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Abstract 
In this work, we discuss the topological transformation of quantum dy-
namics by showing the wave dynamics of a quantum particle on different 
types of topological structures in various dimensions from the fundamental 
polygons of the corresponding universal covering spaces. This is not the 
view from different perspectives of an observer who simply uses different 
coordinate systems to describe the same physical phenomenon but rather 
possible geometric and topological structures that quantum particles are 
endowed with when they are identified with differentiable manifolds that 
are embedded or immersed in Euclidean spaces of higher dimension. We 
present our discussions in the form of Bohr model in one, two and three 
dimensions using linear wave equations. In one dimension, the fundamen-
tal polygon is an interval and the universal covering space is the straight 
line and in this case the standing wave on a finite string is transformed into 
the standing wave on a circle which can be applied into the Bohr model of 
the hydrogen atom. In two dimensions, the fundamental polygon is a 
square and the universal covering space is the plane and in this case, the 
standing wave on the square is transformed into the standing wave on dif-
ferent surfaces that can be formed by gluing opposite sides of the square, 
which include a 2-sphere, a 2-torus, a Klein bottle and a projective plane. In 
three dimensions, the fundamental polygon is a cube and the universal cov-
ering space is the three-dimensional Euclidean space. It is shown that a 
3-torus and the manifold 1K S×  defined as the product of a Klein bottle 
and a circle can be constructed by gluing opposite faces of a cube. Therefore, 
in three-dimensions, the standing wave on a cube is transformed into the 
standing wave on a 3-torus or on the manifold 1K S× . We also suggest that 
the mathematical degeneracy may play an important role in quantum dy-
namics and be associated with the concept of wavefunction collapse in 
quantum mechanics. 
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1. Introductory Summary 

In our previous works on spacetime structures of quantum particles, we showed 
that quantum particles can be endowed with various geometric and topological 
structures of differentiable manifolds and classified according to the mathemat-
ical structures that are determined by the wavefunctions that are used to express 
the geometrical objects associated with the quantum particles, such as the Gaus-
sian curvature and the Ricci scalar curvature. We also showed that many physi-
cal properties associated with quantum particles can be determined only by the 
topological structures rather than the geometric structures, such as angular mo-
mentum, electric charge and magnetic monopole [1] [2]. These physical entities 
can be classified according to topological invariants of the corresponding ho-
motopy groups. Therefore, quantum dynamics is also related closely to the to-
pological structures of a quantum particle [3]. By viewing quantum particles as 
differentiable manifolds, we also discussed their motion by extending the isome-
tric transformations in classical physics to the isometric embedding between 
smooth manifolds [4]. In mathematics and physics, the motion of physical ob-
jects in an ambient space can be described by geometric transformations under 
which the properties of the configuration of the objects remain unchanged, such 
as isometric transformations that preserve the distance from a configuration 
space onto itself. In classical dynamics, the motion of solid objects can be de-
scribed by the Poincaré group, which is the non-abelian Lie group of Minkowski 
spacetime isometries [5] [6]. If we consider quantum particles as differentiable 
manifolds, then we will need to extend the description of the dynamics of quan-
tum particles in classical physics as point-particles to the dynamics of particles as 
differentiable manifolds in an ambient space. Furthermore, being viewed as dif-
ferentiable manifolds, quantum particles are assumed to possess internal geome-
trical and topological structures that in turns possess internal symmetries that 
give rise to intrinsic dynamics. If quantum particles are assumed to remain as 
stable structures, then their intrinsic dynamics should be described by smooth 
isometric transformations, which are smooth isometric embeddings into the 
spatiotemporal manifold. The smooth isometric embeddings of differentiable 
manifolds can also be viewed as geometric solitons which are formed by a con-
tinuous process of materialising spacetime structures rather than the motion of a 
solid physical object through space with respect to time as described in classical 
physics. However, even though it seems reasonable to apply smooth isometric 
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embeddings into quantum dynamics in which quantum particles are assumed to 
possess stable geometric structures, such approach will leave out the role played 
by the topological structures of the differentiable manifolds associated with 
quantum particles during a dynamical evolution. We may suggest that there 
should be some kind of internal mechanism that controls the dynamical evolu-
tion of the topological structures of a quantum particle responsible for its physi-
cal displacement as a differentiable manifold. Such control theories should be 
rigorously formulated in terms of conformal embeddings, conformal mappings 
and immersions in differential geometry and topology. In fact, recent develop-
ments have shown that unsmooth isometric embeddings can be performed to-
pologically in the sense that these isometric embeddings can change the shape of 
a physical object without changing its scale. For example, as will be discussed in 
details in Section 2, the common 2-torus is normally defined as a dough-
nut-shaped surface embedded in three-dimensional Euclidean space 3R . The 
2-torus can be constructed from the fundamental square by identifying opposite 
sides of the square, and the embedding requires the fundamental square to be 
stretched in the third spatial dimension therefore distorts distances. Even so, it is 
shown that isometric embeddings of the square torus into the ambient 
three-dimensional Euclidean space can also be performed by modifying the 
standard torus using 1C  regularity of isometric embeddings to construct 1C  
fractal structures from an infinite sequence of waves of corrugations [7]. In spite 
of that, as illustrations, in this work we will only discuss the topological trans-
formations of quantum dynamics by showing the wave dynamics of a quantum 
particle on different types of topological structures in various dimensions from 
the fundamental polygons of the corresponding universal covering spaces. We 
present and illustrate our discussions in the form of Bohr model in one, two and 
three dimensions. It should be emphasised that these should not be regarded as 
the view from the different perspectives of an observer who simply uses different 
coordinate systems to describe the same physical phenomenon but possible 
geometric and topological structures that quantum particles are endowed with. 

At the macroscopic scale where physical objects are observable, the shape of a 
physical object depends on the conditions of the environment to which the ob-
ject belongs. In general, physical objects can change their shapes and other 
physical features to imitate their environments during the process of evolutio-
nary adaptations. The evolutionary adaptations can be represented in terms of 
mathematics as processes of geometric and topological evolutions. If we adopt 
the concept of self-similarity from the fractal theory then at the microscopic 
scale within the domain of quantum particles we may assume that quantum par-
ticles may also have the ability to alter their endowed geometric and topological 
characteristics to adapt to the environments which are assumed to be composed 
of physical fields. These physical fields manifest themselves as forces to deter-
mine the mathematical structures of quantum particles. We will assume that the 
topological structures of their associated differentiable manifolds also play an 
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important role in determining the physical structure of a quantum particle and 
its quantum dynamics. If quantum particles are formed from mass points by 
contact forces then they may have the ability to change their topological struc-
tures to adapt the topological structures of the physical system in which they are 
part of. For example, if an electron moves in a straight line with a constant speed 
then it will keep its shape as a particle whose particular geometric and topologi-
cal structures are stable. However, if it is forced to move in a circle, like moving 
around the nucleus of a hydrogen atom, then it can turn into the shape of a 
closed string which vibrates as a standing wave. At each moment of time, the 
spatial shape of the vibrating string forms a one-dimensional differentiable ma-
nifold. Therefore, the geometric and topological processes of evolutionary adap-
tion of quantum particles will determine whether the dynamics is a classical or 
quantum dynamics. This can be described mathematically as follows. In classical 
dynamics, the motion of a particle with constant speed in a straight line and the 
motion of an identical particle with constant speed in a circle are two different 
dynamical processes that are formulated differently using Newton’s second law 
of motion 2 2d dm t =r F . For the particle that moves in a straight line with 
constant speed v the acceleration is equal to zero therefore the external net force 
acting on it is equal to zero. In this case the position x along the straight line is 
described as 0x vt x= + . On the other hand, for the particle which moves in a 
circle with constant speed v the acceleration a is nonzero and is related to the 
constant speed v of the motion as 2a v r= . However, these two seemingly dis-
tinctive classical dynamics are in fact the same for the case of the electron mov-
ing around the nucleus of the Bohr model of a hydrogen atom. To the electron, 
moving in a circle is also an inertial motion as in the case of moving in a straight 
line as long as the speed is constant. This problem of dual character of classical 
and quantum dynamics is probably due to the fact that quantum particles may 
possess internal geometric and topological structures which may be identified 
with those of differentiable manifolds. It could be possible that physical laws 
obeyed by quantum particles are related more closely to the topological struc-
tures of a physical system. For example, as will discussed in details later on, even 
though geometrically the wave dynamics of a quantum particle in a circle is dis-
tinctively different from that in a straight line, but topologically they are equiva-
lent because a circle is formed from the fundamental interval of the straight line, 
which is the universal covering space of the circle. However, in order to give a 
clearer picture of different geometrical and topological methods that are used to 
formulate physical laws in physics we now give examples that show how differ-
ent identifications of physical entities to geometrical objects can lead to different 
formulations of physical descriptions of the dynamics of classical and quantum 
mechanics. In physics, classical dynamics describes the motion of physical ob-
jects at the macroscopic scale in which the state of motion of an object is deter-
mined by the equation of motion which can be derived from the principle of 
least action. For example, consider a particle moving in a plane under the influ-
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ence of a force. The normal acceleration na  of the particle can be found as 
2

na v ρ= − , where v is the speed of the particle and ρ  is the radius of curva-
ture. This result can also be obtained by using the variational principle 0Sδ = , 
where S is defined by ( )2d 1 d d dS p s p y x x= = +∫ ∫ , with p is the momentum 
of the particle [8]. This result not only reveals an intrinsic relationship between 
geometrical methods and the variational principle in classical mechanics but also 
reaffirms the belief that the principle of least action can also be used to formulate 
the physical laws in a deterministic manner. However, we showed that this is not 
the case when the principle of least action is extended into the domain of quan-
tum mechanics. We showed that the identification of the momentum p of a 
quantum particle with the de Broglie wavelength λ , which in turns is identified 
with the curvature κ  of the path of a particle, i.e. 2πκ λ= , leads to an inter-
esting feature; namely the action principle 0Sδ =  is satisfied not only by the 
stationary path corresponding to the classical motion, but also by any path. In 
this case the Bohr quantum condition possesses a topological character in the 
sense that the principal quantum number n is identified with the winding num-
ber, which is used to represent the fundamental group of paths [9].  

The dual character of classical and quantum dynamics of quantum particles 
that possess internal geometric and topological structures of differentiable ma-
nifolds can also be extended to spaces of higher dimension. In Section 4 we will 
discuss the topological transformation of the two-dimensional wave dynamics in 
which quantum particles are assumed to be endowed with the geometric and 
topological structures of differentiable manifolds of closed vibrating surfaces, 
such as a 2-sphere, a 2-torus, a Klein bottle, or a hemispherical projective plane. 
These surfaces can be formed from the fundamental squares of the universal 
covering plane by the process of gluing opposite sides of the square. As shown in 
our works on the principle of least action [2] [3] [9], we can generalise Feyn-
man’s postulate of random path to formulate a quantum theory in which the 
transition amplitude between states of a quantum mechanical system is a sum 
over random surfaces, provided the functional P in the action integral 

dS P A= ∫  is taken to be proportional to the Gaussian curvature K of a surface. 
Consider classes of surfaces which are described by the higher dimensional ho-
motopy groups. As in the case of the fundamental homotopy group of paths, if 
we choose from among the homotopy class a representative spherical surface, in 
which case we can write ( ) ( )d 4π d 4π de e eP A q K A q nq= = Ω =∫ ∫ ∫  

. Also as 
in Bohr model of the hydrogen atom, we may consider a quantum process in 
which a physical entity transits from one surface to another with some radia-
tion-like quantum created in the process. Since this kind of physical process can 
be considered as a transition from one homotopy class to another, the radia-
tion-like quantum may be the result of a change of the topological structure of 
the physical system, and so it can be regarded as a topological effect. It is also 
noted that the action integral ( )4π deq K A∫  is identical to Gauss’s law in elec-
trodynamics therefore the constant eq  can be identified with the charge of a 
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particle, which represents the topological structure of a physical system and the 
charge of a physical system must exist in multiples of eq . Hence, the charge of a 
physical system may depend on the topological structure of the system and is 
classified by the homotopy group of closed surfaces. We want to mention here 
that in differential geometry the Gaussian curvature K is related to the Ricci sca-
lar curvature R by the relation 2R K= , and it has been shown that the Ricci 
scalar curvature can be identified with the potential of a physical system, there-
fore our assumption of the existence of a relationship between the Gaussian 
curvature and the surface density of a physical quantity can be justified [1]. Fur-
thermore, by extending Feynman’s method of sum over random surfaces to the 
temporal dynamics in which the magnetic monopole can also be considered as a 
topological structure of the temporal continuum then we can establish a rela-
tionship between the electric charge eq  and the magnetic monopole mq  asso-
ciated with a quantum particle, similar to Dirac relation 2e mc q q =  [10]. Let 

TP  be a 3-dimensional physical entity which will be identified with the surface 
density of a magnetic substance, such as the magnetic charge of an elementary 
particle. We therefore assume that an elementary particle is assigned not only 
with an electric charge eq  but also a magnetic charge mq . We further assume 
that the quantity TP  is proportional to the temporal Gaussian curvature TK . 
Now, if we consider a surface action integral of the form  

( )d 2π dT T m T T T mS P A q K A n q= = =∫ ∫  then the constant mq  can be identified 
with the magnetic charge of a particle. In particular, the magnetic charge mq  
represents the topological structure of a physical system must exist in multiples 
of mq . Hence, the magnetic charge of a physical system, such as an elementary 
particle, may depend on the topological structure of the system and is classified 
by the homotopy group of closed surfaces. We now show that it is possible to 
obtain Dirac relationship between the electric charge eq  and the magnetic 
charge mq  by considering a spatiotemporal curvature K which is defined as a 
product of the temporal Gaussian curvature TK  and the spatial Gaussian cur-
vature SK  as T SK K K= × . The spatiotemporal submanifold that gives rise to 
this form of curvature is homeomorphic to 2 2S S× . If TK  and SK  are inde-
pendent from each other then we can write  

d d d d dT S T S T T S SK A K K A A K A K A= × = ×∫ ∫ ∫ ∫   

. If we assume further that 
dK A k=∫ , where k is an undetermined constant, then we obtain a general rela-

tionship between the electric charge eq  and the magnetic charge mq  as 

e m S Tk q q n n= . In particular, if 1Sn = , 2Tn =  and k c=  , or 2Sn = , 
1Tn =  and k c=  , then we recover the relationship obtained by Dirac, 

2e mc q q = . We can then extend our discussions into three dimensions even 
though we also showed that the entire geometric and topological structures of 
quantum particles are not observable to an observer in the three-dimensional 
Euclidean space 3R  if they are formulated as three-dimensional differentiable 
manifolds embedded or immersed in the four-dimensional Euclidean space 4R  
[11]. Nonetheless, it is shown that different three-dimensional manifolds, such 
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as a 3-torus and the 1K S× , which is the product of a Klein bottle and a circle, 
can be formed by gluing the opposite faces of the fundamental polygon, which is 
a three-dimensional cube [12], therefore, in Section 5, we will discuss the topo-
logical transformation of a three-dimensional wave dynamics in which quantum 
particles are assumed to be endowed with the geometric and topological struc-
tures of differentiable manifolds of a 3-torus or the 1K S× . 

Probably, the most prominent feature that emerges from formulating quan-
tum physics in terms of differential geometry and topology is the possibility to 
express geometric and topological structures of quantum particles by using 
quantum wavefunctions. We showed that in one dimension, the geometric 
structure of a 1D differentiable manifold that is represented by the curvature κ  
can be expressed in terms of a wavefunction ψ  as  

( )( ) ( )
3 22 2 21 d d d dx xκ ψ ψ

−
= + , and in two dimensions the Ricci scalar curva-

ture R of a 2D differentiable manifold can be expressed in terms of a wavefunc-
tion ψ  as ( ) ( )2 22 2 2

11 22 12 1 22 1R ψ ψ ψ ψ ψ= − + + , where xµ
µψ ψ= ∂ ∂  and 

2 x xµ ν
µνψ ψ= ∂ ∂ ∂ . However, in three dimensions, despite no direct relation-

ship between the Ricci scalar curvature and the wavefunction that describes a 
manifold has been established, we have shown that such relationship can be 
constructed through physical identifications rather than from purely geometrical 
formulations. For example, we showed that the Ricci scalar curvature that de-
scribes the geometrical structure of a quantum particle satisfies the 
three-dimensional diffusion equation 2

t R k R∂ = ∇ . Solutions to the diffusion 
equation can be found as ( ) ( ) ( )2 2 23 4

, , , 4π e
x y z kt

R x y z t M kt
− + + =  

 
, which 

determines the probabilistic distribution of an amount of geometrical substance 
M which manifests as observable matter. As shown in appendix 1, if a pseu-
do-Euclidean metric is defined in the form  

( )( )2 2 2 2 2 2d d , , , d d ds Dc t A x y z t x y z= − + + , where D is constant, then the quan-
tity ( ), , ,A x y z t  can be determined [1]. However, for quantum particles that 
are endowed with the geometric and topological structures of differentiable ma-
nifolds, it would be more suitable to consider Bianchi manifolds with a metric 
which has separate scale factors given by the line element  

( ) ( ) ( )2 2 22 2 2 2 2 2
1 2 3d d d d ds Dc t a t x a t y a t z= − − − . Spaces with this form of me-

tric are homogeneous but not generally isotropic therefore quantum particles 
with this metric will change its volume and shape. The deformation is deter-
mined by the shear constructed from the scale factors ( )ia t  [13]. On the other 
hand, we have also shown that the Ricci scalar curvature that describes the geo-
metrical structures of a quantum particle can also be constructed from 
Schrödinger wavefunctions in wave mechanics. As shown in appendix 2, the re-
lationship between the Schrödinger wavefunction ψ  and the Ricci scalar cur-
vature R can be established as  

( ) ( )( )( )23 3
1 1d d d d /tR x t x t m kµ µ

µµ µψ ψ ψ
= =

= − ∂ + ∂∑ ∑ . 

The purpose of this work is to discuss the topological transformation of 
quantum dynamics by showing the wave dynamics of a quantum particle on dif-
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ferent types of topological structures in various dimensions from the fundamen-
tal polygons of the corresponding universal covering spaces. Therefore, the to-
pological structures of differentiable manifolds that are associated with quantum 
particles will hold a dominant role in our discussions. This in fact is a common 
feature of natural existence not only at the microscopic scale of quantum par-
ticles that we assume in this work but also at any scale. A more complete formu-
lation of the dynamics of quantum particles would be a wave dynamics on geo-
metries whose mathematical structures can be classified according to the un-
iformisation theorem and Thurston geometrisation conjecture. In two dimen-
sions, there are three geometries, which are Euclidean 2E , spherical 2S  and 
hyperbolic 2H . In three dimensions, Thurston geometrisation conjecture states 
that every closed three-dimensional manifold can be decomposed into subma-
nifolds which can be constructed from eight types of geometric structures, which 
are spherical geometry 3S , Euclidean geometry 3E , hyperbolic geometry 3H , 
the geometry of 2S R× , the geometry of 2H R× , the geometry of the universal 
cover of ( )2,SL R , Nil geometry, and Solv geometry [14] [15]. And a rigorous 
treatment of the wave dynamics on these geometries would be geometric wave 
equations on differentiable manifolds, in particular, linear wave equations on 
Lorentzian manifolds [16]. However, for the purpose of physical illustration, we 
will follow a modest approach in which we will present our discussions in the 
form of Bohr model in one, two and three dimensions using linear wave equa-
tions. In one dimension, the fundamental polygon is an interval and the univer-
sal covering space is the straight line and in this case the standing wave on a fi-
nite string is transformed into the standing wave on a circle which can be ap-
plied into the Bohr model of the hydrogen atom. The wave dynamics on a circle 
can also be described in terms of projective geometry. Since a circle is a 1-sphere 
which is also a 1-torus therefore the Bohr model of the hydrogen atom can also 
be viewed as a standing wave on a 1-torus. In two dimensions, the fundamental 
polygon is a square and the universal covering space is the plane and in this case 
the standing wave on the square is transformed into the standing wave on dif-
ferent surfaces that can be formed by gluing opposite sides of the square, which 
include a 2-sphere, a 2-torus, a Klein bottle and a projective plane. We will show 
when the wave dynamics on a projective plane is described in terms of projective 
geometry then it is identical to the wave dynamics on a 2-sphere. In three di-
mensions, the fundamental polygon is a cube and the universal covering space is 
the three-dimensional Euclidean space. It is shown that a 3-torus and the mani-
fold 1K S×  defined as the product of a Klein bottle and a circle can be con-
structed by gluing opposite faces of a cube therefore in three-dimensions the 
standing wave on a cube is transformed into the standing wave on a 3-torus or 
on the manifold 1K S× . We also discuss a transformation of a stationary wave 
on the fundamental cube into a stationary wave on a 3-sphere despite it still re-
mains unknown whether a 3-sphere can be constructed directly from a cube by 
gluing its opposite faces. In spite of this uncertainty, however, we speculate that 
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mathematical degeneracy in which an element of a class of objects degenerates 
into an element of a different but simpler class may play an important role in 
quantum dynamics. For example, a 2-sphere is a degenerate 2-torus when the 
axis of revolution passes through the centre of the generating circle. Therefore, it 
seems reasonable to assume that if an n-torus degenerates into an n-sphere then 
wavefunctions on an n-torus may also be degenerated into wavefunctions on an 
n-sphere. Furthermore, since an n-sphere can degenerate itself into a single 
point, therefore the mathematical degeneracy may be related to the concept of 
wavefunction collapse in quantum mechanics where the classical observables 
such as position and momentum can only be obtained from the collapse of the 
associated wavefunctions for physical measurements. This consideration sug-
gests that quantum particles associated with differentiable manifolds may pos-
sess the more stable mathematical structures of an n-torus rather than those of 
an n-sphere, therefore, also as a brief investigation into different methods of 
embeddings of differentiable manifolds in Euclidean spaces, in the next section 
we will examine the geometric and topological structures of the familiar 2-torus 
and how it can be isometrically embedded in the ambient three-dimensional 
Euclidean space 3R . 

2. On the Geometric and Topological Structures and the  
Isometric Embeddings of a 2-Torus 

In geometry, when a circle revolves about an axis which does not touch the circle 
in the three-dimensional Euclidean space 3R  then it generates the surface of 
revolution of a 2-torus, as shown in the following Figure 1. 
 

 
Figure 1. The surface of revolution of a 2-torus. 

 
On the other hand, in topology, a torus can also be defined as the Cartesian 

product of two circles 1 1S S× . The homeomorphism between a ring torus and 
the Cartesian product of two circles leads to an important feature about the em-
bedding of the 2-torus into a higher dimensional Euclidean space. Normally, a 
2-torus is simply viewed as a doughnut-shaped surface embedded in 
three-dimensional Euclidean space 3R . However, if a 2-torus is defined as the 
Cartesian product 1 1S S× , called Clifford torus, then since each circle is em-
bedded in a two-dimensional Euclidean space 2R  therefore the product space 
is a four-dimensional Euclidean space 4R . As a consequence, the embedding of 
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the Clifford torus in four-dimensional Euclidean space 4R  is symmetric and 
isometric but the embedding of the 2-torus in three-dimensional Euclidean 
space 3R  is asymmetric and non-isometric [17]. The difference can be speci-
fied by using the Gaussian curvature as follows [18]. In the three-dimensional 
Euclidean space 3R , the parametric equations for a doughnut-shaped torus 
given in terms of the parameters ( ),u v  as ( )cos cosx c a v u= + , 

( )cos siny c a v u= + , sinz a v= , where a is the radius of the tube and c is the 
radius from the centre of the torus to the centre of the tube, and [ ), 0, 2πu v∈ . 
The line element can then be found as ( )22 2 2 2d cos d ds c a v u a v= + + . From 
this line element the Gaussian curvature can be found as 

( )cos cosK v a c a v= + . The ring torus corresponds to c a>  for which 0K >  
for the outer region of the torus and 0K <  for the inner region. On the other 
hand, the Clifford torus is a flat square torus which is isometric to the funda-
mental square whose opposite sides are identified as shown below Figure 2. 
 

 
Figure 2. The fundamental square of the Clifford torus. 

 
The isometric embedding of the Clifford torus in the four-dimensional Eucli-

dean space 4R  shows that it is flat and obeys the Euclidean geometry. Then it 
had emerged the interesting question whether it is possible to isometrically 
embed the flat 2-torus in three-dimensional Euclidean space 3R . Remarkably, 
the Nash embedding theorem in topology states that such isometric embedding 
is possible [19] [20] [21]. It has also been shown that isometric embeddings of 
the square flat torus into the ambient three-dimensional Euclidean space 3R  
can be performed by modifying the standard torus using 1C  regularity of iso-
metric embeddings to construct 1C  fractal structures from an infinite sequence 
of waves of corrugations. By implementing the Convex Integration Theory, it is 
possible to visualise isometric embeddings of a flat torus into the ambient 
three-dimensional Euclidean space 3R . In general, in order to evaluate the cur-
vature at every point of a surface it is required that the surface must be of class 

2C . For the case of the flat 2-torus, since the curvature is vanished at every point 
of the surface therefore it cannot be isometrically embedded with 2C  regularity. 
However, this does not prevent its isometric embeddings into the 
three-dimensional Euclidean space 3R  if the embeddings belong to the class 

1C , and there are infinitely many such isometric embeddings [7]. Another im-
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portant development involving fractals that we want to mention here is the study 
of fractal solutions of linear and nonlinear dispersive partial differential equa-
tions on the torus, in particular, fractal solutions of linear and nonlinear 
Schrödinger wave equations [22]. Fractal images are visual representations of 
fractal spaces that can also be determined by a system of differential equations 
that exhibit chaotic dynamics [23] [24]. However, the purpose of this work is to 
discuss the topological transformation of quantum dynamics of quantum par-
ticles therefore in the following we will focus only on linear wave equations on 
different topological structures that can be formed from the fundamental poly-
gons of their corresponding universal covering spaces in one, two, and three di-
mensions. 

3. Geometric and Topological Transformation of Bohr Model  
of the Hydrogen Atom 

In order to successfully construct a model for the hydrogen atom which predicts 
correctly the spectrum of the energy radiated from the atom, Bohr proposed 
three postulates which state that the centripetal force required for the electron to 
orbit the nucleus in a stable circle is the Coulomb force 2 2 2mv r kq r= , the 
permissible orbits are those that satisfy the condition that the angular momen-
tum of the electron equals n , that is mvr n=  , and when the electron moves 
in one of the stable orbits it does not radiate, however, it will radiate when it 
makes a transition between the stable orbits [25]. On the other hand, in his work 
on the concept of matter wave, de Broglie proposed that an electron has both a 
wave and a particle nature by regarding the electron as a standing wave around 
the circumference of an orbit, as shown in the following Figure 3 [26]. 
 

 
Figure 3. A standing wave around the circumference of a circle. 

 
It is seen that de Broglie’s requirement leads to the wave condition 2πr nλ= . 

This is equivalent to assuming that the standing wave around a circle, which is a 
1-sphere, is similar to a standing wave on the fundamental interval of a straight 
line R which is the universal covering space of the circle 1S , where the transla-
tions taking the interval to the next images will generate the holonomy group 
[27]. In mathematics, the circle of radius r is normally considered as a 1-sphere 
defined by the relation { }1 2 :S x R x r= ∈ = . In fact, the circle is also classified 
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as a 1-torus 1T  which is a topological space equivalent to the quotient space 
R/Z, therefore, when the fundamental polygon of the universal covering space R 
is transformed into a circle we actually also transformed it into a 1-torus 1T . 
Since there is no difference between the topological structures of the 1-sphere 

1S  and the 1-torus 1T , the transformation of quantum dynamics from the 
fundamental polygon into both of them is the same, but as expected, we will 
show in the next two sections that in higher dimensions this is not the case. 
Consider a standing wave on a string defined in the domain { }0D x L= < <  
that satisfies the wave equation 

2 2

2 2 2

1 0
c t x

ψ ψ∂ ∂
− =

∂ ∂
                        (1) 

with the boundary conditions ( )0, 0tψ = , ( ), 0L tψ =  and initial conditions 
( ) ( ),0x f xψ = , ( ) ( ),0t x g xψ∂ ∂ = . The general solution to the wave equation 

given in Equation (1) can be found as [28] 

( )
1

π π π, cos sin sinn n
n

n ct n ct n xx t A B
L L L

ψ
∞

=

 = + 
 

∑              (2) 

where 

( ) ( )
0 0

2 π 2 πsin d , sin d
π

L L

n n
n x n xA f x x B g x x

L L cn L
= =∫ ∫           (3) 

Now imagine we convert the finite string into a circle with a radius R where 
the end points 0x =  and x L=  are joined so that 2πR L= . In order to de-
scribe a standing wave on the circle we first consider a two-dimensional wave 
equation  

2 2 2

2 2 2 2

1 0
c t x y

ψ ψ ψ∂ ∂ ∂
− − =

∂ ∂ ∂
                     (4) 

Using the relationship between the polar coordinates ( ),r θ  and the Carte-
sian coordinates ( ),x y  defined by the relations cosx r θ= , siny r θ= , the 
two-dimensional wave equation given in Equation (4) is rewritten in the form 

2 2 2

2 2 2 2 2

1 1 1 0
r rc t r r

ψ ψ ψ ψ
θ

∂ ∂ ∂ ∂
− − − =

∂∂ ∂ ∂
               (5) 

Using the method of separation, solutions to the wave equation given in Equ-
ation (5) can be expressed in the form ( ) ( ) ( )R r T tψ θ= Θ , then we obtain 

2 2 2

2 2 2 2 2

1 1 d 1 d 1 1 d 1 d 0
dd d d

T R R
T R r R rc t r r θ

Θ
− − − =             (6) 

If we consider the wave motion only on the circle of constant radius r R=  
then the wave equation given in Equation (6) reduces to two separate ordinary 
differential equations 

2 2
2 2 2 2

2 2

d d0, 0
d d

T c T R
t

β β
θ
Θ

+ = + Θ =               (7) 

Solutions to the equations given in Equation (7) can be found as 
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( ) ( )cos sin , cos sinT t A ct B ct C R B Rβ β θ β θ β θ= + Θ = +        (8) 

Using the conditions ( )Θ 0 0=  and ( )Θ 2π 0= , we obtain 0C =  and 
2n Rβ = . Therefore, ( ) ( )sin 2n nθ θΘ =  and the general solutions are given 

as 

( )
1

, cos sin sin
2 2 2n n

n

nct nct nt A B
R R

θψ θ
∞

=

 = + 
 

∑               (9) 

In fact, the resulting wavefunction ( ), tψ θ  in Equation (9) can be obtained 
directly from Equation (2) by replacing x Rθ=  with the condition 2πR L= . It 
is also interesting to note that the wavefunction ( ), tψ θ  given in Equation (9) 
can also be considered as a wavefunction on a projective elliptic geometry in 
which the points of an n-dimensional projective space are identified with the 
lines that go through the origin of the (n + 1)-dimensional space and are 
represented by vectors in the (n + 1)-dimensional Euclidean space 1nR + . The 
distance between two points in a projective space can be defined using the me-
tric that specifies the angle between two vectors u  and v  as 
( ) ( )1, cotd −= ⋅u v u v u v  [29].  
It is also worth mentioning here that the energy spectrum of the Bohr model 

can be determined if we apply de Broglie wavelength λ  defined in terms of the 
momentum of a quantum particle as h mvλ = . Using the wavelength given by 
the relation 2πR nλ=  we obtain 2πh mv R n= , and this leads to the Bohr’s 
postulate of the quantisation of angular momentum mvR n=  . Using this rela-
tionship and the Coulomb’s law 2 2 2mv R kq R=  then we obtain the expres-
sion for the radius of the nth stationary orbit as 2 2 2

nR n mkq=  . Then the 
energy spectrum nE  can be calculated as follows 

2 2 2 2 4

2 22 2 2n
mv kq kq mk qE T V

R R n
= + = − = − = −



            (10) 

where R now is the radius of the nth stationary orbit. 

4. Geometric and Topological Transformation of a  
Two-Dimensional Wave Dynamics 

In this section we will extend the discussion in Section 3 by considering the 
transformation of a standing wave on a fundamental square of the universal 
covering plane 2R  into a standing wave on a 2-dimensional surface which is 
formed by identifying and gluing the opposite edges of the square. This may be 
seen as an extension of the Bohr model of the hydrogen atom from 
one-dimensional manifolds of the 1-sphere and 1-torus embedded in the am-
bient two-dimensional Euclidean space 2R  into two-dimensional manifolds 
embedded or immersed in the ambient three-dimensional Euclidean space 3R . 
As shown in Figure 4 below, different types of two-dimensional manifolds can 
be formed by the process of identifying and gluing the opposite pair of the edges 
a square, including the surfaces of a 2-sphere 2S , a 2-torus 2T , a Klein bottle 

2K , and a projective plane 2P  [17]. 
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Figure 4. A 2-sphere, a 2-torus, a Klein bottle, a projective plane, and their corresponding 
fundamental squares. 
 

Each of the four manifolds has a particular fundamental polygon depending 
on how the edges are identified. However, the universal covering space for all of 
them is the two-dimensional Euclidean space 2R  where the translations taking 
the square to the next images will also generate the holonomy group [27]. As in 
the case of the Bohr model of the hydrogen atom in which the electron is as-
sumed to move in stationary circular orbits, an extended Bohr model on surfaces 
such as a 2-sphere is similar to Schrödinger wave mechanics in spherical coor-
dinates therefore a moving electron on the surface of a 2-sphere also does not 
radiate and is described as a standing wave. Therefore we may assume that a 
standing wave in the universal covering space 2R  can also be transformed into 
a standing wave on one of the four curved surfaces that can be formed from the 
fundamental squares as shown above. Consider the standing wave on a square in 
the domain { }0 ,0D x L y L= < < < <  that satisfies the two-dimensional wave 
equation given in Equation (4) with the boundary conditions ( )0, , 0y tψ = , 
( ), , 0L y tψ = , ( ),0, 0x tψ = , ( ), , 0x L tψ =  and initial conditions 
( ) ( ), ,0 ,x y f x yψ = , ( ) ( ), ,0 ,t x y g x yψ∂ ∂ = . Then the general solution can 

be found as 

( ) ( )
1 1

π π, , cos sin sin sinmn mn mn mn
n m

m x n yx y t A t B t
L L

ψ λ λ
∞ ∞

= =

= +∑∑        (11) 

where ( ) 2 2πmn c L m nλ = + , and the coefficients mnA  and mnB  are given as 

( )

( )

2 0 0

2 0 0

4 π π, sin sin d d ,

4 π π, sin sin d d

L L
mn

L L
mn

mn

m x n yA f x y x y
L LL

m x n yB g x y x y
L LL λ

=

=

∫ ∫

∫ ∫
              (12) 

The standing wave described by the function ( ), ,x y tψ  given in Equation 
(11) is restricted to the fundamental polygon of the universal covering space 2R . 
Following the Bohr model of the hydrogen atom in which standing waves on 
circular orbits are topologically equivalent to standing waves on the fundamental 
interval of the universal covering line, now we consider the transformation of a 
standing wave on the fundamental squares into a standing wave on the four cor-

https://doi.org/10.4236/jmp.2019.102009


V. B. Ho 
 

 

DOI: 10.4236/jmp.2019.102009 116 Journal of Modern Physics 
 

responding surfaces of a 2-sphere 2S , a 2-torus 2T , a Klein bottle 2K  and a 
projective plane 2P . In order to describe a standing wave on the transformed 
surfaces from the fundamental squares, we consider a three-dimensional wave 
equation given in Cartesian coordinates ( ), ,x y z  of the form 

2 2 2 2

2 2 2 2 2

1 0
c t x y z

ψ ψ ψ ψ∂ ∂ ∂ ∂
− − − =

∂ ∂ ∂ ∂
                  (13) 

First, consider a standing wave on the surface of a 2-torus. In differential 
geometry, the relationship between the Cartesian coordinates ( ), ,x y z  and the 
toroidal coordinates ( ), ,ξ η ϕ  is given as follows [30] [31] 

sinh cos sinh sin sin, ,
cosh cos cosh cos cosh cos
a a ax y zη ϕ η ϕ ξ

η ξ η ξ η ξ
= = =

− − −
      (14) 

where the domains of the toroidal coordinates are given as 0 2πξ≤ < , 
0 η≤ < ∞ , and 0 2πϕ≤ < . From the relations given in Equation (14), it can be 
shown that surfaces of constant 0ξ ξ=  correspond to 2-spheres given by the 
equation ( )22 2 2 2

0 0cot sinx y z a aξ ξ+ + − = , and surfaces of constant 0η η=  
correspond to 2-tori given by the equation  

( )2
2 2 2 2 2

0 0coth sinhz x y a aη η+ + − = . Then in terms of the toroidal coordi-
nates ( ), ,ξ η ϕ , the three-dimensional wave equation given in Equation (13) can 
be rewritten as 

( )

( )

32

2 2 2

cosh cos1 sinh
cosh cossinh

sinh 1 0
cosh cos sinh cosh cos

c t a
η ξψ η ψ

ξ η ξ ξη

η ψ ψ
η η ξ η ϕ η η ξ ϕ

−   ∂ ∂ ∂
−   ∂ − ∂∂  

  ∂ ∂ ∂ ∂
+ + =    ∂ − ∂ ∂ − ∂   

    (15) 

where sinh x  and cosh x  are hyperbolic functions. Solutions to Equation (15) 
can be found by separating the variables of the form  
( ) ( ) ( ) ( ) ( ), , , cosh cost U H T tψ ξ η ϕ ξ η ξ η ϕ= − Φ  and then dividing the result 

by ( ) ( ) ( ) ( ) ( )5 2 2cosh cos sinhU H T tξ η ξ η ϕ ξ− Φ . In this case Equation (15) 
reduces to the form 

( )

2 2
2

3 22

2 2 2
2 2

2 2 2

sinh d 1 1 dsinh cosh sinh
4 ddcosh cos

1 d 1 d 1 dsinh sinh 0
d d d

T U
Utc

U H
U H

ξ ξ ξ ξ
ξξ η

ξ ξ
ξ η ϕ

− −
−

Φ
− − − =

Φ

       (16) 

If we consider standing waves only on the surfaces of the toroids which are 
defined by setting the variable η  equal to a constant, 0η η= , then Equation 
(16) becomes 

( )

2 2
2

3 22
0

2 2
2

2 2

sinh 1 d 1 1 dsinh cosh sinh
4 ddcosh cos

1 d 1 dsinh 0
d d

T U
T Utc

U
U

ξ ξ ξ ξ
ξξ η

ξ
ξ ϕ

− −
−

Φ
− − =

Φ

     (17) 

By separating the functions in Equation (17), we obtain the following system 
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of ordinary differential equations 
2

2
2 2

d 0
d
T k T

c t
+ =                          (18) 

2
2

2

d 0
d

m
ϕ
Φ
+ Φ =                          (19) 

( )

2 2 2

2 2 3
0

d d 1coth 0
d 4d sinh cosh cos

U U m k Uξ
ξξ ξ ξ η

 
 + − − − =
 − 

      (20) 

It is seen from Equations (18-20) that time-independent geometric structures 
of the extended Bohr model of the hydrogen atom on the surface of a 2-torus 
can be described by toroidal functions. It is also seen from Equation (18) that if 
the time dependence of the wave equation is given of the form ( )exp i tω− , 
where ckω = , then the wave equation reduces to the Helmholtz equation 

2 2ψ κ ψ∇ = . It has been shown that solutions to the Helmholtz equation in the 
toroidal coordinates can be obtained in terms of series representation of the as-
sociated Legendre function [32] [33]. It is also noted that a standing wave on the 
surface of a 2-sphere given by the equation ( )22 2 2 2

0 0cot sinx y z a aξ ξ+ + − =  
can also be obtained from Equation (16) by setting the variable ξ  equal to a 
constant, 0ξ ξ= . However, it is more convenient if we follow the common 
practice using spherical coordinates ( ), ,r θ φ  which are related to the Cartesian 
coordinates ( ), ,x y z  as sin cosx r θ φ= , sin siny r θ φ= , cosz r θ= . In 
spherical coordinates ( ), ,r θ φ  the wave equation given in Equation (13) takes 
the form 

2 2 2

2 2 2 2 2 2 2

1 2 1 1sin 0
sin sinr rc t r r r

ψ ψ ψ ψ ψθ
θ θθ θ φ

∂ ∂ ∂ ∂ ∂ ∂ − − − − = ∂ ∂ ∂∂ ∂ ∂ 
   (21) 

Solutions to Equation (21) can be found by separating the variables of the 
form ( ) ( ) ( ) ( ) ( ), , ,r t R r T tψ θ φ θ φ= Θ Φ . However, if we consider the wave 
dynamics only on the surface of constant radius r R=  then the wavefunction 
can be written in the form ( ) ( ) ( ) ( ), , t T tψ θ φ θ φ= Θ Φ  and the wave equation 
given in Equation (21) reduces to the following system of ordinary differential 
equations 

2
2

2 2

1 d 0
d

T k T
c t

+ =                         (22) 

2
2

2

d 0
d

m
φ
Φ
+ Φ =                          (23) 

2
2 2

2

1 dsin 0
sin d sin

d mk R
d

θ
θ θ θ θ

 Θ  + − Θ =  
   

             (24) 

It should be mentioned here that the 2-sphere 2S  with the constant radius 
r R=  is a spherical membrane which is assumed to vibrate therefore the wave-
function ( ), , ,R tψ θ φ  actually represents the height of the mass points that 
form the spherical membrane by contact forces. If we let ( )2 2 1k R l l= +  and 

ckω =  then general solutions can be found as 
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( ) ( ) ( )
0

, , cos sin cos e
l

m im
ml ml l

l m l
t A t B t P φψ θ φ ω ω θ

∞

= =−

= +∑∑         (25) 

The combination ( )cos em im
lP φθ  becomes the spherical harmonics 

( ),m
lY θ φ  when it is normalised. We have shown that a standing wave on the 

fundamental squares in the universal covering space 2R  can be transformed 
into a standing wave on a 2-torus or a 2-sphere, respectively. Now, since the 
2-dimensional Euclidean space 2R  is also the universal covering space of the 
Klein bottle 2K  and the projective plane 2P  therefore we can also discuss the 
possibility to transform a standing wave on their fundamental squares into a 
standing wave on either of these surfaces. A transformed wave dynamics can be 
achieved if parametric equations for these two surfaces can be established. For 
example, the immersion of the Klein bottle in the three-dimensional Euclidean 
space 3R  is given by the implicit equation  

( ) ( )( )
( )

22 2 2 2 2 2 2

2 2 2

2 1 2 1 8

16 2 1 0

x y z y x y z y z

xz x y z y

+ + + − + + − − −

+ + + − − =
, and the parametric equa-

tions for the immersion of the Klein bottle are given as  

cos sin sin sin 2 cos
2 2
u ux r v v u = + − 

 
              (26) 

cos sin sin sin 2 sin
2 2
u uy r v v u = + − 

 
              (27) 

sin sin cos sin 2
2 2
u uz v v= +                  (28) 

where [ ), 0, 2πu v∈  and 2r > . The parameter r is the radius of the 
self-intersecting circle in the ( ),x y -plane, the parameter u gives the angle in the 
( ),x y -plane, and the parameter v specifies the position of the cross section [34] 
[35]. Using the parametric equations of the Klein bottle given in Equations 
(26-28), the wave equation on the fundamental square can be transformed into 
the wave equation on the surface of the Klein bottle. In general, it is shown in 
differential geometry that if a metric of the form 2d d ds g x xα β

αβ=  can be es-
tablished on any surface then the Laplacian 2ψ∇  of a scalar function ψ  can 
be written in the form ( ) ( )2 1 g g g x xαβ β αψ ψ∇ = ∂ ∂ ∂ ∂  [36]. Despite the 
fact that the spherical metric with spherical coordinates ( ), ,r θ φ  is obtained 
from the line element 2 2 2 2 2 2 2d d d sin ds r r rθ θ φ= + + , and the toroidal metric 
with toroidal coordinates ( ), ,u v θ  is obtained from the line element 

( )( )( )22 2 2 2 2 2d cosh cos d d sinh ds a u v u v u θ= − + + , however, metrics on the 
Klein bottle and the projective plane are problems that are being investigated. 
For example, a metric of revolution 0g  for the first eigenvalue on a Klein bottle 
can be constructed as [37] 

( )22 2
2

0 2 2

9 1 8cos dd
1 8cos 1 8cos

v vg u
v v

+ +  
= + 

+ + 
              (29) 

A more complicated metric on a Klein bottle can also be constructed, for ex-
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ample, in the work from the reference [38]. Even though there is no particular 
metric that has been established for the surface of the projective plane, we know 
that it can be represented as the set of all straight lines that pass through the ori-
gin and has the structure of a compact surface, as shown in the following Figure 
5 [39]. 
 

 
Figure 5. Straight lines representing a projective plane. 

 
Therefore, if the distance between two points in the projective space that im-

merses in the three-dimensional Euclidean space 3R  can be defined using the 
metric that specifies the angle between two vectors u  and v  as 
( ) ( )1, cotd −= ⋅u v u v u v  then even though they have different geometric 

natures standing waves on the projective plane can also be described by the solu-
tions given in Equation (25) for standing waves on the surface of a 2-sphere. 

5. Geometric and Topological Transformation of a  
Three-Dimensional Wave Dynamics 

In this section we extend further the discussions on the transformations of wave 
dynamics from a standing wave on fundamental cubes to a standing wave on 
three-dimensional manifolds that can be formed from the fundamental cubes by 
the process of gluing opposite surfaces of the cube. This can also be seen as an 
extension of the Bohr model of the hydrogen atom from a one-dimensional ma-
nifold embedded in the ambient two-dimensional Euclidean space 2R  into 
three-dimensional manifolds embedded or immersed in four-dimensional Euc-
lidean space 4R . As shown in Figure 6 below, a 3-torus can be constructed by 
identifying the opposite faces of the first cube and the manifold 1K S× , which is 
the product of a Klein bottle and a circle, can be constructed according to the 
second cube [12]. 
 

 
Figure 6. Fundamental cubes of a 3-torus and the manifold 
which is the product of a Klein bottle and a circle. 

https://doi.org/10.4236/jmp.2019.102009


V. B. Ho 
 

 

DOI: 10.4236/jmp.2019.102009 120 Journal of Modern Physics 
 

Now, consider a standing wave in a cube in a region of three-dimensional 
Euclidean space defined by the domain { }0 ,0 ,0D x L y L x L= < < < < < < . 
The standing wave is assumed to satisfy a three-dimensional wave equation 
written in the Cartesian coordinates ( ), ,x y z  of the form given in Equation 
(13), with the boundary conditions ( ), , , 0x y z tψ =  on the boundary of D and 
the initial conditions ( ) ( ), , ,0 , ,x y z f x y zψ = , ( ) ( ), , ,0 , ,t x y z g x y zψ∂ ∂ = . 
Then the general solution can be found as 

( ) ( )
1 1 1

π π π, , , cos sin sin sin sinlmn mn lmn mn
n m l

m x m y n zx y z t A t B t
L L L

ψ λ λ
∞ ∞ ∞

= = =

= +∑∑∑  (30) 

where ( ) 2 2 2πmn c L l m nλ = + + , and the coefficients lmnA  and lmnB  can be 
found in terms of the functions ( ), ,f x y z  and ( ), ,g x y z  using the orthogon-
al conditions. However, the main problem that we are interested in now is how 
to transform the standing wave in the fundamental cubes into a standing wave 
on a 3-torus or the manifold 1K S× . In order to describe the wave dynamics on 
a hypersurface embedded or immersed in four-dimensional Euclidean space 4R  
we need a four-dimensional wave equation written in the Cartesian coordinates 
( ), , ,x y z w  of the form 

2 2 2 2 2

2 2 2 2 2 2

1 0
c t x y z w

ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂
− − − − =

∂ ∂ ∂ ∂ ∂
               (31) 

As in the case of two-dimensional surfaces discussed in Section 4, in order to 
use the wave equation given in Equation (31) to describe a wave dynamics on the 
surface of a 3-torus we first need to construct a line element 2d d ds g x xα β

αβ=  
for the 3-torus and then apply the Laplacian  

( ) ( )2 1 g g g x xαβ β αψ ψ∇ = ∂ ∂ ∂ ∂ . The parametric equations for a 3-torus 
are given as [40]  

( ) ( )cos cos , cos sin , sin sin , sin cosx a b y a b z a w aθ ϕ θ ϕ θ ζ θ ζ= + = + = = (32) 

From the parametric equations given in Equation (32), the line element for 
the 3-torus embedded in the ambient four-dimensional Euclidean space 4R  
can be found and given as 

2
2 2 2 2 2 2d d cos d sin dbs a

a
θ θ ϕ θ ζ

  = + + +     
            (33) 

From the line element given in Equation (33), in terms of the orthogonal 
coordinates ( ), ,θ ϕ ζ , the wave equation on the surface of a 3-torus takes the 
form 

2 2

2 2 2 2

2 2

2 2 2 2

1 1 sin cos
sincos

1 1 0
sin

cos

bc t a
a

b
a

ψ ψ θ θ ψ
θ θθ θ

ψ ψ
ϕ θ ζ

θ

  
  ∂ ∂ ∂

− + − +  
∂∂ ∂  +   




∂ ∂ + + =∂ ∂  +    

              (34) 
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It is shown that solutions to the wave equation on 3-torus given in Equation 
(34) exist and, in particular, they can be written as a Fourier decomposition [41]. 
For the wave dynamics on surface of the manifold 1K S× , which is the product 
of a Klein bottle and a circle, we may consider a mixed metric which is a combi-
nation of a metric on a circle and a metric on a Klein bottle. A metric on a circle 
is found using the line element in polar coordiantes 2 2 2 2d d ds r r θ= +  in which 
the radius is constant, r R= , therefore, we have 2 2 2d ds R θ= . Together with 
the metric of revolution 0g  for the first eigenvalue on a Klein bottle given in 
Equation (29), we obtain 

( )22 2
2 2 2 2

1 2 2 2

9 1 8cos dd d d
1 8cos 1 8cos

v vs k R k u
v v

θ
 + +   = + +  + +   

      (35) 

where 1k  and 2k  are undetermined constants. 
As a further discussion, we now discuss the transformation of a stationary 

wave on a cube into a stationary wave on a 3-sphere despite it still remains un-
known whether a 3-sphere can be constructed directly from a cube by gluing its 
opposite faces. Despite this uncertainty, however, as mentioned before, we spe-
culate that mathematical degeneracy in which an element of a class of objects 
degenerates into an element of a different but simpler class may play an impor-
tant role in quantum dynamics therefore if an n-torus degenerates into an 
n-sphere then wavefunctions on an n-torus may also be degenerated into wave-
functions on an n-sphere. Consider a d-dimensional hypersphere d

rS  of radius 
r embedded in the ambient ( )1d + -dimensional Euclidean space 1dR + . If 
spherical coordinates ( )1 2, , , , ,dr θ θ θ φ−  are defined in terms of the Cartesian 
coordinates ( )1 2 1, , , dx x x +  as 1 cosx r θ= , 2 1sin cosx r θ θ= ,  , 

1 2sin sin sind dx r θ θ φ+ −=   then the Laplacian 2
dS

∇  on the hypersphere d
rS  

is given as follows [42] 

( ) 1

2
2 2

2 2 2

1 11 cot
sind dS S

d
r

ψ ψψ θ ψ
θθ θ −

 ∂ ∂
∇ = + − + ∇ ∂∂ 

           (36) 

For the case of a 3-sphere 3S  embedded in four-dimensional Euclidean 
space 4R , the wave equation given in Equation (36) takes the form 

2

2 2
2

2 2 2 2 2

1 1 12cot 0
sin Sc t r

ψ ψ ψθ ψ
θθ θ

 ∂ ∂ ∂
− + + ∇ = ∂∂ ∂ 

           (37) 

where 2
2
S

∇  is Laplacian operator on a 2-sphere 2S . Solutions to Equation (37) 
can be established by separating the variables of the form  
( ) ( ) ( ) ( )1 2 1 2, , , , , ,r t R r T tψ θ θ θ θ θ θ= Θ . However, if we only consider the wave 

on the surface of constant radius r R=  then the wave equation given in Equa-
tion (37) reduces to the following system of ordinary differential equations 

2
2

2 2

1 d 0
d

T k T
c t

+ =                        (38) 

2

2
2 2 2

2 2

12cot 0
sin S

k Rθ
θθ θ

∂ Θ ∂Θ
+ + ∇ Θ− Θ =

∂∂
             (39) 
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In particular, for stable quantum particles in which ψ  is time-independent 
therefore we can set 0k = , and in this case the eigenfunctions of 3

2
S

∇  are the 
hyperspherical harmonics ( )1 2, ,m

nl θ θ θΘ  which are solutions of the equation 

( ) ( ) ( )3
2

1 2 1 2, , 2 , ,m m
nl nlS

l lθ θ θ θ θ θ∇ Θ = − + Θ              (40) 

It can be shown that ( )1 2Θ , ,m
nl θ θ θ  are given as [43] 

( ) ( ) ( )
( ) ( ) ( ) ( )1 2 1

1 2 1 2

1 1
, , 2 1 sin cos ,

π 2
m l l l m
nl n l l

n n l
l C Y

n l
θ θ θ θ θ θ θ+ +

−

+ Γ − +
Θ = Γ +

Γ + +
(41) 

where 1l
n lC +
−  are the Gegenbauer polynomials and m

lY  are the 3D spherical 
harmonics in which 0,1,2,n =  , 0 l n≤ ≤ , and l m l− ≤ ≤ . The number of 
hyperspherical harmonics for a given value of n is ( )21n + .  

6. Conclusion 

In this work, we have discussed the topological transformation of quantum dy-
namics by showing the wave dynamics of a quantum particle from the funda-
mental polygons of the corresponding universal covering spaces in one, two and 
three dimensions. As stated in the introductory summary, this is not the view 
from different perspectives of an observer who simply uses different coordinate 
systems to describe the same physical phenomenon but rather possible geome-
tric and topological structures that quantum particles are endowed with when 
they are identified with differentiable manifolds that are embedded or immersed 
in Euclidean spaces of higher dimension. For the purpose of physical illustration, 
we followed a modest approach in which we presented our discussions in the 
form of Bohr model in one, two and three dimensions using linear wave equa-
tions. In one dimension, we considered the topological transformation of a 
standing wave on a finite string into the standing wave on a circle which can be 
applied into the Bohr model of the hydrogen atom. The wave dynamics on a cir-
cle can also be described in terms of projective elliptic geometry. In two dimen-
sions, we discussed the topological transformation of a standing wave on a 
square into a standing wave on different surfaces that can be formed by gluing 
opposite sides of the square, which include a 2-sphere, a 2-torus, a Klein bottle 
and a projective plane. In particular, we showed that when the wave dynamics 
on a projective plane is described in terms of projective elliptic geometry, then it 
is identical to the wave dynamics on a 2-sphere. In three dimensions, we consi-
dered the topological transformation of a standing wave on a cube into a stand-
ing wave on a 3-torus or on the manifold 1K S× . We also discussed a transfor-
mation of a stationary wave on a cube into a stationary wave on a 3-sphere de-
spite it still remains unknown whether a 3-sphere can be constructed directly 
from a cube by gluing its opposite faces. However, it seems reasonable to assume 
that if an n-torus degenerates into an n-sphere, then wavefunctions on an 
n-torus may also be degenerated into wavefunctions on an n-sphere. Further-
more, since an n-sphere can degenerate itself into a single point, the mathemati-
cal degeneracy may be related to the concept of wavefunction collapse in quan-
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tum mechanics where the classical observables such as position and momentum 
can only be obtained from the collapse of the associated wavefunctions for phys-
ical measurements. This consideration suggests that quantum particles asso-
ciated with differentiable manifolds may possess the more stable mathematical 
structures of an n-torus rather than those of an n-sphere. Even though it has not 
been discussed in this work, we would like to add the following remark in rela-
tion to physical states of quantum particles that would make the topological 
transformations that have been presented in this work possible. If quantum par-
ticles are formed from mass points by contact forces, then they may have the 
ability to change their topological structures to adapt the topological structures 
of the physical system in which they are part of. In physics, such ability is related 
to the physical states of fluid rather than solid states as being assumed for quan-
tum particles in particle physics. And, interestingly, it can be shown that equa-
tions of fluid dynamics that describe the fluid state of quantum particles can be 
derived from Dirac equation in quantum mechanics [44]. 
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Appendices 
Appendix 1 

In this appendix, we show in detail the derivation of the equations that are used 
to determine the metric tensor of the line element given as  

( )( )2 2 2 2 2 2d d , , , d d ds Dc t A x y z t x y z= − + + . In differential geometry, the Rie-
mann curvature tensor Rα

µβν  is defined in terms of the affine connection Γγ
αβ  

as 

R
x x

α α
µβ µνα λ α λ α

µβν µβ λν µν λβν β

∂Γ ∂Γ
= − + Γ Γ −Γ Γ

∂ ∂
              (1) 

The contraction of the Riemann curvature tensor given in Equation (1) with 
respect to the indices α  and β  gives the Ricci tensor 

R
x x

σ σ
µν µσ λ σ λ σ

µν µν λσ µσ λνσ ν

∂Γ ∂Γ
= − + Γ Γ −Γ Γ

∂ ∂
              (2) 

In order to formulate the field equations for the gravitational field it is neces-
sary to introduce a symmetrical metric tensor gαβ  in terms of which the affine 
connection γ

αβΓ  is defined as 

1
2

g gg
g

x x x
σµ µνλ λσ σν

µν µ ν σ

∂ ∂ ∂
Γ = + − ∂ ∂ ∂ 

                (3) 

With the line ( )( )2 2 2 2 2 2d d , , , d d ds Dc t A x y z t x y z= − + + , we obtain the fol-
lowing non-zero components of the affine connection 

1 1 2 2
01 10 02 20

1 1,
2 2

A A
cA t cA t

∂ ∂
Γ = Γ = Γ = Γ =

∂ ∂
 

3 3 0
03 30 11

1 1  ,
2 2

A A
cA t cD t

∂ ∂
Γ = Γ = Γ =

∂ ∂
 

1 2 3
11 11 11

1 1 1, ,
2 2 2

A A A
A x A y A z
∂ ∂ ∂

Γ = Γ = − Γ = −
∂ ∂ ∂  

1 1 2 2
12 21 12 21

1 1, ,
2 2

A A
A y A x
∂ ∂

Γ = Γ = Γ = Γ =
∂ ∂  

1 1 3 3
13 31 13 31

1 1,
2 2

A A
A z A x
∂ ∂

Γ = Γ = Γ = Γ =
∂ ∂  

0 1 2
22 22 22

1 1 1, ,
2 2 2

A A A
cD t A x A y

∂ ∂ ∂
Γ = Γ = Γ =

∂ ∂ ∂  

3 0 1
22 33 33

1 1 1, ,
2 2 2

A A A
A z cD t A x
∂ ∂ ∂

Γ = − Γ = Γ = −
∂ ∂ ∂  

2 3
33 33

1 1,
2 2

A A
A y A z
∂ ∂

Γ = − Γ =
∂ ∂

 

2 2 3 3
23 32 23 32

1 1,
2 2

A A
A z A y
∂ ∂

Γ = Γ = Γ = Γ =
∂ ∂

               (4) 

From the components of the affine connection given in Equation (4), we ob-
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tain 
22 2 2 2

11 2 2 2 2 2 2

22 2

2 2 2

1 1 1 1 3
2 22 4

1 1 1   
4 4

A A A A AR
A A A tc D t x y z c AD

A A A
x y zA A A

∂ ∂ ∂ ∂ ∂ = − − − +  ∂∂ ∂ ∂ ∂  

 ∂ ∂ ∂   + + +    ∂ ∂ ∂    

 

22 2 2 2

22 2 2 2 2 2 2

22 2

2 2 2

1 1 1 1 3
2 22 4

1 1 1   
4 4

A A A A AR
A A A tc D t x y z c AD

A A A
x y zA A A

∂ ∂ ∂ ∂ ∂ = − − − +  ∂∂ ∂ ∂ ∂  

 ∂ ∂ ∂   + + +    ∂ ∂ ∂    

 

22 2 2 2

33 2 2 2 2 2 2

22 2

2 2 2

1 1 1 1 3
2 22 4

1 1 1 
4 4

A A A A AR
A A A tc D t x y z c AD

A A A
x y zA A A

∂ ∂ ∂ ∂ ∂ = − − − +  ∂∂ ∂ ∂ ∂  

 ∂ ∂ ∂   + + +    ∂ ∂ ∂    

 

22

00 2 2 2 2

3 3
2 4

A AR
tc A t c A

∂ ∂ = − +  ∂∂  
              (5) 

Using the relation 00 11 22 33
00 11 22 33R g R g R g R g R= + + +  the Ricci scalar cur-

vature can be found as 

( )
2

22
2 2 2 3

3 2 3
2

AR A A
c DA t A A

∂
= − + ∇ +

∂
∇              (6) 

Using the relation 

( ) ( ) ( )2 2 23 4
, , , 4π e

x y z kt
R x y z t M kt

− + + =  
 

            (7) 

Then we finally arrive at 

( )
( )

2 2 22
22 4

2 2 2 3 3

3 2 3 e
2 4π

x y z
ktA MA A

c DA t A A kt

+ +
−∂

− + ∇ + =
∂

∇        (8) 

Appendix 2 

In this appendix, we will show that Schrödinger wavefunctions can be used for 
the construction of spacetime structures of the quantum states of a quantum 
system. Schrödinger’s original works were on the time-independent quantum 
states of the hydrogen atom, commencing with the Hamilton-Jacobi equation, 
written in terms of the Cartesian coordinates ( ), ,x y z  as  

2 2 2 2

2 0S S S kqm E
x x x r

 ∂ ∂ ∂     + + − + =      ∂ ∂ ∂       
             (1) 

However, in order to obtain a partial differential equation that would give rise 
to the required results, Schrödinger introduced a new function ψ , which is real, 
single-valued and twice differentiable, through the relation lnS ψ=  , where 
the action S is defined by dS L t= ∫  and L is the Lagrangian defined by 
L T ϕ= − , with T is the kinetic energy and ϕ  is the potential energy. In terms 
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of the new function ψ , Equation (1) takes the form 
2 2 2 2

2
2

2 0m kqE
x x x r
ψ ψ ψ ψ

 ∂ ∂ ∂     + + − + =      ∂ ∂ ∂       

         (2) 

Then by applying the principle of least action d 0L tδ =∫ , Schrödinger ar-
rived at the required equation 

2
2

2

2 0m kqE
r

ψ ψ
 

∇ + + = 
 

                   (3) 

Now we show that Schrödinger wavefunction ψ  can be used to construct the 
spacetime structures of the quantum states of the hydrogen atom. By using the 
relations d dL S t= , ( )3

1d d d dtS t S S x tµ
µµ== ∂ + ∂∑ , ( )23

1 d dT m x tµ
µ== ∑  

and T Lϕ = − , we obtain 

( ) ( )23 3
1 1d d d dtm x t S S x tµ µ

µµ µϕ
= =

= − ∂ + ∂∑ ∑              (4) 

In terms of the Schrödinger wavefunction ψ , Equation (4) can be rewritten 
as 

( ) ( )3
3 2 1

1

d d
d d

t x t
m x t

µ
µµµ

µ

ψ ψ
ϕ

ψ
=

=

∂ + ∂
= −

∑
∑               (5) 

From Poisson equation we can assume the relation kmRϕ =  then the fol-
lowing relation between the Schrödinger wavefunction ψ  and the Ricci scalar 
R can be established [1] 

( ) ( )3
3 2 1

1

d d1 d d
t x t

R x t
k m

µ
µµµ

µ

ψ ψ

ψ
=

=

 ∂ + ∂
 = −
 
 

∑
∑

            (6) 
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