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Abstract 
This paper proposes an associative memory model based on a coupled system 
of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time 
dynamical system, and the coupled system of Gaussian maps can generate var-
ious phenomena including asymmetric fixed and periodic points. The Gaussian 
associative memory can effectively recall one of the stored patterns, which were 
triggered by an input pattern by associating the asymmetric two-periodic 
points observed in the coupled system with the binary values of output pat-
terns. To investigate the Gaussian associative memory model, we formed its 
reduced model and analyzed the bifurcation structure. Pseudo-patterns were 
observed for the proposed model along with other conventional associative 
memory models, and the obtained patterns were related to the high-order or 
quasi-periodic points and the chaotic trajectories. In this paper, the structure 
of the Gaussian associative memory and its reduced models are introduced as 
well as the results of the bifurcation analysis are presented. Furthermore, the 
output sequences obtained from simulation of the recalling process are pre-
sented. We discuss the mechanism and the characteristics of the Gaussian 
associative memory based on the results of the analysis and the simulations 
conducted. 
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1. Introduction 

Previous studies have proposed multiple-associative memory models based on 
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dynamical systems [1] [2] [3] [4]. J. J. Hopfield proposed a neural network mod-
el which is popularly referred to as an associative memory [5]. The Hopfield 
model functions as an associative memory that mimics the human brain. Heb-
bian learning can be used to calculate the weight of connections between neu-
rons using stored patterns. In the recalling process of the Hopfield model, the 
system needs to be iteratively updated until its energy function, which is guar-
anteed to decrease as updating continues, converges to a local minimum. Be-
cause the local minimum corresponds to a stored pattern, the Hopfield associa-
tive memory can recall one of the stored patterns depending on the initial values 
of the network. This is called auto-association. 

Hopfield model has been extended to develop bidirectional and multidirec-
tional associative memories [6] [7] [8] [9]. The bidirectional associative memory 
comprises a two-layer network and the model can recall another pattern by us-
ing input pattern. This is referred to as hetero-association. The size of the recal-
ling pattern can be different from that of the stored pattern. On the other hand, the 
multidirectional associative memory has an extended structure of the bidirectional 
model with three or more layers. The associative structure of multidirectional 
model is more complicated than the bidirectional model, and the model can suc-
cessively recall another pattern as it is being iteratively updated. In contrast to the 
conventional associative models, a chaotic associative memory model, which is 
made up of chaotic neurons, has been proposed as a non-periodic associative 
memory [10]. While the conventional models adopted the Hebbian learning in 
calculating the weight between neurons, it incorporates an auto-association ma-
trix into the chaotic neuron associative memory model. One of the significant 
characteristics of chaotic associative memory is that it can successively recall 
stored patterns with transforming the output patterns depending on the system 
parameters and the chaotic neuron dynamics. Another characteristic of the 
chaos associative memory is that it can recall not only stored patterns but also 
reverse patterns of the stored patterns. 

The retrieval ability and the storage capacity are important points to be con-
sidered when evaluating associative memory models and have been the subject 
of many studies. One major problem associated with the associative memory 
model is the generation of the pseudo-patterns. How to avoid the generation of 
the pseudo-patterns has received remarkable attention in associative memory 
research community. 

However, the mechanisms that are used to effectively recall the stored patterns 
and to generate pseudo-patterns have not been well elucidated. Herein, we propose 
a novel associative memory model comprised of Gaussian map to investigate the 
mechanism of the associative memory based on the qualitative bifurcation theory. 

The Gaussian map is a one-dimensional dynamical system which generates 
various phenomena including periodic points and chaos [11] [12]. Asymmetric 
fixed and periodic points are observed under the particular parameter settings 
when investigating the dynamics of the coupled Gaussian maps. By associating 
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the asymmetric values of the coupled Gaussian maps with the binary values of 
the recalling patterns, the Gaussian associative memory can successfully be ap-
plied in the recalling process as well as the other conventional methods. The 
Gaussian associative memory has a simple structure as the Gaussian map is a 
one-dimensional dynamical system and shows very complicated phenomena 
such as chaotic behavior and quasi-periodic oscillations. Furthermore, the bi-
furcation structure of the associative memory can be qualitatively analyzed by 
considering the reduced model of the Gaussian associative memory. 

This study investigates the bifurcation structure of periodic points observed in 
the high dimensional coupled network of the Gaussian maps that can be used to 
recall stored patterns. Although multiple associative memory models have been 
proposed, the detailed bifurcation analysis of these models has not been con-
ducted; the analyses conducted on models are often based on empirical ap-
proaches. As a result, we focus on the bifurcation analysis of the proposed high 
dimensional coupled network to propose and verify the reduced model of the 
Gaussian associative memory model. In the proposed model, successful retrieval 
of the stored patterns is associated with the existence of stable asymmetric 
two-periodic points, which are observed in a coupled system of Gaussian maps. 
In addition, when the Gaussian associative memory recalls the pseudo-patterns, 
they correspond to high order periodic points and chaotic behavior in the 
coupled maps. 

First, this study discusses the structure of the Gaussian associative memory 
and further addresses the manner in which its reduced model can be formed. 
Subsequently, the results of the bifurcation analysis of the reduced model are 
presented. Finally, we demonstrate the recalling process of the Gaussian associa-
tive memory while considering the noisy patterns as the input pattern. 

2. Model Description 

In this section, we introduce the dynamics of the coupled Gaussian maps for an 
associative memory and its reduced model.  

2.1. Coupled Gaussian Maps for Associative Memory 

We proposed a Gaussian associative memory model composed of Gaussian 
maps [13]. The dynamics of ith Gaussian map in the Gaussian associative mem-
ory can be described as follows: 

( ) ( )( ) ( )21 exp  , 1, 2, , ,
N

i i ij j
j

px t x t w x t i N
N

α β ε+ = − + + =∑        (1) 

where α , β , and ε  denote parameters; N is the number of Gaussian maps in 
the network; p is the number of the stored patterns; ijw  is the following sym-
metric auto-associative matrix [10]:  

( )( )
1

1 2 1 2 1 ,
p

k k
ij i j

k
w

p
ξ ξ

=

= − −∑                    (2) 
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where k
iξ  represents the ith pixel of the kth stored pattern with a discrete value 

of zero or one. We adopted the stored binary patterns as shown in Figures 
1(a)-(d). Figures 1(e)-(g) are the reduced patterns of Figures 1(a)-(d), which 
would be addressed later. To remember the patterns with 10 × 10 pixels as 
shown in Figures 1(a)-(d), the Gaussian associative memory is composed of 100 
Gaussian maps so that each pixel in the patterns corresponds to each Gaussian 
map. For the recalling process, when the value of ix  is higher (lower) than the 
threshold, the ith pixel is white (black) in the output pattern. We set the thre-
shold to −0.5 in the experiments conducted. 

2.2. Reduced Model of Gaussian Associative Memory 

We considered a reduced model of the Gaussian associative memory to analyze 
its bifurcation structure. Investigation of the reduced model can easily help in 
finding the important characteristics of the phenomena observed in the original 
model. For the following explanation, let us first define the number of each pixel 
in 10 × 10 and 4 × 4 patterns as shown in Figure 2. The number of the pixel in-
creases from the top-left to the bottom-right corners. 

Further, corresponding 100 Gaussian maps in the Gaussian associative mem-
ory were classified into 16 groups when we focused on the combination of the 
pixel values of the stored patterns. Table 1 shows the classification of each 
Gaussian map in 10 × 10 Gaussian associative memory. The first and the second 
columns represent the number of the group and the combinations of the pixel 
values of each stored pattern, respectively. When one of the stored patterns is 
used as the initial pattern on the recalling process, ( )0ix  in the same group is 
identical. In this situation, ijw  becomes the same in the group. Figure 3 shows 
the classification of 10 × 10 pixels which correspond to the Gaussian maps. The 
Gaussian maps in the same group oscillate in-phase or converge to the same 
fixed point. When the Gaussian maps in the same group were synchronized,  
 

 
Figure 1. Stored binary patterns with 10 × 10 pixels ((a)-(d)) and their reduced patterns 
with 4 × 4 ((e)-(h)). 
 

 
Figure 2. Number of each pixel of (a) stored 
patterns and (b) reduced patterns. 
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Figure 3. Classification of Gaussian maps corresponding to 10 × 10 pixels 
when the patterns in Figure 1 were stored in the Gaussian associative 
memory. White pixels in each panel correspond to the Gaussian maps 
which have the same input binary values for stored patterns. 

 
Table 1. The relationship between the pixel number in 10 × 10 coupled network and the 
number of maps in 4 × 4 reduced model. 

Group P4 P3 P2 P1 Pixel No. hi 

1 0 0 0 0 5, 6, 15, 61, 84, 85, 93, 94, 95 9 

2 0 0 0 1 1, 2, 10, 11, 83 5 

3 0 0 1 0 7, 16, 25, 71 4 

4 0 0 1 1 24, 33, 55, 56, 57, 67 6 

5 0 1 0 0 3, 4, 8, 14, 31, 41, 96 7 

6 0 1 0 1 9, 12, 13, 81, 82, 91, 92 7 

7 0 1 1 0 17, 21, 32, 48, 58, 97 6 

8 0 1 1 1 22, 23, 47, 68, 72, 73 6 

9 1 0 0 0 30, 39, 40, 50, 51, 70, 80, 98 8 

10 1 0 0 1 20, 29, 89, 90, 99, 100 6 

11 1 0 1 0 35, 49, 60, 66, 75, 76 6 

12 1 0 1 1 34, 44, 45, 46, 65, 74 6 

13 1 1 0 0 42, 52, 69 3 

14 1 1 0 1 18, 19, 28, 78, 79, 88 6 

15 1 1 1 0 26, 43, 53, 59, 62, 86, 87 7 

16 1 1 1 1 27, 36, 37, 38, 54, 63, 64, 77 8 

 
multiple Gaussian maps in the group could be represented by a representative 
Gaussian map. As a result, the reduced stored patterns are obtained. Figures 
1(e)-(h) show the reduced patterns with 4 × 4 pixels, corresponding to the 
stored patterns as shown in Figures 1(a)-(d). 

The dynamics of the reduced model of the Gaussian associative memory can 
be described as a difference equation, which can be expressed as follows: 

( ) ( )( )1 .t t+ =x f x                          (3) 

Equivalently, they can be described as an iterated map, which can be ex-
pressed as follows:  

( )16 16: ; ,→f x f x                       (4) 

where t denotes discrete time,   represents a set of real numbers, and x  and 
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f  represent ( )1 2 16, , ,x x x Τ
  and ( )1 2 16, , ,f f f Τ

 , respectively. The dynamics 
of the reduced system of Gaussian associative memory discussed herein are de-
scribed as  

( )
( )

( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

162
1 1 1

1 162
2 2 22

16 162
16 16 16

exp
16

exp
16 ,

exp
16

j j
j

j j
j

j j
j

px t h w x t
f

px t h w x tf

f
px t h w x t

α β ε

α β ε

α β ε

 − + + 
  
   − + +   =   
        − + + 
 

∑

∑

∑

x
x

x




       (5) 

where ih  is the correction coefficient which is equal to the number of Gaussian 
maps in each group as shown in the fourth column of Table 1.  

3. Method 

This section presents the method of bifurcation analysis for analyzing the re-
duced model of the Gaussian associative memory and the necessary conditions 
and the parameter settings used in the simulation analysis of the Gaussian Asso-
ciative memory. A notation list for all indices and parameters used in this paper 
is shown in Table 2. 

3.1. Bifurcation Analysis 

In bifurcation analysis, we used a method based on the qualitative bifurcation 
theory [14]. The point *x  satisfying  

( )* *− =x f x 0                        (6) 

becomes a fixed point in Equation (5). The characteristic equation for the fixed 
point *x  is defined as  

( ) ( )( )* *, det 0,Dχ = − =x m mI f x               (7) 

where I  is the 16 × 16 identity matrix and Df  denotes the derivative of f . 
We consider *x  to be hyperbolic if none of the absolute eigenvalues of Df  
are at unity. Note that in Equation (6), an m-periodic point can be investigated 
by replacing f  with mf , i.e., the mth iteration of f . In the following dis-
cussion, we only consider the properties of a fixed point of f , though a similar 
argument can be applied to a periodic point of f . 

Let us consider the topological classification of a hyperbolic fixed point *x . 
The topological type of a hyperbolic fixed point is determined by dim uE  and 
det uL , where uE  is the intersection of 16  and the direct sum of the genera-
lized eigenspaces of ( )*Df x  corresponding to eigenvalue m  such that 

1iµ > , and ( )*
u

u D=
E

L f x . 
When det 0u >L  and det 0u <L , the hyperbolic fixed point is called D-type 

and I-type, respectively. Based on this definition, we have 33 topologically different 
types of hyperbolic fixed points: , 0,1, ,16k D k =   and , 1, 2, ,16k I k =  .  
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Table 2. Notation list for indices and parameters. 

Symbols Definition 

t discrete time steps 

  set of real numbers 

( )ix t  ith internal state variable at t 

N number of the Gaussian maps in the coupled network 

ijw  symmetric auto-associative matrix 

p number of the stored patterns 

α , β , and ε  system parameters of the Gaussian associative memory 
k

iξ  ith pixel of kth input binary pattern with a discrete value of zero or one 

ih  correction coefficient corresponding to ith classified group 

x  ( )1 2 16, , ,x x x Τ
  

*x  fixed point of function f  

f  ( )1 2 16, , ,f f f Τ
  

Df  Jacobian matrix of function f  

µ  characteristic multipliers or eigenvalues of Df  

I 16 × 16 Identity matrix 

uE  
intersection of 16  and the direct sum of the generalized  
eigenspaces of ( )*Df x  

uL  ( )*
u

D
E

f x  

0 D  completely stable fixed point 

, 0k D k >  “directly” unstable fixed point 

, 0k I k >  “inversely” unstable fixed point 

P1, P2, P3, and P4 stored patterns with 10 × 10 pixels 

Pr1, Pr2, Pr3, and Pr4 reduced patterns of stored patterns with 4 × 4 pixels 
m
lG  tangent bifurcation of m-periodic point 
m
lI  period-doubling bifurcation of m-periodic point 

 
When we consider the distribution of the characteristic multipliers of Equation 
(7), D and I correspond to the even and odd numbers, respectively, of the cha-
racteristic multipliers on the real axis ( ), 1−∞ −  and k represents the number of 
the characteristic multipliers outside the unit circle on the complex plane. When 
all characteristic multipliers are in the unit circle, the topological type is 0 D  
that means completely stable; otherwise, , 0k D k >  and , 0k I k >  represent 
directly unstable and inversely unstable, respectively. 

Bifurcation occurs when the topological type of a fixed point is changed by the 
varying of a system parameter. In the reduced model, co-dimension-one bifurca-
tions, i.e., tangent and period-doubling bifurcations, are observed when hyperbo-
licity of the system is destroyed. This corresponds to the critical distribution of 
the characteristic multiplier µ  such that 1µ = +  for tangent bifurcation and 

1µ = −  for period-doubling bifurcation. 
The bifurcation sets of a fixed point were computed by solving the simulta-
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neous Equations (6) and (7). For numerical determination [14], we used New-
ton-Raphson method. The Jacobian matrix of the set of equations was derived 
from the first and second derivatives of map f.  

3.2. Simulation Settings 

With respect to the Gaussian associative memory defined by Equations (1) and 
(2), we evaluated the recalling ability of the Gaussian associated memory for the 
10 × 10 stored patterns as shown in Figure 1. The parameters were set as follows: 

16α = , 0.5β = −  and 0.7ε =  in Equation (1) at 4p =  and 100N = . The 
white and black pixels of an initial input pattern were converted to ( )0 0ix =  
and −1, respectively. As an initial input pattern, we used the noisy pattern which 
includes inverted bits compared with the original stored pattern as shown in 
Figures 1(a)-(d). When the noisy pattern includes no inverted bits, the pattern 
is completely the same as the stored pattern. When we increase the ratio of the 
noise added in the initial pattern, the noisy pattern finally becomes the com-
pletely inverted pattern of the original stored pattern. 

We investigated the relationship between the number of the inverted bits in-
cluded in the noisy pattern and recalling probability in the simulation con-
ducted. With each noisy pattern containing 0 to 100 inverted bits, the Gaussian 
associative memory model was run for 100 iterations. When the output pattern 
set at 100t =  was exactly same to the stored pattern, we added one to a variable 
S. After executing for 1000 times executions, the average value of the recalling 
probability was calculated as S/1000. 

4. Results of Bifurcation Analysis 

Figure 4 shows typical fixed points observed in the reduced model. The fixed 
points can be obtained by setting initial values arbitrarily to ( )0ix  and itera-
tively updating the values of ( )ix t  according to Equation (5). 

In Figure 4(a), each value of ix  is slightly different from one other. That is 
because the coefficients represented by ijw  and ih  represent the pixel values of 
the stored patterns while the number of Gaussian maps is represented by one 
reduced map, respectively so that the reduced model does not have complete 
symmetricity. Therefore, ix  described in Equation (5) becomes different from 
each other. However, to distinguish the fixed points shown in Figure 4(a) and 
Figure 4(b), let us call them symmetric and asymmetric fixed points, respec-
tively. 

We investigated the bifurcation sets of the reduced network of Gaussian maps 
for associative memory on the ( ),β ε -plane using bifurcation analysis as ex-
plained in Section 3.1. In the bifurcation diagrams, we use the following symbols:  

m
lG  tangent bifurcation of the m-periodic point.  

m
lI  period-doubling bifurcation of the m-periodic point.  

where l distinguishes the same types of the bifurcation sets of the m-periodic 
points. 
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Figure 4. Fixed points observed in the reduced model. (a) Shows the symmetric fixed pint 
that appears in Figure 5; and (b) Corresponds to the asymmetric fixed point as shown in 
Figure 6. 

4.1. Bifurcation Structure of Fixed Points 

Figures 5-7 represent the bifurcation structures of the fixed points on the 
( ),β ε -plane, which were observed in the reduced model. In Figure 5, the stable 
symmetric fixed point was observed in the region represented by . In con-
trast, the asymmetric fixed points were observed in the region between 1

1I  and 
1
2G  represented by  as shown in Figure 5, and the shaded regions in Figure 

6 and Figure 7. Figures 8(a)-(c) represent the output patterns of 4 × 4 pixels 
obtained using the asymmetric fixed points shown in Figures 5-7, respectively. 
Figures 8(d)-(f) correspond to the 10 × 10 pixel patterns of Figures 8(a)-(c). 
The asymmetric fixed point that appears in Figure 6 is the only the fixed point 
that represents exactly the same pattern represented by one of the stored pat-
terns. The rest are the pseudo-patterns. Note that the asymmetric fixed points 
corresponding to other stored patterns also exist in approximately the same pa-
rameter regions, however, they were omitted here. 

In Figure 6, in the right-hand side of the parameter region where the stable 
asymmetric fixed point exits, multiple period doubling bifurcations appeared, 
which were represented by 1

1I  to 1
16I  in a clockwise direction. By going 

through the period doubling bifurcations with a changing parameter, the asym-
metric fixed point became unstable. After passing through eight period doubling 
bifurcations from 1

1I  to 1
8I , the asymmetric fixed point lost its stability and 

became 8 D . The ends of the 16 curves of period doubling bifurcations con-
verged at ( ) ( ), 0.95223,0.0β ε − . The reduced model loses its coupled struc-
ture when 0ε = . 

4.2. Bifurcation Structure of Two-Periodic Points 

Figure 9 shows the different types of waveforms of stable asymmetric 
two-periodic points when the pattern of Figure 1(e) was used as an initial pat-
tern at 0.4β = −  and 16α = . The waveforms of Figures 9(a)-(c) were ob-
served at 0.6ε = , 0.75 and 0.8. At 0.6ε = , the two-periodic points were 
in-phase while the phases were shifted at 0.75ε =  and 0.8ε = . 

Figure 10 shows the bifurcation diagrams of two-periodic points observed in 
the reduced model as each stored pattern in Figures 1(e)-(h) was used as an ini-
tial pattern. In the Gaussian associative memory model, the oscillatory responses  
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Figure 5. Bifurcation structure of the symmetric 
and asymmetric fixed points. The asymmetric fixed 
point is related to the output pattern as shown in 
Figure 8(a). 

 

 
Figure 6. Bifurcation structure near the parameter 
regions of stable asymmetric fixed point corres-
ponding to the stored pattern as shown in Figure 
8(b). 

 
of the asymmetric two-periodic points can be separated by setting a threshold so 
that the Gaussian associative memory model can generate output patterns iden-
tical to the stored patterns. In the shaded regions in the bifurcation diagrams 
shown in Figure 10, the regions where stable asymmetric two-periodic points 
exist can be seen as partly over-wrapped. The shapes of the regions where stable 
asymmetric two-periodic points appear are similar to the downward triangles, 
and the regions are surrounded by period doubling and tangent bifurcations at 
the left and right-hand sides, respectively. 

The existence of the stable asymmetric two-periodic points is the key for  
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Figure 7. Bifurcation structure corresponding to 
the asymmetric fixed point associated with the 
pseudo pattern in Figure 8(c). 

 

 
Figure 8. (a)-(c): output patterns with 4 × 4 pixels corresponding to the 
fixed points and (d)-(f): their corresponding full patterns with 10 × 10. 

 
making the Gaussian associative model to work effectively. At the same time, the 
coupled system also has the stable symmetric and asymmetric fixed points. Nev-
ertheless, the stable symmetric fixed point is not appropriate for the associative 
memory because the output values of each Gaussian map cannot be separated 
into binary values. In contrast, the asymmetric fixed point seems to be appropri-
ate for the associative memory. However, as shown in Figure 6 and Figure 7, the 
parameter region where the stable asymmetric fixed point appears over-wraps 
the region where the stable symmetric fixed point exists. We cannot choose the 
parameter values in such parameter regions because the trajectories might be at-
tracted to the symmetric fixed points. Hence, we decided to set the parameter 
values to 16α = , 0.5β = − , and 0.7ε =  for simulating the recalling process 
of the Gaussian associative memory. 

To investigate the generation mechanism of the asymmetric two-periodic 
points, we focused on the results obtained when the pattern shown in Figure 
1(f) was used as an initial pattern. In Figure 10(b), the stable asymmetric 
two-periodic point that exists in the region surrounded by 2

1I  and 2
1G  was 

derived from the period doubling bifurcation of the stable asymmetric fixed 
point, represented by 1

16I  as shown in Figure 6. On the other hand, the stable 
asymmetric two-periodic points between 2

4I  and 2
4G  in Figure 10(b) was 

generated from 1
1I  as shown in Figure 6. Based on the results obtained, we 

found that the other stable asymmetric two-periodic points can also be caused by 
a stable asymmetric fixed point. 
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Figure 9. Typical waveforms observed in the reduced model of 
the Gaussian associative memory as the initial pattern P1 was set 
at 0.4β = − . (a) in-phase stable two-periodic points, (b) and (c) 
out-of-phase stable two-periodic points. 

5. Simulation 

We demonstrate the retrieval process of the Gaussian associative memory by 
using the Gaussian associative memory for 10 × 10 stored patterns as shown in 
Figure 1. In Figures 11(a)-(d), the initial patterns at 0t =  include 30 pixels of 
the inverted bits compared with the stored patterns. In each case, the Gaussian 
associative memory could recall the corresponding stored pattern at 2t = . In 
contrast, when the initial pattern includes higher rate inverted bits, they con-
verged to the reverse pattern of the corresponding stored pattern. When the rate 
of the noise in the initial pattern is around 50%, pseudo-patterns rarely ap-
peared. Figure 11(e) shows the output sequence of a pseudo pattern recalled 
from the initial pattern shown at 0t = . Based on the result of the simulation 
experiments conducted, we found that the pseudo-patterns generation relates to 
the existence of high order periodic points or chaotic attractors. The waveform 
shown in Figure 12 corresponds to the output sequence of Figure 11(e). Gener-
ation of pseudo-patterns in a Gaussian associative memory can be prevented by 
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Figure 10. Bifurcation diagram of two-periodic point corresponding to initial patterns of 
Figures 1(e)-(h). 
 

 
Figure 11. Output sequence obtained using the recalling process of the Gaussian associa-
tive memory with 10 × 10 stored patterns. (a)-(d) When 30 pixels of the initial patterns 
were randomly inverted from the corresponding stored pattern; (e) When 50 pixels are 
inverted from the stored pattern, P1. 
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adding the function for avoiding chaotic attractors and high order periodic 
points to memory. 

Figure 13(a) and Figure 13(b) represent the recalling probability of noisy 
patterns made from a stored pattern P1 as shown in Figure 1(a) on the Gaussian 
and Hopfield associative memory models, respectively. In Figure 13(a) and 
Figure 13(b), the retrieval ability was 100% up to 20 inverted bits, however, the 
retrieval ability gradually declined as the number of inverted bits increased. The 
curve with the title “Others” in the diagram represents the recalling probability 
of the pseudo-patterns. The curves for the recalling probability of pseu-
do-patterns have two peaks at around 40 and 60 inverted bits. Comparing the 
Gaussian and Hopfield associative memory, the recalling probability of pseu-
do-patterns in the Gaussian associative memory is lower than that of Hopfield 
associative memory. In contrast, the recalling probability of other stored pat-
terns of the Gaussian associative memory is higher than that of Hopfield asso-
ciative memory at around 50 inverted bits. In terms of pseudo-pattern genera-
tion, the Gaussian associative memory outperformed Hopfield associative mem-
ory. 
 

 
Figure 12. Waveform corresponding to the recalling process as shown 
in Figure 11(e). The trajectories are chaotic and pseudo-pattern out-
put. 

 

 
Figure 13. Relationship between the number of inverted bits and recalling probability. (a) 
Gaussian associative memory and (b) Hopfield associative memory. 
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6. Conclusions 

A novel associative memory model based on the Gaussian coupled maps was 
proposed. We explored the characteristics of the Gaussian associative memory 
by investigating its behavior as the number of coupled maps is reduced. When 
10 × 10 pixel patterns were stored into the associative memory, each map cor-
responding to the input pixel was classified into 16 groups based on their syn-
chronization, therefore, we can consider the model as a 16-coupled Gaussian 
map. The Gaussian associate memory can be simplified by reducing the number 
of coupled maps which makes it possible to investigate its bifurcation structure 
by analyzing the reduced model. Based on the results of the analysis, we found 
the parameter region where the stable asymmetric two-periodic points occurred. 
The stable asymmetric two-periodic points were appropriate in generating the 
output patterns corresponding to the binary stored patterns because the trajec-
tories can effectively be separated by setting a threshold. In addition, because the 
symmetric fixed point did not appear in the parameter region, it is preferable for 
recalling the stored patterns. We demonstrated the retrieval process of the pro-
posed model by conducting a simulation which showed that the Gaussian asso-
ciative memory could retrieve stored patterns from the noisy pattern including 
30% different pixels. 

Hence, it can be concluded that the Gaussian associative memory can effi-
ciently recall stored patterns. However, pseudo-patterns were generated with 
input patterns having high noise rates. The trajectories associated with those 
pseudo-patterns were high order periodic points or chaotic behavior. Our future 
work would focus on investigating methods for preventing the generation of 
those pseudo-patterns, and to how to enlarge the capacity of the memory. For 
the former task, the method for avoiding chaos or high order periodic points 
must work well in preventing the generation of pseudo-patterns too. For the lat-
ter, the basin of the attractors and more precise bifurcation analysis would be 
investigated. 
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