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Abstract 
In this paper the following information interpretation of uncertainty relation is 
proposed: if one bit of information was extracted from the system as a result of 
the measurement process, then the measurement itself adds an additional un-
certainty (chaos) into the system equaled to one bit. This formulation is devel-
oped by calculating of the Shannon information entropy for the classical N-slit 
interference experiment. This approach allows looking differently at several 
quantum phenomena. Particularly, the information interpretation is used for 
explanation of entangled photons diffraction picture compression. 
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1. Introduction 

Heisenberg uncertainty relation is one of the fundamental principles of Quan-
tum Mechanics. On the other hand, an information approach to Quantum Me-
chanics is popular now (for example, see [1] [2] [3]). In this paper, firstly, we 
consider the classical N-slit interference experiment and calculate the Shannon 
information entropy for it. This allows obtaining a formulation of the informa-
tion interpretation of the uncertainty relation. Then, it is used for an explanation 
of the entangled photons diffraction picture compression. 

2. N-Slit Interference Experiment Analysis 

Let’s consider the N-slit interference experiment (Figure 1). Let’s assume that a 
source wave function is a plane wave ( )

0 e i t kzω− −Ψ = , where ω is the wave fre-
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quency, k = 2π/λ, were λ is the wavelength. Then the wave function of N slits is 

( ) ( ) ( )012
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where θ is the angle between the wave vector and the optical axis, δ = k·d·sinθ, d 
is the space between slits. Multiplying (1) by its complex conjugate the interfe-
rence picture intensity on the screen M as a function of angle θ is obtained: 
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This intensity can also be considered as a probability distribution. Let’s calcu-
late the information entropy H of this distribution using Shannon’s formula [4]: 

( ) ( )2log d ,1H I
I

θ θ
θ

 
⋅   

 
= ∫                    (3) 

where the normalization condition is: ( )d 1I θ θ =∫ . The curve presenting de-
pendence H from N in a semilogarithmic scale for kl = 10 is shown in Figure 2. 
The integral (3) was calculated numerically for 142, 4,8, , 2N =  . Correlation 
and regression coefficients were calculated using Statistica 6 software. The statis-
tical analysis of this data shows: First, there is linear dependence between H and 
log2(N) which is demonstrated by high value of correlation coefficient equaled to 
−0.9996. 

Second, the equation of straight line, which describes the best point’s distribu-
tion on the curve (Figure 2), was obtained by the least squares method. This eq-
uation has the following appearance: 

( )22.2586 0.9865 log .Н N= − ⋅                   (4) 

 

 
Figure 1. N-slit interference experiment. 
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Figure 2. Dependence of information entropy H from number of slits N. 

 
It is called the regression equation. As it can be seen from this equation, re-

duction of slits amount by a factor of 2 increases the distribution entropy by one 
bit. As it was demonstrated in the popular lections by R. Feynman [5], the re-
duction of slit amount in half changes the interference picture of particle diffrac-
tion the same way as obtaining information of which half of the slits the particle 
passed through when all slits were open. This allows connecting amount of in-
formation about the particles passing through the slits with amount of informa-
tion on where these particles will hit. That is obtaining one bit of information via 
uncertainty reduction (reduction of entropy) of the slit amount, which the par-
ticle has passed through, results in uncertainty increase (increase of entropy) of 
the interference picture. The information on where the particle may hit will also 
be reduced by one bit. Following Shannon’s approach [4] we state that uncer-
tainty reduction due to decrease of the slits amount by a factor of 2 relates to en-
tropy reduction (increase of information amount) by one bit. 

3. Formulation of Information Interpretation  
of Uncertainty Relation 

Since the obtained regularity does not depend on the specific experimental pa-
rameters, this regularity can be generalized for any quantum system. Let’s call 
this: information interpretation of uncertainty relation. The uncertainty relation 
itself can be written in the information form. In fact, the uncertainty relation for 
a harmonic oscillator is: ΔX·ΔP = ћ/2 (expression 16.8 from [6]), where ΔX and 
ΔP are uncertainties (standard deviations) in coordinate and momentum, re-
spectively, ħ is the reduced Planck constant (h/2π). Let’s rewrite this in form: 
ΔX/2·ΔP·2 = ћ/2 (here the coordinate uncertainty was reduced in half and as a 
result momentum uncertainty was increased twice) and then find the logarithm 
of this: log2(ΔX) − 1 bit + log2(ΔP) + 1 bit = const. Here: 1 bit = log2(2), const = 
log2(ћ/2), log2(ΔX) and log2(ΔP) − amounts of information during determina-
tion of coordinate and pulse, respectively (up to additional constant, which is 
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equaled to log2(2πe)0.5 for the normal distribution [7]). The last equation can be 
interpreted as following: we extracted one bit of information from the system 
during coordinate X measurement (we decreased coordinate uncertainty ΔX in 
half) but this disturbed the system increasing its entropy also by one bit (mo-
mentum uncertainty ΔP increased twice). Let’s formulate the information inter-
pretation of uncertainty relation as following: if one bit of information was ex-
tracted from the system as a result of the measurement process, then the mea-
surement itself adds an additional uncertainty (chaos) into the system equaled to 
one bit. 

4. Application for Explanation of Entangled Photons  
Diffraction Picture Compression 

As an example let’s show how the information interpretation of uncertainty rela-
tion can be used for explanation of entangled photons diffraction picture com-
pression. In [8] generation of entangled photon pairs was obtained by directing 
the argon ion laser beam into BaB2O4 crystal. Photons generated in the crystal 
have frequencies equaled to the half of falling photon frequencies. Let’s describe 
the principle scheme of this experiment (Figure 3). The entangled photon pairs 
are generated in an area V. Photons belonging to the same pair are orthogonally 
polarized and propagate in opposite directions in horizontal plane. Two slits are 
placed symmetrically on the left and right sides of the entangled photons source. 
A photon counting detector is placed into the far-field zone on each side, and 
the coincidences between the “clicks” of both detectors are registered. Thus the 
entangled photons diffraction picture is obtained. The experiment showed that 
main diffraction maximum width was two times smaller than it supposed to be 
in classical case. That result may be obtained with ordinary photons of twice 
higher energy (twice smaller wavelength). 

To understand this result let’s notice that in ordinary photons diffraction case 
we can always distinguish one photon from the other as one comes to detector 
earlier than the other. However, this information is lost in the experiment de-
scribed above. The entangled photons are born simultaneously and come to  

 

 
Figure 3. Schematic of a two-photon diffraction-interference experiment (from [5]). V is 
BaB2O4 crystal, D1 and D2 are detectors. 
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detector also at the same time. As a result, the system obtains an additional un-
certainty corresponding to impossibility distinguishing photons. The system en-
tropy increases by one bit. However, the corresponding diffraction picture 
shrinks in half. It is easy to show that the diffraction picture entropy decreases by 
one bit. Let’s assume that P(х) and G(х) are a normalized distributions of diffrac-
tion picture intensity before and after shrinking, respectively. So, ( )d 1P x x =∫ . 
The entropy of this distribution is by definition equaled: 

( ) ( )1 2log d1 .P x
P x

H x
 

⋅   
 

= ∫                    (5) 

The entropy of diffraction picture distribution after shrinking is equaled: 

( ) ( )2 2log d1 .G x
G x

H x
 

⋅   
 

= ∫                    (6) 

An experimental factor of shrinking is equaled to 2. So, ( ) ( )constant 2G x P x= × . 
Then, we can obtain from normalization ( )d 1G x x =∫ : ( ) ( )2 2G x P x= × . Then: 
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          (7) 

Here we used change of variable y = 2x inside the integral. Then, form 
( )d 1P y y =∫  and log2(1/2)= -1 bit we can obtain: 

2 1 1 bitH H= −                         (8) 

Thus the system compensates loosing of photons identification possibility by 
diffraction spot reduction. This allows conservation of the balance between the 
system uncertainty and the amount of information extracted from the system. 

5. Conclusions 

The information entropy for the N-slit interference experiment was calculated. 
A formulation of the information interpretation of the uncertainty relation was 
proposed. It was applied for an explanation of the entangled photons diffraction 
picture compression. 
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