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Abstract 
The optimality conditions for macroeconomic problems with limited com-
mitment often contain partial derivatives of the optimal value function, cor-
responding to the outside option. This paper contributes to the literature on 
recursive contracts by proposing an algorithm for approximating the gradient 
of the value function using simulation-based methods. Our method combines 
numerical solution and simulation of the model, Monte-Carlo integration 
and numerical differentiation. It does not suffer from the curse of dimensio-
nality and is therefore convenient for models involving many state variables. 
The algorithm inherits the speed and accuracy limitations of the numerical 
solution method it relies on. Our accuracy analysis is limited to a few classical 
examples from macroeconomic literature. 
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1. Introduction 

The purpose of this paper is to propose a simple algorithm for computing partial 
derivatives of the optimal value function. Macroeconomic problems involving 
incentive compatibility constraints have received wide attention in the literature 
due to recent advances in dynamic optimization techniques (see [1] [2] and ref-
erences therein). Often the optimality conditions for this class of problems in-
volve partial derivatives with respect to endogenous state variables of the optim-
al value function corresponding to the dynamic programming formulation of an 
outside option. Although many numerical methods can provide an approxima-
tion for the value function, there is no reason to believe that a derivative of this 
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approximation will be close in any sense to the actual value of the derivative. In 
this note we suggest an algorithm for accurately computing these partial deriva-
tives by simulation. 

This issue has been previously considered in [3], in the context of a stochastic 
growth model with capital accumulation under one-sided lack of commitment. 
To circumvent the problem of finding the values of the derivatives in [3], the 
authors proposed a method based on the ideas of Benveniste and Scheinkman 
[4]. Unfortunately, their method has limited applicability since it depends on the 
availability of an analytical solution for the derivatives as conditional expecta-
tions of the known functions of the model solution. This paper proposes a sim-
ple algorithm to fill this gap in the literature.  

In order to be able to use finite differences to approximate the gradient at a 
given point, one would need to know the values of the optimal value function at 
a certain set of points. Our algorithm obtains approximations of these values 
with arbitrary precision. Moreover, achieving this accuracy is feasible for all 
points in the state-space which have economic relevance. 

The initial step of our algorithm involves obtaining numerical solution to a 
problem using a procedure which satisfies three criteria. First, it approximates 
some unknown function with flexible functional forms of finite elements. 
Second, it can deliver an accurate solution as the number of the finite elements 
in the function goes to infinity. Third and last, the resulting numerical solution 
must be such that it can be formulated as a set of policy functions approximated 
with flexible functional forms. The next step involves using Monte-Carlo inte-
gration in order to evaluate the conditional expectation of the discounted sum of 
future instantaneous utilities. The final step involves applying the method of fi-
nite differences to approximate the values of the partial derivatives of the value 
function. 

The attractive features of the algorithm include its rather wide scope of appli-
cability and simplicity of implementation. It can be used to study the questions 
of risk sharing under imperfect enforcement of contracts, as well as partnerships 
with limited commitment when several state variables appear in the model cor-
responding to the outside option. Such models may include habit formation 
preferences, several types of capital, or reputational co-state variables. The sug-
gested method is computationally inexpensive. It does not suffer from the curse 
of dimensionality and therefore it is particularly convenient for models involv-
ing many state variables. 

The rest of the paper is organized as follows. Section 2 discusses an example, 
where our algorithm proves to be useful. Section 3 sketches the idea behind the 
algorithm. Section 4 deals with implementation of the algorithm, while Section 5 
compares it with some available alternatives. Section 6 concludes. 

2. Applicability of the Algorithm: An Example  

To fix ideas, we start with an example of a macroeconomic model where our 
computational algorithm proves to be useful. The key feature of this example is 
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that solving it boils down to designing an optimal social contract which takes 
into account not only technological but also incentive and legal constraints. Our 
example illustrates the need for computing the gradient of the value function 
and its practical implementation. Furthermore, it shows that our algorithm is 
applicable to some widely used models, to which the method in [3] cannot be 
applied. 

Consider a model of international risk sharing, which distinguishes itself from 
the canonical model [5] in two respects. First, as in [6], we introduce a friction in 
the credit markets. We assume that the international loans are feasible only to 
the extent to which they can be enforced by the threat of exclusion from partici-
pation in any other international risk sharing arrangement. Second, we incorpo-
rate habit formation preferences into the model. The motivation for doing this is 
threefold. Habits help us illustrate the features of the algorithm by expanding the 
set of endogenous states in the model. Habit formation preferences tend to im-
prove performance of the international business cycle models [7] [8]. Finally, 
empirical studies suggest that habit formation is consistent with the observed 
consumption behavior [9]. To simplify the exposition, we assume inelastic labor 
supply. 

The planner’s problem is to choose the sequences of consumption { }itc  and 
investment { }iti  to maximize a weighted sum of utilities  

{ }
( )0, 1 0

max ,
it it

I
t

i it itc i i t
E u c hλ β

∞

= =
∑ ∑                    (1) 

subject to an aggregate feasibility constraint  

( )
1 1 1

, ,
I I I

it it it it
i i i

c i f k θ
= = =

+ =∑ ∑ ∑                   (2) 

individual participation constraints for each 1, ,i I=  ,  

( ) ( )
0

, , , ,j a
t it j it j i it it it

j
E u c h V k hβ θ

∞

+ +
=

≥∑              (3) 

the equations of motion for the capital,  

( )1 1 ,it it itk k iδ+ = − +                     (4) 

the laws of motion for habits,  

( )1 ,it it it ith h c hλ+ = + −                    (5) 

and non-negativity constraints , 0it itc i ≥ . We assume that productivity shocks 

tθ  follow a first order stationary vector autoregressive process, and that the ini-
tial values for the state variables 0 0 0, ,i i ik h θ , and the initial non-negative weights, 

iλ , are given. In addition, the usual restrictions apply to the discount factor, 
( )0,1β ∈ , the capital depreciation rate, ( )0,1δ ∈ , and the persistence of habits, 
( )0,1λ ∈ . 

The outside option ( ), ,a
i it it itV k h θ  in the participation constraint (3) 

represents the optimal value function corresponding to the autarkic environ-
ment.  
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{ }
( )

0
0

, 0
max ,
it it t

t
it it

c i t
E u c hβ

∞
=

∞

=
∑                      (6) 

subject to  

( ), ,it it it itc i f k θ+ =  

( ) ( )1 , 1 ,it it it it itk f k c kθ δ+ = − + −  

( )1 ,it it it ith h c hλ+ = + −  

with the initial values being equal to the values of the state variables , ,it it itk h θ  
at the moment of deviation from the optimal plan. 

In addition to Equations (2)-(5), the optimal allocations, for all , 1, ,i s I=  , 
must satisfy the risk sharing condition,  

,

,

,i t st

s t it

ξ
ξ

Λ
=

Λ
 

where  

( ) ( ) ( )

( )

1
,

0

1

1

, 1 , 1

, 1 ,

j it jj
i t c t h

j it

a
it j i

it it j

u i t E u i t j

V
i t j

h

ξ
λβ β λ

ξ

µ
ξ

∞
+ +

=

+ +

+ +


Λ = + − + +


∂

− + + 
∂ 

∑
          (7) 

the intertemporal condition,  

( )( ) ( )1 1
, , 1 1 1

1

, 1 , 1 ,
a

it j it i
i t t i t k it it

it it it

V
E f k i t

k
ξ µ

β θ δ
ξ ξ
+ + +

+ + +
+

 ∂
Λ = Λ + − − + ∂ 

    (8) 

the complementary slackness condition,  

( ) ( )
0

, , , 0,j a
it t it j it j i it it it

j
E u c h V k hµ β θ

∞

+ +
=

 
− = 

 
∑  

and the law of motion for the co-state variables 1it it itM M µ+ = + , where 

1it i itMξ λ += + , 0itµ ≥ , and 0 0iM = . In the equations above ( ),cu i t  denotes  
( ),it it

it

u c h
c

∂

∂
, and similar abbreviations apply to other terms1. 

The gradient of the optimal value function a
iV  enters the intertemporal con-

dition (8) and the risk-sharing condition (7). Approximation of this gradient is 
the purpose of the algorithm proposed in [3] and in this paper. Because both  

algorithms can approximate ( ), ,
a

i
it it it

it

V
k h

k
θ

∂
∂

, we will use that fact to compare 

their accuracy in Section 1. Our approach can also approximate ( ), ,
a

i
it it it

it

V
k h

h
θ

∂
∂

,  

whereas [3] cannot, because the analytical solution for this partial derivative as 
an expectation of the known functions of the model’s solution is not available. 
This will be further discussed in Section 1. 

 

 

1Derivation of the optimality condition is available upon request. 
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3. The Algorithm  

Typically, in the models with participation constraints the reservation value is 
the value function of the outside alternative, evaluated at the current values of 
the endogenous state variables, x , and exogenous shocks, s . Consider the op-
timal value function at a point ( ),x s  as an outcome of a standard optimization 
problem for the outside alternative:  

( )
{ }

( )0
0

, max , ,
t

t
t t ta t

V x s E r x a sβ
∞

=

= ∑                   (9) 

subject to  

( ) ( )1 , , , , ,t t t t t t tx l x a s a A x s+ = ∈                   (10) 

0 0, ,x x s s= =  

where r is an instantaneous utility function, ( )0,1β ∈  the discount factor, { }ts  
an exogenous Markov stochastic process, tx  a vector of endogenous state va-
riables, ta  a vector of control variables, A a feasibility correspondence and l the 
law of motion for the endogenous state variables. The functional equation to this 
problem can be derived using the standard dynamic programming techniques. It 
yields a time invariant policy function f such that the optimal allocations satisfy 

( ),t t ta f x s= . 
The purpose of our algorithm is to find a pointwise approximation to the par-

tial derivative ( ),
i

V x s
x
∂
∂

 of the value function with respect to its i-th argu-

ment. The algorithm takes the following three steps:  
Step I (Numerical Solution) Solve the model in (9) with a spectral method 

and formulate the solution in terms of approximated policy functions 
( )ˆ ; ,t t ta f x sω= , which depend on the state variables and some coefficients, ω . 

Step II (Monte Carlo Integration) Simulate N sequences of the realizations 
of the stochastic process { }

1

Tn
t t

s
=

 of size T with a starting value 0
ns s= , for all 

1, ,n N=  . For a each sequence { }
0

Tn
t t

s
=

, simulate the series of the endogenous 
variables { }

0
,

Tn n
t t t

x a
=

 using approximated policy functions f̂ , the equations for 
motion for the state variables (10), and the initial values 0

nx x= . Using the si-
mulated series calculate the discounted sums of the instantaneous returns and 
average over N:  

( ) ( )
1 0

1, , , .
N T

t n n n
t t t

n t
V x s r x a s

N
β

= =
∑∑

 

Step III (Numerical Differentiation) Repeat Step II to obtain approxima-
tions of the value function at two points, for instance ( ),iV x sι+   and 
( ),iV x sι−  , where iι  denotes a conformable vector of zeros with one on its 

i-th coordinate, and   is a small positive number. Calculate the value of the 
partial derivative using, for example, Stirling’s finite difference formula:  

( ) ( ) ( ), ,
, .

2
i i

i

V x s V x s
V x s

x
ι ι+ − −∂

∂

 


  
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The optimal choice of the method for calculating the derivatives in Step III is 
problem specific and its accuracy depends on the smoothness of the value func-
tion. The approaches available include a variety of difference formulas, Richard-
son Extrapolation, or curve fitting with cubic splines. These are described at 
length in the standard numerical methods texts such as [10] [11] [12]. 

A brief note should be made at this point on the accuracy of the algorithm. In 
principle, arbitrary accuracy of the approximation can be achieved, by simulta-
neously increasing the dimension of the approximating family of functions in 
Step I, increasing the size of Monte Carlo iterations in Steps I and II, and de-
creasing the denominator   in Step III. In practical applications, however, 
there are several sources of the approximation errors. First, in order to obtain 
the values of the optimal value function at a point, one relies on the approxima-
tions of the policy functions implied by the numerical solution to the model. 
Second, because we consider stochastic models, there is an additional error 
stemming from the evaluation of the integral in the computation of expected 
discounted returns. Finally, numerical differentiation introduces two more 
sources of error: the truncation error and the roundoff error. The truncation er-
ror comes from omitting higher order terms in the Taylor series expansion. The 
roundoff error is associated with storing real numbers in computer’s float-
ing-point format. Section 0 discusses some practical accuracy issues in the con-
text of an example.  

4. Implementation of the Algorithm  

This section describes a practical computational strategy for implementing the 
algorithm using the example from Section 2. The optimality conditions include 
partial derivatives of the value function corresponding to the dynamic pro-
gramming formulation of the agents outside option, i.e. autarky. The functional 
equation for the autarkic problem is:  

( )
( ) ( )

( ) ( ) ( ){ }
, ,

, , max , , , | , ,
c i A k

V k h u c h E V k h k h
θ

θ β θ θ
∈

′ ′ ′= +     

( ) ,h h c hλ′ = + −  

( )1 ,k k iδ′ = − +  

( ) ( ) ( ){ }2, , : , .A k c i c i f kθ θ+= ∈ + =  

The objective of the algorithm is to find the values of the partials ( )hV ⋅  and 
( )kV ⋅  at a point ( ), ,k h θ , which is likely to happen in equilibrium. Since the 

analytical expression for these derivatives is in general unavailable, we have no 
choice but to rely on numerical differentiation. Another complication which 
arises here is that the closed form solution to the optimal value function is gen-
erally unavailable too. Hence, one needs to approximate value function at two 
points, e.g. ( ), ,V k hε θ+  and ( ), ,V k hε θ−  with arbitrary accuracy in order 
to be able to use the finite differencing approach. 

The first step of the algorithm involves solving the model with a spectral me-
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thod which can approximate the policy functions with arbitrary accuracy. This 
example relies on a version of stochastic simulation algorithm, which formulates 
the solution in terms of approximated policy functions. The Euler equation for 
the problem is given by:  

( )( )1 1 1, 1 ,t t t k t tE f kβ θ δ+ + + Λ = Λ + −   

where marginal utility of consumption is  

( ) ( ) ( )1 1
0

, 1 , .jj
t c t t t h t j t j

j
u c h E u c hβλ β λ

∞

+ + + +
=

 
Λ = + − 

 
∑  

To simplify the exposition we will consider the case of non-persistent habits, 
which corresponds to 1λ = . We assume the functional forms standard in the 
growth literature. The instantaneous utility function is given by  

( ) ( )1
,

1
t t

t t

c bh
u c h

σ

σ

−−
=

−
, where ( )0,1b∈  and 0σ > . The production function  

is Cobb-Douglas and is given by ( ),t t t tf k kαθ θ= . The stochastic process for 
productivity is 1log logt t tθ ρ θ ε−= + , where ( )0,1ρ ∈ , and { }tε  are inde-
pendent normally distributed random variables with zero mean and variance 

2
εσ . In this example, we restrict attention to one particular set of the parameters 

which are summarized in Table 1. 
The algorithm follows the three steps: 1) numerical solution; 2) Monte Carlo 

integration; 3) numerical differentiation.  
Step I (Numerical Solution) The sequences of optimal allocations 

{ }1 1 0
, ,t t t t

c h k ∞
+ + =

 must satisfy the following system of stochastic difference equa-
tions:  

( )

( ) ( )1 2 2
1 1 1 1

1 1

11 1 ,

t t

t t
t t t t t

t t

c bh

c bh
E b c bh k

b c bh

σ

σ
σ αβ αθ δ β

−

−
− − + +

+ + + +
+ +

−

    −   = − × + + − −     −    

(11) 

( )1 1 ,t t t t tk k k cαθ δ+ = + − −                   (12) 

1 .t th c+ =                           (13) 

For the expositional purpose, we solve the model with a version of a stochastic 
simulation algorithm, which is easiest to implement (see e.g. [13]). It takes the 
following steps:  

1) Fix the initial conditions and draw a series of { } 1

T
t t
θ

=
 that obeys the law of 

motion for the exogenous shocks with T sufficiently large. To ensure sufficient 
accuracy of solution we chose 50000T =  for all the numerical examples consi-
dered. The computational burden of this is still rather low since the model needs 
to be solved only once.  

2) Substitute the conditional expectations in (11) with the flexible functional 
forms that depend on the state variables , ,t t tk h θ  and some coefficients, ω , to 
yield  
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Table 1. Parameterization of the model. 

Preferences Technology 

σ  β  b α  δ  ρ  
εσ  

3 0.95 0.5 0.36 0.06 0.95 0.007 

 

( ) ( )( ) ( ) ( )( ); , , ,t t t t tc bh k h
σ

ω ω βψ ω ω ω θ
−

− =  

where ( ) ( )( ) ( ) ( )( )( ); , , exp ;log , log , logt t t n t t tk h P k hψ ω ω ω θ ω ω ω θ= , and nP  
denotes polynomial of degree n. By using the exponent of the logarithmic poly-
nomial expansion we guarantee that the left hand side of (11) remains positive. 
Given ( )tc ω , the next period values for the capital and habit stocks follow di-
rectly from the laws of motion (12) and (13).  

3) Using the realizations of { } 0

T
t t
θ

=
, repeat the previous step in order to obtain 

recursively a series of the endogenous variables ( ) ( ) ( ){ }1 1 0
, ,

T
t t t t

c k hω ω ω+ + =
, for 

this particular parameterization ω .  
4) Run the following non-linear regression  

( ) ( ) ( )( )( )exp ;log , log , log ,t n t t t tY P k hω ξ ω ω θ η= +  

where the role of the dependent variable ( )tY ω  is performed by the expression 
inside the conditional expectation in Equation (11).  

5) Letting ( )S ω  be the result of the regression in the previous step, use an 
iterative procedure to find the fixed point of S, and the set of coefficients 

( )f fSω ω= . This would provide the solution for the endogenous variables 
( ) ( ) ( ){ }1 1 0

, ,
T

t f t f t f t
c k hω ω ω+ + =

 for this particular realization of the stochastic 
process { } 1

T
t t
θ

=
 along with the approximated policy functions:  

( ) ( )
1

, , ; , , ,t t t t t f t t tc k h bh k h σθ βψ ω θ
−

 = +    

( ) ( ) ( )
1

1 , , 1 ; , , ,t t t t t t t t f t t t t
k k h k k bh k hα σθ θ δ βψ ω θ

−

+
 = + − − −    

( ) ( )
1

1 , , ; , , .t t t t t f t t th k h bh k h σθ βψ ω θ
−

+
 = +    

Step II (Monte Carlo Integration) Our objective is to find approximations of 
partials at a range of points. Supposing that the point of interest is ( ), ,k h θ  the 
algorithm proceeds as follows: 

Simulate N sequences of the realizations of the stochastic process { }
0

Tn

t
θ

=
 of 

size T  with a starting value 0
nθ θ= , for all 1, ,n N=  . For a each sequence 

{ }
0

Tn

t
θ

=
 simulate the series of the endogenous variables { }

0
, ,

Tn n n
t t t t

k h c
=

 using 
approximated policy functions, the laws of motion (12)-(13), and the corres-
ponding initial values 0 0,n nk k h h= = . Using the simulated series calculate the 
discounted sums of the instantaneous utilities and average over N,  

( ) ( )1

1 0

1, , .
1

n nN T t tt

n t

c bh
V k h

N

σ

θ β
σ

−

= =

−

−∑∑  
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Step III (Numerical Differentiation) To obtain ( ), ,kV k h θ  get approxima-
tions of the optimal value function at ( ), ,V k h θ+   and ( ), ,V k h θ−  , where 
  is a small positive number. Calculate the approximated value of the partial 
derivative using Stirling’s finite difference formula:  

( ) ( ) ( ), , , , , ,
.

2

V k h V k h V k h

k

θ θ θ∂ + − −

∂

 


            (14) 

The partial with respect to the habit stock is obtained in a similar way. The 
length of the simulated series T  can be very moderate due to discounting of 
the future utilities. The optimal value of   is both computer and problem spe-
cific.  

5. Numerical Accuracy: A Comparison  

This section considers the accuracy of the algorithm in the context of our exam-
ple. First, we compare performance of our algorithm with the approach in [3] 
when such comparison is feasible. Next, we present several special cases, which 
isolate the contributions of different sources to the overall approximation error. 

Consider the optimality conditions for the autarkic problem, written in the 
sequence form:  

( ) ( ) ( )1 1 1 1 1 1, , , , , ,c t t t h t t t t k t t tu c h E V k h E V k hβλ θ β θ+ + + + + +   + =        (15) 

( ) ( ) ( )( )1 1 1, , , , , 1 ,k t t t t k t t t k t tV k h E V k h f kθ β θ θ δ+ + + = + −        (16) 

( ) ( ) ( ) ( )1 1 1, , , 1 , , .h t t t h t t t h t t tV k h u c h E V k hθ β λ θ+ + + = + −         (17) 

Condition (17) can be used to compare our algorithm with the method in [3]. 
The latter requires solving the model numerically and expressing the derivatives 
of interest in terms of conditional expectations and functions of the equilibrium 
path of the model. Applying recursive substitution and the law of iterated ex-
pectations to (17) yields:  

( ) ( ) ( ) ( )
1

, , , 1 , .jj
h t t t h t t t h t j t j

j
V k h u c h E u c hθ β λ

∞

+ +
=

 
= + − 

 
∑  

An approximation of this derivative can be obtained by parameterizing the 
right hand side with flexible functional forms in the state variables ( ), ,t t tk h θ  
and running a non-linear regression using the simulated series from the numer-
ical solution of the model. 

Figure 1 shows the approximations of the derivative obtained using our algo-
rithm and the approach in [3]. The approximated values of ( ), ,h t t tV k h θ  are 
plotted for a range of a state variable while keeping the remaining states fixed at 
their deterministic steady state values. The histograms plot the sample distribu-
tions of capital and habit stock. A few observations can be made based on Figure 
1. First, the two algorithms produce indistinguishable results when the state va-
riables take the values which often occur in equilibrium. Second, for the points 
which are unlikely to occur in equilibrium, the approximations differ signifi-

https://doi.org/10.4236/tel.2019.91011


A. Dmitriev 
 

 

DOI: 10.4236/tel.2019.91011 135 Theoretical Economics Letters 
 

cantly. To see this feature, consider the range of values of capital stock in excess 
of 6.5. The plots of the approximate derivatives reported in the upper panel of 
Figure 1 do not coincide. Moreover, the upper tail of the histogram suggests that 
such values of tk  are not unlikely to happen in equilibrium. Notice, that while 
considering a relatively high value of tk  we kept the remaining arguments of 

( ), ,h t t tV k h θ  at their deterministic steady state values. However, the points 
where capital is very high while consumption (and hence the habit stock) are at 
the steady state level are rather unusual. This is an expected result, since Monte 
Carlo integration delivers good approximations only in the region of the state 
space which is frequently visited by the model in equilibrium. 

The framework we have chosen for a worked out example embeds several well 
known special cases. For instance, if 0λ = , it reduces to the Brock-Mirman 
stochastic growth model. In this case, the analytical form of the one-period re-
turn function r, which maps the graph A of the feasibility correspondence Γ  
into the real numbers is known. The correspondence describing the feasibility 
constraints is given by  

( ) ( ) ( ) ( ), 1 , , 1 ,t t t t t tk f k f k kθ δ θ δ Γ = − + −   

and the instantaneous return function becomes  

( ) ( ) ( )( )1 1: given by , , , 1 ,t t t t t t tr A r k k u f k k kθ θ δ+ +→ = + − −  

where ( ) ( ){ }3
1 1, , : ,t t t t t tA k k k kθ θ+ + += ∈ ∈Γ . Hence, by virtue of the Benve-

niste-Scheinkman theorem the derivative of interest can be expressed as  

( ) ( ) ( ) ( )( ) ( ), , 1 , , 1 ,k t t t t t t t k t tV k u f k k g k f kθ θ δ θ θ δ′  = + − − + −   

where g is the optimal policy function for capital stock. This special case allows 
us to compare the simulation from our algorithm with the example where the 
only source of approximation errors is the approximation of the policy function 
g. This will allow us to isolate the contribution of the approximation errors in 
evaluation of the integrals and numerical differentiation to the overall approxi-
mation error of the algorithm. As shown in Figure 1, the approximation deli-
vered by our algorithm is very close to the approximation which relies on the 
Benveniste-Scheinkman theorem. Once again, in the region of the state space 
which is often visited by the model in equilibrium the two approximations are 
virtually identical. This allows us to tentatively suggest that the main contribu-
tion to the approximation error of the algorithm comes from the approximation 
of the policy functions. 

Our final special case compares the approximation of the derivative with its 
known exact solution. It is well known that for the functional forms 
( ),t t t tf k kαθ θ= , ( ) logt tu c c= , and 1δ = , the optimal policy function is de-

fined by the simple law of motion 1t t tk kααβθ+ = . Moreover, the derivative of 
the value function has the following analytical solution:  

( )
( )

1 1, .
11

t t
k t t

tt t

k
V k

kk

α

α

αθ αθ
αβαβ θ

−

= =
−−
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Figure 1. Comparison with the algorithm of Marcet and Marimon [3].  

 
By replacing the approximated policy function with the known closed form 

solution, we can isolate the effect of the errors stemming from Monte Carlo in-
tegration and numerical differentiation on the accuracy of the approximation. 
Figure 2 compares the approximated derivative obtained using the exact policy 
function for tk  with its analytical counterpart. The reported graphs are visually 
indistinguishable for the range of six standard deviations of tk  around its de-
terministic steady state value. The approximation errors stemming from Monte 
Carlo integration and numerical differentiation are of an order of 10−9 of the 
value of the derivative. This suggests that obtaining accurate approximation of 
the policy functions is crucial for the accuracy of the whole algorithm.  

6. Concluding Remarks  

This paper contributes to the literature on recursive contracts by proposing an 
algorithm for computing the gradient of the optimal value function using simu-
lation-based techniques. The proposed procedure is conceptually straightfor-
ward, computationally inexpensive, and simple to implement. It allows re-
searchers to extend existing risk-sharing models with limited commitment by 
including additional endogenous state variables. For example, one may extend a 
multi-country single-good model in [6] by including different types of capital or 
time-non-separable preferences. Alternatively, a multi-country multi-good model 
in [14] can be extended to include capital accumulation and cross-country trade 
in investment goods. 
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Figure 2. Comparison with a Closed Form Solution. 

 
In terms of accuracy, the algorithm demonstrates performance comparable 

with Marcet and Marimon’s method [3] in our benchmark example. In contrast 
to [3], our method is flexible enough to handle dynamic models with large 
numbers of state variables even when derivatives of interest cannot be expressed 
in terms of conditional expectations and functions of the equilibrium path of the 
model. 

While our algorithm has wide applicability, it inherits its speed and accuracy 
trade-offs from the underlying numerical solution method. Our experiments 
suggest that obtaining accurate approximation of the policy functions is crucial 
for the accuracy of the whole algorithm. 

An additional limitation on the algorithm’s computational speed is imposed 
by model’s simulation and Monte-Carlo integration. However, both steps can be 
parallelized along the lines proposed in [15] in order to reduce the computation-
al time burden. Exploring the costs and benefits of a parallel implementation of 
the algorithm is left for the future research. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Cole, H. and Kubler, F. (2012) Recursive Contracts, Lotteries and Weakly Concave 

Pareto Sets. Review of Economic Dynamics, 15, 479-500.  

[2] Golosov, M., Tsyvinski, A. and Werquin, N. (2016) Recursive Contracts and Endo-
genously Incomplete Markets. In: Handbook of Macroeconomics, Vol. 2, Elsevier, 
Amsterdam, 725-841.  

https://doi.org/10.4236/tel.2019.91011


A. Dmitriev 
 

 

DOI: 10.4236/tel.2019.91011 138 Theoretical Economics Letters  
 

https://doi.org/10.1016/bs.hesmac.2016.03.007 

[3] Marcet, A. and Marimon, R. (1992) Communication, Commitment, and Growth. 
Journal of Economic Theory, 58, 219-249.  
https://doi.org/10.1016/0022-0531(92)90054-L 

[4] Benveniste, L.M. and Scheinkman, J.A. (1979) On the Differentiability of the Value 
Function in Dynamic Models of Economics. Econometrica, 47, 727-732.  
https://doi.org/10.2307/1910417 

[5] Backus, D.K., Kehoe, P.J. and Kydland, F.E. (1992) International Real Business 
Cycles. Journal of Political Economy, 100, 745-775.  
https://doi.org/10.1086/261838 

[6] Kehoe, P.J. and Perri, F. (2002) International Business Cycles with Endogenous In-
complete Markets. Econometrica, 70, 907-928. 
https://doi.org/10.1111/1468-0262.00314 

[7] Dmitriev, A. and Roberts, I. (2012) International Business Cycles with Complete 
Markets. Journal of Economic Dynamics and Control, 36, 862-875.  
https://doi.org/10.1016/j.jedc.2011.12.006 

[8] Dmitriev, A. and Krznar, I. (2012) Habit Persistence and International Comove-
ments. Macroeconomic Dynamics, 16, 312-330.  
https://doi.org/10.1017/S1365100510000957 

[9] Chen, X. and Ludvigson, S.C. (2009) Land of Addicts? An Empirical Investigation 
of Habit-Based Asset Pricing Models. Journal of Applied Econometrics, 24, 
1057-1093. 

[10] Judd, K.L. (1998) Numerical Methods in Economics. The MIT Press, Cambridge, 
MA. 

[11] Mathews, J.H. and Fink, K.K. (2004) Numerical Methods Using Matlab. 4th Edition, 
Prentice-Hall, Upper Saddle River, NJ. 

[12] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical 
Recipes in C: The Art of Scientific Computing. 2nd Edition, Cambridge University 
Press, Cambridge. 

[13] den Haan, W. and Marcet, A. (1990) Solving the Stochastic Growth Model by Pa-
rameterizing Expectations. Journal of Business & Economic Statistics, 8, 31-34.  

[14] Bodenstein, M. (2008) International Asset Markets and Real Exchange Rate Volatil-
ity. Review of Economic Dynamics, 11, 688-705.  
https://doi.org/10.1016/j.red.2007.12.003 

[15] Creel, M. (2008) Using Parallelization to Solve a Macroeconomic Model: A Parallel 
Parameterized Expectations Algorithm. Computational Economics, 32, 343-352.  
https://doi.org/10.1007/s10614-008-9142-6 

 

https://doi.org/10.4236/tel.2019.91011
https://doi.org/10.1016/bs.hesmac.2016.03.007
https://doi.org/10.1016/0022-0531(92)90054-L
https://doi.org/10.2307/1910417
https://doi.org/10.1086/261838
https://doi.org/10.1111/1468-0262.00314
https://doi.org/10.1016/j.jedc.2011.12.006
https://doi.org/10.1017/S1365100510000957
https://doi.org/10.1016/j.red.2007.12.003
https://doi.org/10.1007/s10614-008-9142-6

	On Approximating the Gradient of the Value Function
	Abstract
	Keywords
	1. Introduction
	2. Applicability of the Algorithm: An Example 
	3. The Algorithm 
	4. Implementation of the Algorithm 
	5. Numerical Accuracy: A Comparison 
	6. Concluding Remarks 
	Conflicts of Interest
	References

