre-
serve the speed of the lose information for nonautonomous linear equations.  

The following, we are going to consider property of topological entropy with 
topological equivalence. 

We say that (1) and (7) are topological equivalence (see [6]) if there exists a 
continuous function : n nh × →    with the following properties  

1) ( ),0 0h t =  and ( ), 0h t x →  as 0x →  uniformly with respect to t,  
2) : n n

th →  , defined by ( ) ( ),th x h t x=  is a homogeneous for each fixed 
t,  

3) : n ng × →   , defined by ( ) ( )1, tg t x h x−= , is continuous and has 
property (1) also,  

4) If ( )x t  is a solution of (1) then ( )( ),h t x t  is a solution of (7).  
Remark 3.2. Condition (4) implies the equality  

( )( ) ( ) ( ), 0, .h t X t x Y t h x=  

Remark 3.3. A straightforward verification shows that topological equivalence 
is an equivalence relation in the class of nonautonomous equations.  

The Equations (1) and (7) are said to be kinematically similar if there exists a 
continuous differential invertible matrix function ( )S t  (called a kinematic si-
milarity) such that ( )S t  and ( )1S t−  are bounded and such that the transfor-
mation ( )x S t v=  takes the solutions of (1) on to the solutions of (2).  

Remark 3.4. If the Equations (1) and (7) are kinematically similar, then they 
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are topological equivalence. Indeed, in the definition of topological equivalence 
it suffices to set ( ) ( ),h t x S t x=  where ( )S t  is the function realizing the ki-
nematically similarity.  

The following theorem presents the sufficient condition of topological equi-
valence which prevents topological entropy. 

Proposition 3.2. Let (1) and (7) are topological equivalence with the homeo-
morphism ,h g  satisfy  

( ) ( ) ( ) ( ) ( ) ( )1 2
2 2, , and , , ,h t x h t y t x y g t x g t y t x yα αγ γ− ≤ − − ≤ −  

where ( ) ( )1 2,t tγ γ  are scalar bounded function on n  and 1 2,α α  positive 
constants. Then ( ) ( )h A h B= .  

Proof. Let ( )X t , ( )Y t  are fundamental matrix solutions of (1) and (7), re-
spectively. Suppose n

AK ⊂   be a compact set and AR  is a minimal ( ), ,t Aε
-spanning of AK . Then ( )0, Ah R  is a minimal ( ), ,t Bε -spanning of 
( )0, Ah K . Indeed, let any ( )0, Ax h K∈ , by definition of spanning set, there ex-

its Ay R∈  such that ( )( ), , 0,t Xd y g x ε≤ . We have following estimation  

( )( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

( )( )

1

1

, 0

0

10

1 , 1

, 0, max 0,

max , 0, ,

max 0,

, 0, ,

t Y t

t

t

t X

d x h y Y x Y h y

h X g x h X y

X g x X y

M d y g x M

τ

τ

α

τ

α

τ τ

τ τ τ τ

γ τ τ τ

ε

≤ ≤

≤ ≤

≤ ≤

= −

= −

≤ −

≤ ≤

 

where ( )1 1supM tγ
+

=


. It implies  

( ) ( )( )1
1, , , , , , 0, , , .A Ar t K A X r t M h K B Yαε ε≤  

Hence,  

( ) ( )( )1
1

0 0
lim limsup , , , , lim limsup , , 0, , ,A A

t t
r t K A X r t M h K B Yα

ε ε
ε ε

+ +→ →→∞ →∞
≤  

or  

( ) ( )( ) ( )1
1

0compact
sup lim limsup , , 0, , , .

A
A

K t
h A r t M h K B Y h Bα

ε
ε

+→ →∞
≤ ≤  

By the similar proof above, we also have ( ) ( )h B h A≤ . The proposition is 
complete.                                                        


 

Remark 3.5. It is clear that if (1) and (7) are kinematically similar then they 
satisfy all hypothesis of previous proposition with ( ) ( )1 t S tγ = , ( ) ( )1

2 t S tγ −= , 

1 2 1α α= =  (where ( )S t  is kinematic similarity). Therefore the class of ki-
nematically similar nonautonomous equations is invariant topological entro-
py.  

Corollary 3.2. If (1) is periodic equation then  

( ) ,ih A λ= ∑  

where the sum take all the positive Lyapunov characteristic exponents of that 
equation.  

Proof. By Theorem 2.3.1 in [5] and from previous remark, we obtain 
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( ) ( )h A h B=  where ( )B t  are a constant matrix. On the other hand, by [3], 
( ) ih B λ= ∑  where the sum takes all the positive eigenvalues of B. Using [5] 

again, we have the complete proof.                                   


 

4. Topological Entropy and Lyapunov Exponents 

In this section, we show that topological entropy of the Equation (1) is equal to 
sum of positive Lyapunov characteristic exponents. 

Given a fundamental matrix solution X of (1), consider the quantities  

( )1limsup log , 1, , ,i i
t

X t e i n
t

λ
→+∞

= =   

where ie  denotes the ith standard unit vector. When 11
n
i λ
=∑  is minimized 

with respect to all possible fundamental matrix solutions, then the iλ  are called 
the Lyapunov exponents, or Lyapunov characteristic numbers, and the corres-
ponding fundamental matrix solution is called a normal basic. 

In this section, we can always work with a normal basis ( )X t  which has or-
dered Lyapunov exponents  

0 01 2 1 0 .n n nλ λ λ λ λ−−∞ < ≤ ≤ ≤ ≤ < ≤ ≤ < ∞   

With these definitions we get the following theorem.  
Theorem 4.1. 

( )
0

.
i

ih A
λ

λ
>

= ∑  

Proof. Let ( )K ε∈  fixed. Assume that we can choose a fix point Kx K∈  
such that K is covered by a box  

( ) ( )
1

Box 0 : , 1, , ,
n

K K i i i
i

x x a X e a i nε ε
=

 = + − ≤ ≤ = 
 

∑ 
 

where ie  is the ith unit vectors. Suppose the fundamental matrix solution is ar-
ranged in the order a increase of the Lyapunov exponents. For each 0, 0t β≥ > , 
we consider the finite subset of ( )Box Kx  which is given by  

( ) ( ) ( ) ( ) ( )

0

, , 0 : , , .i i

i

n
t ti

K K i it
i n

j
x t x X e j e e

e
λ β λ β

λ β

ε
γ β + +

+
=

     = + = −      
∑   

Claim 1. The subset ( ), ,Kx tγ β  is an ( ),t nε -spanning set of K. 
Proof of Claim 1. 
For any x K∈  then x can be written the form  

( )
1

0
n

K i i
i

x x a X e
=

= +∑  

for some , 1, ,ia i nε ε− < < =  . For every 0β >  small enough, one choose 
( ) ( ){ }, ,i it t

ik e eλ β λ β+ +   ∈ −      such that  

( ) ( ) ( )0, , ,
i i

i
i t t

k
a i n n

e eλ β λ β

ε ε
+ +

− ≤ = 
 

We now set  
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( ) ( ) ( )
0

0 , , ,
i

n
i

K i Kt
i n

k
y x X e x t

e λ β

ε
γ β

+
=

= + ∈∑  

then for any 00 t t≤ ≤  we get  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0

0

0 0
1

1

0 0 0
1

0

0 0 .
i

n

K i i
i

n n
i

i i i it
i i n

X t x X t x a X t X e

k
X t y a X t X e a X t X e

e λ β

ε
=

−

+
= =

= +

 = + + − 
 

∑

∑ ∑
 

From the last equation and definition of Lyapunov characteristic exponents, 
one obtain  

( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

( )

0

0

00
0

0

0 0

1

0 0
1

1

1

0 0
i

i
i

i

n n
i

i i i it
i i n

tn n
t

t
i i n

X t x X t y

k
a X t X e a X t X e

e

ee
e

λ β

λ β
λ β

λ β

ε

εε

−

+
= =

+−
+

+
= =

−

≤ + −

≤ +

∑ ∑

∑ ∑

 

Choose 0β >  small enough such that 0iλ β+ <  for all 01, , 1i n= − . The 
last inequality implies  

( ) ( ) [ ]0 0 0, 0, .X t x X t y n t tε− ≤ ∈  

Hence, the Claim 1 is proved. 
It is clear that ( ),t nε -spanning set ( ), ,Kx tγ β  have  

( ) ( )( )
0

# , , 2 1 .i
n

t
K

i n
x t e λ βγ β +

=

 ≤ + ∏  

Therefore, we have following estimation  

( )

( )

( )( )
( )

0

0

0

1limsup log , , , ,

1limsup # , ,

1limsup log 2 1

1limsup log3

i

i

K

n

i n

n

i n

n

i
i n

r n K A X

x

e

e

n

τ

τ

λ β τ

τ

λ β τ

τ

τ ε
τ

γ τ β
τ

τ

τ

β λ

→∞

→∞

+

→∞ =

+

→∞ =

=

≤

 ≤ + 

 ≤  

= +

∑

∑

∑

 

Since β  is a arbitrary small positive constant, we have  

( ) ( )
0

0compact

1sup lim limsup log , , , , .
n

i
K i n

h A r K A X
ε τ

τ ε λ
τ+→ →∞ =

= ≤ ∑          (8) 

To order the reverse inequality, let ( ),B x ε  is a ball with centre x and radius 
ε . Denote  

( ) ( ) ( )

0

, 0 : , , .
2

ii
i

n
tti

i it
i n

j
x t x X e j e e

e
λ βλ

λ

ε
γ +

=

    = + = −      
∑   
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We would prove the following claim. 
Claim 2. The subset ( ),x tγ  is an ( ), 2nt e λε − -separated set of the ( ),B x ε . 
Proof of Claim 2. 
Let two distinct points in ( )xγ , namely  

( ) ( )
0 0

0 and 0
2 2i i

n n
i i

i it t
i n i n

j k
x x X e y x X e

e eλ λ

ε ε
= =

= + = +∑ ∑  

for some { }, , ,i it t
i ij k e eλ λ   ∈ −     . Let [ ]0 1 0,t t t= − ∈  we get  

( ) ( )

( ) ( )

( )

( )

0

0

0
0 0

0 0

0

1

0
2

2

2 where 0

2.

i

i

i

i

n

n
i i

it
i n

n
ti i

t
i n

i i

X t x X t y

j k
X t X e

e
j k

e
e

e j k

e

λ

λ
λ

λ

λ

ε

ε

ε

ε

=

−

=

−

−

−

−
=

−
≥

≥ − >

≥

∑

∑  

Hence, we obtain  

( )( )

( )

( )
0

0

0

1limsup log , , , , ,

1limsup # ,

1limsup log 2 1

1limsup log3

.

i

i

n

i n

n

i n

n

i
i n

s n B x A X

x

e

e

τ

τ

λ τ

τ

λ τ

τ

τ ε ε
τ

γ τ
τ

τ

τ

λ

→∞

→∞

→∞ =

→∞ =

=

≥

 ≥ + 

 ≥  

≥

∑

∑

∑

 

Since ( )h A  is supermum of ( ),h A K , take all ( )K ε∈  so  

( )
0

.
n

i
i n

h A λ
=

≥ ∑                          (9) 

Combining (8) and (9), we conclude the proof.                       
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